PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
0N FIFTH GENERATION COMPUTER SYSTEMS 1084,
edited by 1COT. € ICOT, 1984

517

A DATA-DRIVEN MODEL FOR
PARALLEL INTERPRETATION OF LOGIC PROGRAMS!'

Lubomir Bic

Department of Information and Computer Science
University of California
Irvine, California 92717

ABSTRACT

A model for parallel interpretation of logic pro-
grams is presented. It is based on the idea of rep-
resenting logic programs as graphs and graph tem-
plates in which resolution may be viewed asa process
of graph matching. This process is carried out by
tokens propagating asynchronously through the un-
derlying graphs. The main problem is to decide how
a given template should be distributed over as many
independent tokens as possible and bhow to guide
these through the underlying graphs. The scheme
presented in this paper is based on transforming a
given template info a spanning tree which permits
both OR and AND-parallelism to be exploited dur-
ing processing.

1. INTRODUCTION

New advanced technologies that have emerged
in recent years have made it possible to manufac-
ture large numbers of inexpensive components such
as processing elements and memory units. When
attempting to utilize this potential in the construe-
tion of highly parallel machines the inadequacies of
von Meumann architectures have been recognized
JArvind and lannueci 1983/ and resulted in the de-
velopment of new models for parallel computations.
One such model, referred to as dataflow /COM-
PUTER 1982, Treleaven et al. 1982/, is based on
the principles of data-driven, asynchronous compu-
tation. A dataflow program is a graph consisting
of nodes interconnected via directed arcs. Each
node is an operator supported by a logically inde-
pendent processing element; it is capable of accept-
ing, processing, and emitting value tokens traveling
asynchronously along the graph arcs. Hence it is
the availability of data, rather than control signals,
which trigger the execution of operations.

In /Deliyanni and Kowalski 1979/, the authors
have discussed the idea of representing logic pre-
grams as collections of graphs and graph templates,
called extended semantic networks, in which reso-
lution may be viewed as a special form of pattern
matching among graph structures. There are many
possible schemes one could envision to implement

! This work was supported by the NSF Grané MCS-8117516.

the pecessary graph matching procedures; the model
presented in this paper is based on the principles of
dataflow, where finding a given pattern is accom-
plished by an asynchronous propagation of tokens
through the underlying graph. Since many process-
ing elements may be engaged in the replication and
forwarding of individual tokens, a high degree of par-
allelism can be achieved.

One of the main issues in this approach is to
decide how a given graph template should be dis-
tributed over a number of independent tokens and
how to guide these through the underlying graph. In
/Bic 1984/ it was suggested to transform the pattern
into a linear sequence in order to keep the guiding
procedures as simple as possible. The linearization
procedure was based on finding Euler paths through
the given pattern. In this paper we will consider a
more complex scheme based on constructing a span-
ning tree, which increases the amount of potential
AND-parallelism during processing.

It should be mentioned at the outset that in this
paper we are concerned with cnly ‘pure’ logic pro-
gramming; it would be premature to include con-
structs that have been added to create an actual
programming environment such as PROLOG. Fur-
thermore, we will resirict the current model to only
binary predicates as advocated in /Deliyanni and
Kowalski 1979/, Finally, it should be mentioned at
this point that the area of applications envisioned for
the model is within the realm of database or knowl-
edge hase systems /Dahl 1982, Gallaire and Minker
1978, Minker 1978, Warren 1981/, as opposed to
mathematically oriented computations.

8. REPRESENTING LOGIC PROGRAMS
AS NETWORKS

A logic program is a set of clauses of the form
Po = Ply s P s

Each p; is called a literal and has the form
pltis - bm), where p is 2 predicate symbol and
£, ..., tm are terms. Terms may be constants, vari-
ables, or functors.

Figure 1 shows a sample program which records
the relationships ‘mother’ and ‘father’ among indi-
viduals as assertions (lines 1-5) and the relationships

518

‘parent’ and ‘grandparent’ as clauses with free vari-
ables (lines 6-8). Line 9 is the goal to be solved.3

(1) father(bill,john) «

{2} mother(billjane)

{3) father(john,hans) —

(4} father{jane fred) «—

(5) mother(john,ann) «—

(6) parent(X,Y) — mother(X,Y)

(7) parent(X,Y) + father(X,Y)
(8) grandparent(X,Y) — parent(X,Z}, parent(Z,Y)
{(9) +~ grandparent{bill,Y)

Figure 1

We can transform any logic program (restricted
to binary predicates) into a collection of graphs by
representing each literal p(t;, f3) as a directed arc of
the form

ty P ta
-——

The arrow head is used to record the order in
which the terms of the literal were given. This in-
formation must be preserved when the literal repre-
sents an asymmetric relation)

Literals sharing the same term result in arcs con-
necied to one another via the corresponding nede.
Since many terms may be shared among different
literals, graphs of arbitrary complexity may result.

Similar to the model presented in /Bic 1984/, we
will distinguish two types of graphs: An assertion
graph is constructed from the sequence of all asser-
tions containing only ground terms (i.e. terms with-
out free variables), and thus represents the collection
‘of explicit facts, Figure 2 shows the assertion graph
corresponding to the program of Figure 1. Note that
multiple occurrences of any ground term are mapped
onto the same node of the assertion graph.

The assertion graph is assumed to be a datafiow
graph which implies that each node is an active
element capable of receiving, processing, and emit-
ting value tokens traveling asynchronously along the
graph ares.

All other clauses are interconnected via pointers
into a directed structure as follows: a literal in the
body of a clause points to all clauses whose heads
are unifiable with that literal. This (possibly cyelic)
collection of graphs will be referred to as the goal
structure and may be interpreted as follows: a lit-
eral L with pointers to other clauses may be solved
either by unifying L itsell with one of the asser-
tions in the assertion graph, or by sclving one of

. Throughout this paper, lower casc letiers are used to de-
note constants while capitals are used to denote free variables,

o Terminology: Simce an are Is just another way of ropre-
senting the same information contained in a lteral, we will use
the expressions ‘literal’ and ‘arc” as syconyms. Similarly, the
expressions "term' and ‘node’ will refer to the same concept.

the clauses pointed to by L. Figure 3 shows the goal
struclure constructed from the program in Figure 1.

hans

+ grandparent(bill, ¥')

grandparent(X,Y) « parent(X,Z), parent(Z,Y)

parent(X,Y) +— mother(X,Y)
parent(X,Y) « father(X,Y)

Figure 3

The body of each clause in the goal structure
may itsell be viewed as a graph, similar to the as-
sertion graph, if terms are interpreted as nodes in-
ferconnected by arcs. Since each such clause usu-
ally contains free variables it will be referred to as
a graph template. For example, Figure 4a shows
the graph template corresponding to the initial goal
(line 1) of Figure 3. Similarly, Figure 4b shows the
graph template corresponding to the body of the
clause on line 2 of Figure 3. (The variable X has
already been bound to the constant bill.)

I:ri‘i]_ grandparent Y

Figure 4a

bill parent Z parent Y
a2)

) Figure 4b

Notation: To avoid drawing an excessive num-
ber of figures, we will use the following notation to
denote an arc labeled p between two nodes T and
Ty: Ty ~f+ Ty. Ares sharing 2 common node are
joined to form connected sequences. For example,
the graph template of Figure 4b, would be tran-

scribed as bill P25 7 Py)

8. STRATEGIES FOR GRAPH MATCHING

Assume an arbitrary sequence of literals py,
vy P i5 to be solved. In order to exploit paral-
lelism within such a clause (referred to as AND-
parallelism), it is desirable to process as many [it-
erals p; concurrently as possible. This, however, is
limited by free variables shared among different lit-
erals since each such variable must be bound to the
same term during execution. As a first step, we can
divide the original sequence of literals into groups
such that any two literals belong to the same group
if and only if they share at least one free variable.
Each such group will be referred to as a cluster.
From its definition it follows that any cluster may be
fitted into the assertion graph independently simce
no free variables are shared ameng clusters. Hence
we can concentrate on finding procedures for fitting
individual clusters rather than arbitrary templates.

The fitting of a cluster should be carried out by
tokens propagating through the underlying dataflow
graph. In the most general case, the template
formed by a given cluster is an arbitrarily inter-
connected graph. Since tokens in dataflow systems
propagate asynchronously and there is no central-
ized control, the detection of cycles is difficult. To
alleviate this problem, we can attempt to transform
the given template into some other form, for which
simpler token-guiding procedures can be devised.

The simplest case would be a transformation
into 2 connected linear chain of literals. This can
be accomplished by first transforming the template
into a graph with a circolar Euler path and then,
by retracing that path, deriving the desired linear
chain of literals. Unfortunately, this transiormation
requires certain literals to be replicated in order to
obtain an Euler path, and thus causes unnecessary
repeated unifications to be carried out. This waste-
ful behavior can be eliminated by forming several
edge-disjoint paths through the template and retrac-
ing these in sequence; this is the approach discussed
in /Bic 1984/.

Transforming the template into a linear chain
prevents any AND-parallelism to be exploited within
a cluster. This situation can be improved if the tem-
plate is transformed into a tree structure instead.
One possible approach is to find a depth first span-
ning tree, which partitions the template into two sets
of edges — free edges and back edges. (A procedure
for constructing such spanning trees may be found,
for example, in /Aho et al. 1976/.) Figure 5b shows
the spanning tree constructed for the template of
Figure 5z; back edges are shown as dotted lines. By
replicating the nodes at which back edges terminate,
we obtain a tree structure as shown in Figure 5c.

At each node of the template, the corresponding
subtrees represent independent AND-goals; these
can potentially be processed in parallel since no free
variables are shared among subirees. For example,
when binding the root Ty of the tree in Figure 5c
the two newly created leaves {both T}) are bound as
well and hence the two subtrees form independent

519

clusters.

Pa I Ps

P M

Figure 5a

Figure 5c

To simplify the subsequent presentation, we as-
sume that subtrees will be processed one at a time.
This can be accomplished by transforming the given
tree into a linear sequence of nodes and ares using,
for example, a preorder traversal algorithm. The i‘nﬁ-
lowing section develops the necessary procedures for
fitting such (linear) sequences into the underlying
dataflow graph.

4. SOLVING GOALS USING
TOKEN PROPAGATION

4.1. Subgoals without Pointers

The sequence of literals constituting the body of
a clause Is usually referred to as a goal while each of
the individual literals is called a subgoal. We first
consider subgoals without pointers to other clauses.
In the graph representation, solving such a subgoal
p(Ti, Tz) corresponds to the following graph fitling
problem: determine possible bindings for the terms
Ty and T; such that the graph template Ty %~ T3

520

matches some arc of the assertion graph. Opera-
‘tionally, this iz accomplished by placing the graph
template on a token and injecting it into specific
nodes of the assertion graph. From each of these
nodes the token is replicated along existing arcs in
an attempt to find a match. We can distinguish the

following four cases:

{a) Both nodes Tj and T3 are bound to ground terms
f1 and t9, respectively. Since there can be only
one occurrence of each of the nodes ¢ and #; in
the assertion graph, the token is injected into one
of these, say ¢;. This node then replicates the to-
ken zlong all arcs labeled p that emanate from
¢y, If one of the nodes receiving the replicated
token matches the second term £, the subgoal is

- solved successfully; otherwise there is no direct
match for this template.
The same result is obtained when the token is
initially injected into f2 from which it replicates
in a search for #;. This will be denoted by re-
versing the direction of the arc: Ty «— T}.

(b) The node T} is bound to a ground term ¢ while
the node T is a free variable. As in the first
case, the token Is injected into the node {y from
which it is replicated along all arcs labeled p.
This time, however, any node fg receiving the
replicated token may be bourd to the variable
To and hence presents a solution to the given
subgoal p(T7, Ty).

{¢) The node T; is bound to a ground term £z while
the node T is free. Io this case, reversing the arc
to T; «2— T} yields a situation analogous to (b},
where the first term is bound while the second
is free. Hence the same approach can be taken.

(d) Both variables T} and Ty are free. This case
differs from the previous three in that there is no
unique injection point for the token. Rather any
node of the assertion graph is a potential binding
for either variable and hence the token must be
injected into all nodes of the assertion graph.®
Each of these nodes binds the first variable T}
to its own content and replicates the token along
all arcs labeled p in the same way as described
under {b). In ofher words, the search is started
in all nodes simultaneously.

4.2, Sequences of Subgoals without Pointers

[o this section we extend the scheme for solving
individual subgoals presented above to cope with se-
quences of subgoals of the form

5 In terms of a conventional implementation, the ability to
Infect a token into a mode correspoads fo Indexing on argu-
menis rather than on predicate names. Currently we are in-
vestigating a scheme which would correspond to indoxding on
predicate names. In this case the token would not have fo be
replicated to all nodes of the assertion graph but only to thase
connccted to an arc labeled p. This could be viewed as in-
jecting the token into specific arcs instead of nodes and would
considerably reduce the pumber of injected tokens.

p1(Toa, Taz)s p2(T2a, Toz)s oo Prl T Taz),

where each T;; must satisfy one of the following re-
strictions:

“.} it must match the ferm T{_ﬂ—i}.!? or

{2) it must be bound to a constant.

In the first case the ares corresponding to the two
adjacent literals p; and p;_1 are connected, resulting
in a graph template of the following form:

In the second case, where T} is bound to a con-
stant, we introduce a2 dummy arc, denoted as ==,
to create an artificial connection between the two
adjacent literals p; and p;—q, ie.,

‘e ‘MTH'ILE = T“ B, “ua a

A sequence of literals where each T satisfies
one of the two above restrictions has the following
important property: all literals in that sequence, ex-
cept possibly the first, will have at least one term
bound when the sequence is processed from left to
right. We will refer to such a sequence as a linear
form. Nofe that any tree may be transformed into
this form by applying a simple preorder traversal.

Assuming that none of the subgoals p; bhas a
pointer to other clauses, the processing of a linear
sequence then corresponds to the following graph fit-
ting problem: determine possible bindings for all
terms T;, such that the graph template matches
some path in the assertion graph. Operationally,
this is accomplished as follows: A token, carrying
the entire graph template, is injected into nodes of
the assertion graph that may be bound to the first
term T1.1. {As was the case with individual subgoals,
only one such node #; will exist if T}y is bound to a
ground term; otherwise the token must be injected
into all nodes of the assertion graph.) Each node
t; receiving the injected token will replicate it along
all arcs that match the template arc py. Each of
the nedes fy, receiving the replicated token, will at-
tempt to bind itsslf to T 2. At this point, the next
arc of the template is either a regular arc ps orit is a
dummy arc ==, In the first case, {7 would continue
the propagation of the token along all arcs matching
the name pp. In the second case, the token is sim-
ply sent to the node that matches the corresponding
term To ;. There is at most one such node since, by
definition, T ; must be bound.

The same steps are performed by all nodes
receiving the token, which results in a stepwise ex-
pansion of the graph template into alt possible direc-
tions of the assertion graph. Each branch continues
to grow until one of the following conditions occur:

{2] A node {; is unable to bind itself to the corre-
sponding node T; s (e, T; 7 is already bound to
a term different from &), or, no arc emanating
from f; matches the corresponding template arc
pi. In this case a special token, [called end-of-
stream as will be discussed in Section 5.1), which
indicates that no solution can be found along this

path, is returned by the node ¢; to the sender of
the received token.

(b) The last node Tnz of the template has been
reached, implying the detection of a match for
the given graph template. At this point, a re-
ply token, carrying all the bindings made dur-
ing the forward propagation, is created and re-
turned along the same path to the original injec-
tion point. It represents one complete solution
to the original goal (the linear sequence).

4.3. Goals with Pointers to Other Clanses

The scheme described so far only finds solutions
that result from processing the given goal against
the collection of all asseriions; no clause substitu-
tions were considered. We now extend the scheme
to utilize all clauses that may contribute to solving
the given goal.

Consider the general situation depicted in Fig-
ure &, where p is the geal to be solved.

{1] PPy e B=1 Pis Bl Pr

(2) m—a,udm

Figare 6

There are two possible sequences of literals that
may yield independent solutions for p. These are

{a) The original sequence py, ..., Pn, and

{b) Tllegaquenoem, wrsy Pimly Q1 +oos Ty Piks s Py
obtained by replacing p; in the original sequence
by the sequence pointed to by p.

Note that both sequences have the first § = 1 liter-
als in common. We will use this fact to extend the
previous acheme as follows:

To solve the goal p, a graph template corre-
sponding to the sequence pi,...pn is placed on a
token and starts expanding from an injection node
{; inte all possible directions as described in Sec-
tion 4.2, In addition, each time an arc p; with point-
ers to other clauses is encountered a new branch of
gearch is started by the node {; processing the token:
it fetches the clause pointed to by p;, forms a new
graph template consisting of the literals g1, ...,qm
and a copy of the yet unused portion of the cur-
rent sequence Piyq, ..., Pn, and starts replicating the
new token along all appropriate arcs in the same way
ag the original token. It then waits for responses to
both types of token, which will represent indepen-
dent solutions to the templates py, ..., Pi—1, Piy Pisl
wey P and Py oo Pi=1s Ty ooy Toun Piwls -+ Py T
spectively.

The following section formulates the exact pro-
cedures to be performed by each node of the dataflow
graph upon receiving a token.

521

5. PROCEDURES FOR TOKEN
PROPAGATION

The semantics of a general dataflow system may
be defined by specifying the procedures to be per-
formed by each graph node when receiving a token.
Each such procedure is invoked as soon as the nec-
essary input tokens have arrived and it causes the
generation of result tokens which are forwarded to
other nodes. While the medel proposed in this paper
differs in many respects from a general dataflow sys-
iem, it can be defined in terms of similar procedures,
triggered solely by the arrival of tokens. Hence the
model is strictly data-driven — there i3 no need for
any centralized control to synchronize concurrent op-
erations.

5.1, Generation of Activily Names

Before presenting the actual procedures, we need
to introduce a scheme which would permit individual
nodes to keep track of concurrent activities started
in response to a received token, and to await the cor-
responding response tokens, This scheme is based on
the principles employed in general dataflow systems
JArvind et al. 1978/: Each token, in addition to
carrying the necessary data, contains a unique iden-
tifier called an activity name. This name is used
by receiving nodes to disambiguate the various to-
kens traveling asynchronously through the graph.

The basic principles governing the gemeration
and use of activity names is as follows. There are
two types of tokens in our system: regular tokens,
which propagate forward in an attempt to find a
match for the graph templates they carry, and re-
ply tokens which return along the same paths in
the opposite direction and report the bindings made
during the forward propagation. Whenever a regu-
lar token is propagated forward, its activity name is
extended by appending to it a new component gener-
ated by the sending node. Thus activity names have
the form 21.8%.35, Where each component a; is
an integer appended to the activity by a different
node. Similarly, each time a reply token is propa-
gated backward, the rightmost component of the ac-
tivity name is detached by the sending node. Hence,
within each node, activity names provide the nec-
pssary matehing information. The following para-
graphs discuss the exact form of activily names and
their generation.

Assume that 2 nede {; has just received a token
carrying the graph template T; 5 Tiyy LTI L
Ty, where any of the arcs L4, could be a regular are,
representing a literal, or a dummy arc =, as de-
scribed in Section 4.2, Assume further that the ac-
tivity name carried by this template is ay.a3.4;
which we shall abbreviate as #. As described in Sec-
tion 4.2, the node ¢; will replicate the token along all
arcs labeled p;. These tokens will be given the activ-
ity names .1, 8.2, ..., 8.p constructed by concatenat-
ing the original name, &, with 2 new component — an
integer ranging from 1 to p, where p is the number of

522

arcs matching p;. All these activities are recorded by
the node §; as pending, that is, tokens with matching
activity names are expected to arrive.

In addition to replicating the token along the p;
arcs, the node must start a new activity for each
clause pointed to by p;, as was described in Sec-
tion 4.3. These activities will be assigned the names
a.(p+1),8.(p+2),..., 8.(p+k), where k is the number
of pointers from p;. Each such activity is started by
fetching the clause pointed to by p; and converting
it into a set of linear clusters. Hence several tokens,
each carrying one cluster, are created for such an
activity. These tokens will be distinguished by sub-
activity names of the form a.[(p+ 7).1), 2.[(p+7).2],
vy B|(p + j).f], where [is the number of clusters
(subactivities) comprising the activity a.(p 4 j), for
1<j<k

The following sequence summarizes the complete
set of activities generated by a node when receiving
a token with activity name a:

{a.1}. {apHa(p+ 1).1], .., al(p + l}.hﬂ]‘-
A l{p+ £).1); .., 8. [(p + k).0e)}

Activities enclosed in curly brackets represent
OR-activities; each vields an independent solution
to the received cluster. Subactivities within curly
brackets represent AND-activities; all must be solved
in order to obtain a solution to the corresponding
OR-activity.

One more construct must be introduced before
the procedures can be presented: Note that any
number of reply tokens (including zero) could be re-
ceived by a node for a pending activity. Due to the
asynchronous nature of the model it is not possible
for a node to determine when all reply tokens for a
given activity have arrived. In order to solve this
problem we introduce a special type of token, called
eos-token (for end of stream), similar to that used
in general dataflow systems /Arvind et al. 1978/,
An eos-token, identified by an activity name, is sent
by a node after all reply tokens for that activity have
been emitted. It carries the number of these reply
tokens which permits the receiving node to deter-
mine when all have arrived.

5.2, Procedures

This section defines the semantics of the model
by specifying the procedures to be executed by a
graph node upon receiving a token. The first pro-
cedure is executed when a regular token, carrying a
graph template, is received. It canses the forward
propagation of such tokens as was discussed in See-
tion 4. The second procedure is executed when a
reply token, carrying the bindings made during the
forward propagation, is received. It causes the back-
ward propagation of the reply tokens. Finally, the
third procedure is invoked when an eos-foken is re-
ceived. These tokens, which follow sets of reply to-
kens, terminate the activities along the paths.

1. Procedure performed by a node {; upon receiving

a regular foken T from a sender S; ecach such
token carries the following information:

activity name: @
graph template: T; 25 Tpyy B8 |, 22b

bindings made so far: This is a list L of pairs
{T}, 5}, where each T_*, is one of the variables of
the template and ¢; is the node that bound its
name to T; when it was visited by the token.

Frocedure:
(indentation is used to indicate the scope of then and
else clauses)
if T; is bound to a term different from &;
then return eos-token with act. name a to sender §,
discard token T :
else bind ¢; to T; (i.e., add pair (T}, ¢;) to list L)
if T; is the last node (T} of the template
then return a reply token (carrying list L
and activity name @) to sender S,
discard token T
else form a new token T" with template
Trpn B2 21T, and the list L
replicate T® along all arcs that match p;;
the activity names of these tokens will be
ia.l,..,a.p; record these as pending.
il p; points to other clauses
then for cach such clause do
fetch the clause, form ! linear
clusters as described in Section 3,
place each on a token and send it to
nodes that match the leftmost node of
the cluster, record | new subactivities
al(p+4)1],...allp+5)] (1£5<k).

2. Procedure executed by a node {; upon receiving
a reply token R; each such token has the form:

aetivity name: . (where j is the right-most
component of the activity name)

bindings: List L of pairs (T}, {;} as defined above.

Procedure:

if the activity name 2.5 is within 8.1, ..., 3.p

then send reply token (with act. name @) to sender 8§

else (i.e. when activity name is greater than a.p)
record all bindings (list L) with the activity a.j.

3. Procedure executed by a node §; when receiving
an ecs-foken; each such token has the form:

activily name: &.j (where j is the right-most
component of the activity name)

Frocedure:
il the activity name 2. is within a.1,...,8.p
then terminate the activity a.j
else mark the corresponding subact. as completed;
if all subactivities within the act. 4.5 are marked
then for each combination of bindings
produce a reply token (carrying that

combination and the act. name a),

return the token to sender 5;

terminate the activity a.j. _
if all activities 8.1, ..., &.(p4k) have been terminated
then return cos-token (with act. name) to sender 5.

§. CONCLUSIONS

The aim of this paper was to present a model of
computation which would permit logic programs to
be executed on a highly parallel computer architec-
ture. The approach was based on the idea of trans-
forming logic programs into collections of dataflow
graphs and graph templates and to let resolution be
carried out by asynchromously propagating tokens
through the graphs. The main advantage of this
approach is a high-degree of potential parallelism,
exploitable at the following three levels:

O R-parallelism: If more than one clause is unifi-
able with a given goal, each may be prquessedr in-
dependently by separate sets of tokens injected into
the graph.

AND-paralleliam: Clusters, i.e., groups of]iten:a
als within a clause which do not share free vari-
ables, may be processed concurrently by separate
tokens. Furthermore, when clusters are transformed
into trees, each branch the the tree may be prgrcemd
concurrently, thus further increasing potential par-
allelism.

Simultaneous erecution of programs: By using
different activity name sets, many programs, in par-
ticular database queries, may be processed concur-
rently thus further inereasing the throughput of the
system.

In terms of the necessary architectural support
required, the proposed model bears a strong simi-
larity to a general dataflow system, primarily due to
the underlying data-driven principles of operaticn.
Hence this paper offers further support for the claim
that dataflow machines could be extended to infer-
ence machines through the use of logic programming
[Aiso 1981/,

REFERENCES

Arvind, K P Gostelow, W Plouffe, An Asynchronous
Programming Language and Computing Machine,
Advances in Computing Science and Technology (ed.
Ray Yeh), Prentice-Hall publ. 1978

A V Aho, J E Hoperoft, J D Ullman, The Design and
Anafymh’o_f G‘nmpui:rr,digarﬂhma, Addison-Wesley
Publ., 1976

Arvind, R A Tannucei, A Critique of Multipm-:mﬁ-
ing von Neumann Style, Proc. 10th Annual Int’l
Symposium on Computer Architecture, SIGARCH
Vel.11, No.3, June 1983

H Aiso, Fifth Generation Computer Architecture,
Proc. Int’l Conf. Fifth Generation Computer Sys-
tems, Cct. 1981

523

L Bie, Execution of Logic Programs on a Dataflow
Architecture, Proc. 11th Apnual Int’l Symp. on
Computer Architecture, Ann Arbor, Mich., 1984

COMPUTER, Special Issue on Dataflow Systems,
15,2, Feb. 1982

V Dahl, On Database Systems Development Through
Logic, ACM TODS, Vol.7, No.1, March 82

A Deliyanni, R A Kowalski, Logic and Semantic Net-
works, CACM 22,2, March 79

H Gallaire, J Micker (Eds.), Logic and Dats Bases,
Plepum, N.Y. 1978

J K Minker, An Experimental Relational Database
System Based on Logic, in Logic and Databases (H
Gallair, J K Minker, Eds.), Plenum Pub., 1978

P C Treleaven, T R Brownbridge, R C Hopkins,
Data-Driven and Demand-Driven Computer Archi-
tecture, ACM Computing Surveys, 14,1, March 1682

D Warren, Efficient Processing of Interactive Rela-
tional Database Queries Expressed in Logic, Proc.
Tth Int’l Conf. YLDB, Cannes, 1981

