PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1964

507

Parallel Execution of Logic Programs based on Dataflow Concept

Ryuzo Hasegawa and Makoto Amamiya

Musashino Electrical Communication Laboratory
WNippon Telegraph and Telephone Public Corporatlon

3-8-11 Midoricho,Musashino-shi,Tokyo 180,Japan

ABSTRACT

This paper presents a tew parallel execution
model for logic programs that is based on a
datafiow concept. The execution model achieves
OR-parallel &and AND-pipeline processing by
uaing eager and lamy evaluation mechaniams. It
is assumed that this mcdel is implemented on o

list-proceasing-oriented dataflow machine,
which supports non-strict structure data
manipulation.

The eager evaluation 1s uped for OR-parallel
forking, and the lazy evaluation is used to
prevent combimatorial exploaion of the OR
process activations. An activation ocontrol
mathod with a counter iz also presented here,
Thiz method enablea dincorporation of a
sophisticated combination of depth=first and
breadth-first search strategies. The eager and
lazy evaluation mechanisms are demonatrated
through examples as being effective in parallel
processing of logie programa.

1 INTRODUCTION

Dataflow machines are promising in that they
can expleit the parallelism dinherent in
progrand and effectively execute programs
written 4in functional languages [1,2,3,%,5.,6].
We have proposed a list-processing-oriented
dataflow machine architecture and structure
memory construction method for Iizplementing
highly parallel mnon-numerical processing
[6,T,8]. 1In addition, we have . previously
reported on an implementation of eager and lazy
évaluations on the dataflow machine, and have
shewad its effectivensss in performing
atream-oriented processing and non-determinate
proceasing [9,10]. Thia paper discussas
parallel processing of logle programs, and
proposes an execution control scheme using the
dataflow machine.

In the execution of loglo programs, a high
degree of paralleliss can be implemented with
use of AND-parallel and OR-parallel executiona.
To achieve thia, several types of parallel
executlon meodels for logic programs have bean
proposed [11,12,13,18,15]. However, sooch
problems as process activation control and

variables management remain to be solved.

Frem the viewpoint of variables management,
AND=-parallel execution has the following
problems: (1) it requires a conaistency cheok
when variables are used in common; (2) a
Cartesian product has to be generated for the
values obtained from each atom in a alause

Body; and (3) 4t ia difficult to manage
variable bindings in & parallel execution
environment,

On the other hand, OR-parallel executionm,
which ecrresponds to breadth-first searching of
a proof tree, may lead to a combinatorlal
explosion in the number of processes. How to
suppress explosive process activations is a key
issue under restricted rescuree circumatances,

¥With the aim of overcoming these problems,
we present here a parallel exeoution model for
logic programa that is based on a dataflow
control concept. In this wmodel, an AND/OR
progess accepta an environment (variable
bindinga} tree and produces a new enviromment
tree. Eager evaluation Ls used to generate the
environment tree and lazy evaluation is used to
atop its generation. This execution model 1=
effective in maximally exploiting parallelism
undar restricted resource clroumstances, In
addition, it haa the perits that:

{1) It facilitates easy in gathering solutioms
found in leaf processses becauss these
solutions are returned to the root proceas in
a tree-struckured formp

{2) Although AND processing is serialized,
exeoutions of body atems can be overlapped
using eager evaluation, thereby achieving
conaurrent execution in AND processing; and
(3) Eager/flazy evaluation makes 4t esasy to
describe comcurrent process control and
resource management in parallel execution of
logie programs.

2 EAGER AND LAZY EVALUATION

Thia section provides a description of eager
and lazy evaluationa with dataflow control.

For further detalls regarding datafloy
implementation, see [10].

Eager/lazy evaluation ia a8 general
evaluation atrategy for functiona or

expressions. If the evaluation of expresslions
proceeds from inner to outermost; it 1s called

508

an eager evaluation, and if it proceeds frop
outer to dinnermost, it is ecalled a lazy
evaluation, Thease evaluations are closely
related to the parameter passing mechanisms,
Pure data-driven ocomputation achleves eager
evaluation by means of a call-by-value
mechanism, Lazy evaluation, which delays
argument avaluation, implements sall-by-name op
call-by-need parameter passing.

The non-strict (lenlent) evaluatien concept
can be introduced inte these eager and lazy
evaluations. Lenient evaluation means that a
funotion evaluation may be started even if only
a subzet of parameters are available, When
data-driven control is combined with lenfient
evalustion, it 1s poassible to overlap a
function evaluation with its parameters
evaluation so that the parsllelism inherent in
the programs can be exploited to the paxioum
extent. However, this also induces such
problems as that resources are wasted because
of unnecessary parameter evaluation and that
explosive function activation mey oceur.

Or the other hand, if demand-driven control
is combined with lenient evaluation, it makes
it possible to delay parameter evaluation until
necessary, Thua, explosive inoreases in
gctivations can be aveided,

2.1 Btructure Data Manipulation

Eager and lazy evaluations are especially
ef fecktive in performing operationa which
generate such structure data as lista., Typical
examples of these types of evaluation are
lenient conz [6] and lazy cona [15].

Lenient cons ia an effective pechanism for
implemanting a non-strict eager evaluation om a
dataflow machine equipped with structure
memordes, In lenient cons, a cons cperator
ocreates a new cell in advance, and its operand
values are written into the cell when they are
obtained. In lazy cons, on the other hand, the
cons operator createa a new oell without
evaluating its operands. Operands evaluation
is initiated only when the operands walue is
required by a ear (or cdr) operator,

Lenient cona makes it posaible for a
list-generating function to send out elements
(cells) each time they are created. Thus, the
consumer function can cohcurrently proceed with
its execution uasing them.

2,2 Concurrent Process Control

Stream-oriented econourrent [programs can
easily be described wsaing lenlent cona, For
inatance, in a program written in Valid [17] teo
find the n=-th npatweal nusber, the natural
number producer "inta"™ apd its consumer "ptha®
can be exeonted concurrently:

function ints{i) = cons{i, ints(i+1)).
function nthalx,n) = Af n=0 then car(x)
else ntha{edr{x),n=-1).
ntha{x,10) where { x = ints(1) }.

However, the program contains a problem in
that the funotion Mipta®™ 4is evaluated
infinitely. This infinity problem, however,
can be solved with lazy evaluation,

The process for delaying evaluation 1=
aspaoified by introducing a delay operator. For
inatance, delaying of the evaluation of
expreasion e(x,y) is specified as delay e(x,y).
If the function "inta® i3 defined uasing the
delay operator, such that

function inta{i) = cons(i, delay inta{i+1)},
function "inta"™ is evaluated only when 1its
value 13 required by the odr operation in
function "ntha®,

In the following sections, we will focus on
parallel execution of leglie programa that
employ eager and lazy evaluation mechaniama,
and present an implementation scheme using the
dataflow machine,

3 PARALLEL EXECOTION MODEL
3.1 Parallel Processing of Logio Programs

This section discusses parallel procesaing
of logic programz. Here, a set of Horn olauses
is assumed to be & program. In general, a
clauze 13 given in the form

P<- A1,82, ... , Am. {m>0},
where P and AL are atoma. A1, ... y Am are
connected by logical conjunetion. F and AL are
called a head atom and body atom, respectively.
Invocation of 41 is also called a goal. An
atom has the form R(t1, ... ,tn), where R is a

relation name and ti iz a term. & term may be
& constant, variable or function. A zet of
clauses 1s called a database,

During execution of logic programs,

parallelism oan be exploited by four types of
parallel processing: OR-parallel processing,
AND-parallel procesaing, parallel substitution
and nen-striot structure data processing.
OR-parallel processing, where clauses that
have heads unifiable with an atom
(OR-connectives) are executed in parallel, can
be implemented by data-driven contrel. In OR
processing, fully parallel execution of
OR-conneatives 1s possible, asince they de not
share variables with each other. However, an
explosion in the number of activated processss
may result. Therefore, in a practical case
3uch as where available resources are
restricted, how to control process activation

becomes an dmportant problem, To asolve thia
problem, we can wuwse the lazy evaluation
mechaniam, What this means is that the proceaa

activation for selution of OR-connectives ia
delayed until splutions are actually reguired,
AND=parallel processing whereby all atoms in
a ¢lause body are executed in parallel creates
a problem when variables to be dealt with are
shared by several body atoms, In such cases,
it would be impractical to check the
consistency of all combinations of solutions
obtained from each body atom. Rather, one
should first determine the producer/consumer
relationship among the body atoms and let the

check the wvalus output from the
producer. Therefore, when variables are shared
by body atoms, their execution should be
serialized, However, pipeline processing among
body atema is posaible by ualng eager
evaluation, This is due to the fact that
sglutions output frem one atom ean be
sucoessivaly passed to the next atos
procassing.

Parallel substitution for all terms in an
atom presents the same problem as in
AND=-parallel proocessing. Therefore, this
procassing should also be serialized.

consumer

The main processing of legic programs
ineludes structure data manipulation. Lenient
cons makes it poasible to fully explodt

parallelism 4in the manipulation of structure
data.

3.2 Dataflow Based Execution Hedel

From the viewpoint of dataflow
implementation, two types of execution models
gan be considered: a procedural model and a
proof tres model. The former is based on
procedural semanties and the latter on
resolutional semantica, In the procedural
model, clauses are executed the same a= in
funetions, based on a2 procedural interpretation
[18], When the language aspact is considered,
alauses differ from funotions in that:
{1) inputsoutput relationships for
are decided during execution, and
{2) clause invocation is nor-deterministic {(not
unique).

& possible implementation scheme with
dataflow machines iz to directly translate
olauses into corresponding dataflow graphs and
then execute them, In this case, item (1)
above corresponds to the bi-directional flow of
tokens in the grapk, and item (2) to several
candidate dataflow graphas which are selected
upon clause invecation. Thia scheme offers an
opportunity for high speed execution of logie
programs. However, 1t induceas an overhead
because of dynamic token-flow control and
requires a complicated faeility which supports
ron=-deterministic clause invecation [12].

Taking all this ipto consideration, we have
adopted an interpretive execution scheme based
on the proof tree model.

In the proof tree model, the loglo program
execution 4is regarded aa a reduction process.

arguments

In the oourae of execution, new goals are
sugpessively deduced frem the given goal.
¢ goallist environment > : Process
<(A B) ed>
<({AL B} el> <{A2 B} el>

<{All B) ell>» <[AlZ B) elZ>

Fig. 1 FReduction-based Execution

509

Thus, the new goala which are generated expand
the preoof tree (called an AND/OR tree). A
typieal executlion control methed for a proof
tree model can be outlined as followa.

A procesa is ereated to solve some glven
goela, In general, the process maintains a
goal list to be selved, in addition to
maintaining some bindipg informatien. Conaider
the execution proceas shown in Fig. 1. Given
a goal list (& B) and an enviromnment e0, the
process firat attemptsa te solve goal A, It
then oreates two independent processes to solve
new goals A1 and A2 both deduced from 4. At
that time, goal B which remains to be solved is
copled 4into each process, This reduction
process will terminate either when a goal fails
or when the goal list becomes empty. All
aglutiona can be found in the leaf processes of
the proof tree,

To implement thia reduction
must :

{1} econtrol the non-deterministie branching of
a proof tree, i.e,, control the initiation and
termination of a preoceas,

{2} effectively manage variable bindings, and
(3) gather solutions obtained in leaf
processss,

In order to solwve thaaa problema, a
dataflow-based parallel execution model i=
adopted. In this model, it 1s aasumed that an
interpreter written in the functicmal language
Valid, which simulates the above reduction
proceas, runs on the dataflow machine.

The basic idea of this execution model 1s aas
followsa:

{13 Reduotion-based computation oan ba
effectively realized within the framework of
funotional execution using the dataflow
machine. Due to the conourrent execution of
functions, a high degree of parallelism can be
expled ted. Horeover, eagar and lazy
evaluation mechanisms make it easy to ocontrel
processa ipltiation and termination.

(2} It is necessary to maintain a hierarchical
structure in the AND/OR tree, in order to

process, one

affectively manege bindipg information and
activated processes. To achieve this, the
environments abtained by solving

OR-connectives are constructed into & tree,
and then passed to the next goal. This
results in the enviromment tree as shown in
Fig. 2. This enviromment management scheme
makes it easy to gather sclutions obtalned
separately from each procesa.)

Hote that the exeoution process shown in

E—T—H‘:! n79§-3

[e0] | .
1 e{ , 82 1 = [,"'/ e0%e2
A .J'/ "L___’
ell eal2 c0*el¥*ell eO*el*ell

Fig. 2 Execution with environment tree

510

Figure 2 yields the same results as the
execution process shown in Figure 1, in which
solutiens are scattered in a leaf processea,
This is becauvse the distributive lsw holds for
substitution as follows:

[l1 B’il’&n H] = [ﬁ'l.u,lﬂ.] B

[e1%b, .. ,en%b] = [e1,...,en]%eb

el {i=1,..,n) : resultant enviromment of AL
deduced from 4

ab : rasultant envirorment of B

[..] represents a disjuncticn,

ei%*aj represents the composition of

ei and ej.

Here, ei and eb represent the results of a
subatitution, and A1,..,ARn are goals deduced
from A. Given a goal list (A B) and the
initial environment (eQ), the results cbtained
by solving (A B) are:

[ed®a1, .. , eD¥%en]¥eb
= [e0®e1®ab, ., ,el%en¥eb],

3.3 Cutline of The Execution Model

An outline of the above-mentioned execution
model 18 presented in this section. In our
model, 4t is assumed that goal lists and
binding information are given in the form of
list structures and then stored into structure
memcries for use in tha
list-processing-criented dataflow machine,

For a goal atom in a clause body, & procesa
is crested to solve the OR-connectives for the
goal. This process 1a salled an OR procesa,
For a clause head; a process is oreated to
solve the body atoms., This proceass 13 called
an AND process,

Lenient cons mechanism {3 used %o manage
binding infermation for wariables. Here, the

following terms are used to represent binding
information : variable oell (V), lear
environment (LE) and enviromment tree (ET).
Syntactically , these are defined as
ET := [ET; .. , ET] | LE
LE := [V, .. ,¥].
Pix,y) <= Q{nﬂpﬂ{hﬂ'- {c-1)
@la,b).
Qa,e).
R{b,e).
R{b,f).
Rle,g). ol B xx={e,f,q}
[P{x:rl <= Qi{x,2z} , Riz,¥)
. el -
x=a E y={e,£,q9}

=

lata,p)] [ata,e)]

Fig. 3 AND/CR processing

A variable cell of the form of [variablename :
valuefield] is used to retain a binding for a
variable, The variable cell is called a
defined eell 4if 4t contains a value;
otherwise, it is called ar undefined ocell.
Thus, variable cell ¥ is either :
V= [x:a] if wariable x has value LU
' otherwise

¥ = [x:undef].

A leaf enviromment is oreated each time a
goal atom is unified with the head of a alause,
If the unification fails, a failure envirorment
of the form ['failure] is created, Leaf
environment LE containa variable cells such as:

LE = [[x:a],[y:b],[2z1under]].

An environment tree is generated during an
atom processing,

In the AND process, it is assumed that the
order of execution of the body atoms is
determined prior to beginning the execution of
the e¢lause body. Basieally, the execution of
body atoms proceeds from left to right, If a
variable appears in the body atoma, the firat
atom in which it appears ia the value producar,
and the others are the value consumers. Faor
variables appearing in the head of a clauae,
the defined and undefined variables are
determined during upification, and
corresponding defined and undefined cells are
created in the leaf environment,

When an AND or OR process involkes its
deacendent processes, ecells are crested to
retain the resulting environmenta returned From
these descendent processes, That is, the
rasultant environments are formed into a list
atructure. Thus, an enviromment tree is
created as the result of an atom processing.
The environment tree represents the alternative
solutions obtained by the ourrent atom
Procesaing. The result of the finel goal atom
in a clause body i= passed back to the parent
(the caller) process,

For example, consider the program shown in
Fig. 3. If Pla,xx) is given as a goal,
Pla,xx) matches clsuse (C-1} in Figure 3 and
value "a® ia passed into variable x of the head
P{z,y). Then Q(x,2) and R(z,y) produce a set
of values {b,c} and {e,f,g} for variables z and
¥, respectively. Let e0, ef and e2 be the
resulting environment trees of P(x,¥), Q(x,z)
and R(z,y), respectively, Thus, we have

H,E‘L; ral
[[%:za] [z:b]j [[x:a] [z:e]]
fa) el
2
Qi . 1 u[;__.. ryl
[[?:el.[s=h];\ 1& ["£ail]
[[y:=£][=1b]] ['fail]
["fail] [[¥rgllz:e]]
{b] &2

Fig. 4 Example of environment tree

[[x:a],[¥:undef]]
[[[x:a),[=2:b]], [[x:al,[=:e]]]
[[[[y:el,[z:b]), [[y:£),[=:0]] 1,

[[[y:gl,fz:e]] 11
(failure environments are cmitted).

The final environment tree e2 created in the
processing of R(z,y) 1is returned as a new
environment created by the clavse body
proceasing (Figure 4). ia the result of
Pla,xx), the environment tree

ep = [[[xx:e], [xx:f]], [[x=x:£]]]
is obtained.

@1
a2

womom

As mentionad above, tree-structured
environmenta and oona operation are used
instead of streams and merge operations, to
ratain asplutiona output from descendent
procasses, This eliminates the problems
involved in non-determinate stream merging. In
addition, by using a lenient cons meahaniam and
a divide-and-conguer slgorithm for creating and
traveraing the environment tree, parallel and
pipeline processing can be achieved.

4 IMPLEMENTATION

Thia s=section presents an implementation
scheme of ORf-parallel and AND-pipelined
execution using the dataflow machine,

4.1 Environment Management

When a goal 18 unified with the head of a
clause, & new leal enviponment is created,
This npew environment conaists of* a
binding-environzent and return-environment.

The binding=-environment contains the defined
variable cells and 1s wused loecally in the
clause. The return-environment contzins the
return information in the form of [uvar:
rval]. Here, "uvar® iz an undefined wvariable
in the goal atom and "rval®™ is & term in the
alauze head. The return information indicates
that the wvalue of "pyal™ is returned as the
value of Muvap®,

Fapr the current goal, the
binding-enviremment and return-environment are
salled Mourenv™ and "ourptn®, reapsctively.
For the clause head unified with the goal, they
ares called "newenv® and "newrtn®, reapectively.

In OF-parallel exeoution, the current
anvironment 18 copied for each OR proceas
because a variable may have several bindingsa.
However, it is not necessary to make copies of
the entire environment from the current to the
root process., Only the undefined variables in
the current environment should be duplicated.
The defined variable cells, on the other hand,
ean be shared with the descendent OF processes,

Suppoae we have the following goal statement
and clauae definition.
€a oo pl o0 %2 ..) .. pgoal
Pf .-!-.}(- &k haad
The unification rule for variablea x and ¥
iz given in Table 1. The unification i=m
serially executed from left to right, using

511

Table 1 Unification rule

: 4 Xia xia x:
¥ {cureny) {mewrtn)
Fib asbk 7 /b =/'b
(newenv) check (newenv) | (newrtn)
¥ yia yia /Yy
(neweny) {neweny) {newrtn)

Hote. x; ¥ are variables occurring respectively
in & goal and a elause head.
8y b are non-veriable termz (constants).
U 18 a variable in the clause head.
¥8 If u is defined, check if b 1as equal to
the value of u.

eurenv, newenvy and newrtn. The meaning of the
notaticn used here is as follows:
via v i3 a defined variable having
the walus "a®,
s ¥ is an undefined variable or
v 1s the firast ccourrence.
wiu v is bound to u,
{env) a variable cell is to be registered in
the environment "env® in parentheses,
For example, when ¥ has a non-varizble term
"a™ ag its value and ¥ is undefined, ¥y iz bound
to the values "a" (that iz, the velue "a® ia
passed into y¥)}. If both x and ¥ are undefined,
the return information [x: ¥] 13 orested in
newrtn for the clause head.
Example 1. .
<= ap{[1,2,3],[4, 5]1,%x).
ap{[®a . *b], %, [®2 . #d]) <- ap(*hb,%c,®d).
Here, & wvariable is represented by an
identifier beginning wikth ™em_ Tat %% be an
undefined wvariable in CUreny. After
unification, a newenv and newrtn are created
such as:

cureny == [[]]

neweny == [[*®a: 1], [®b: [2,3]1]
) [®c: [4, 511 1
newrtn == [[*x: [%a . #4]] 1.

In this case, newrtn indicates that the reault
of cons(1,%) is to be returned as the value of
x,

Example 2.

<= p{[% . #b], %a}.

p(®a,[1,2]} <= r(%).

If a term is a stpucture ocontaining undefined
variables, the structure 1s copied into newenv.
At that time, internal variablez are generated.
The environments generated after the
unifisation are given bellow. Here, #0071 and
002 are newly generated interpnal variables.

ocurenvy == [[®e: [1,2]] 1

newenv == [[%u: [#r001 . *002]]

newrtn == [[%a: #r001], [%b: #r002]]

In the unification, non-variable terms,
whether they are atoms or structures, are
pasaed to the descendent process, The
undefined wvardiables, on the other hand, are
retained in the newrtn as return Ainformation,
For undefined wvariablea, their bindings are
returned to the caller (curenv) in accordance
with the return information, Therefore, there
is no peed for an environment pointer

512

(identifier) indicating where the variable
bindings were introduced, and me eipcular
envirenment list is oreated. This malkes it

eaay and efflcient to copy an environment in

Ofi=parallel execution.
4.2 OR-parallal Interpreter

This section presents a parallel interpreter

for the execution model. The kernel of the
interpreter written in Velid-E [10], an
extended version of Valid for symbol

manipulation, is shewn in Program 1. This
Program is an eager evaluation wersien using
lenient sons. To help understand the Programs,
& . brief description of Valid-E iz given in the
Appendix,

8.2.1 OR Proceas

¥hen an environment tree and a goal atom are
glven, the PORprocess® solves the goal atom
under the given envirorment tree. An cutline of

the OR procesa execution is shown in Fig. 5.
(1] The funetion "ORprocess® searches a
database to find clauses with the sama
relational name as a goal atom, and calls the
function "letivateclause, The
Plotivateclause™ invokes the "R process® to
solve each alause. At that time, new cells
are created o retain the results obtained
from each "OR1process® {F=1). The
"OR1process" results are written into the
cells as aoon as they are obtained,

{2) The "OR1process® pieks up a lear
enviromment out of the given envirenment tree
and invokes the "ANDprocess" to solve the goal
atom under each given environment. At that
timea, new cells are oreated to retain the
"ANDprocess™ results (F-2), These cells are
returned before the "ANDprocess™ is completed,
and the "ANDprocess™ results are then written
ints the cells as soon as they are obtained,
If the environment iz a failure envirorment of
the form ['failure], the "OR1process® filters
it out,

{3) As mentioned above, the results obtained by
the "ORproceas™ and "ANDprocess® are Joined

Fig. 5 OR procesas

using lenient cons to generate & new
environment trea, Lenient cons enables any
environment to be returned whenever it ia
created by the "ANDprocasa®,

4.2.2 AND Proceas

Given a clause head and an envircnment, the
funection "ANDprocess" solves each goal atom of
the clause body in a predetermined order. An
nut.ling of AND prosess execution is shown in
Fig. '

{1) The “ANDprocess" first initiates the
function “Substitute™. This fupetion calla
function Munify® (not shown in Program 1) to
perform unification. As a result, a new
binding=-environment and return-envircnment are
created. If the unification fails, a failure
environment [*failure] 4is returned as the
result of the "ANDprocesa®,

{2) The erder of execution of atoms in a alayss

body 18 predetermined by the function
"Schedule™, according to the Ainformation
regarding the variable bindinga 4in the
binding=enviromment, Several acheduling
strategies must be considered. For example,
it is sometimes useful to adopt a strategy

where an atom which has an increased number of

defined variables takes precedence, However,
te support practical applications, & more
heuristic scheduling method should be
incorporated.

{3} When the function "AND1process™ accepts the
scheduled body atoms, it exesutes each atom of
the body in & apecified order. The
"AND1proceas™ activates the "ORprocesa® and
passes a pair coneisting of the ourrent
environment tree and a goal atom to the
activated "ORprocess™., The next atom is then
exectited using the new enviropment tree
returned from the "0ORprocess®, and as on,

(3) The environment tree obtained by asclving
the Ffipal goal in the tody is sent to the
"RETURNprocesa™, The "RETURNprocess" plcka up
individual environments and passes them to the
"RETURNIprocess®™, For each environment, the
"RETURN1process® sends variable bindings back
to ita caller process in accordanes with the
return information in the return-environment,

Fig. 6 AND process

Program 1

== 0F parallel interpreter (eager evaluation)
== SUBSTITUTION procesa 13 cmitted here.

-- #% QR process #¥
ORprocess{database,goal, env)
= Activateclause({elauses,goal,env)

sherel
olauses=SearchDB(database, relname(goal)) }.

Activateclause([elause, restelauses],goal, env)
= [et.e2] - (F=1)
wheref
a1=0R1process(clause,goal,env),
ef=Activateclause(restclauses, goal,env) }.
hotivateclause([],goal,env)= [1.

nﬂlpraqesstclnuae,gual,onyj
= Af leafenvp(env) then
5HDprﬂneaa{ulausa,gual,envj
slse [ORiprocess{clause,goal,el).
OR1procesa(clause,goal,e2)]
where{ [el.e2]=env }.
OR1process(clause, goal,[1)= [].
ORiproceas{clause,goal, ['failure])= (1.

== (F=2}

-— #% AND process
LNDprocess([clausehead. elausebody],goal, env)
= if success then
Returnprocess(cureny, envi,newrtn)
elas ['failure]
where{ {augeess, cureny, nevenv, newrtn)
=Subatitute(clavsehead, goal,env),
goala-scheduln{nllusebudy,nsunnr].
envl= ANDi1procesa{goals, newenv) }.

ANDiprocess{[goal.restgoals],env)

= ANDiprocess(restgoals,envl)

wherai envi=0Rprocess{DataBase,goal,env]) |,
ANDiprocess{[],env)= env.

-~ %% RETURN process %

Returnprocess(cureny, env, newrin)

= if lesfenvp(env) then

Eeturnprocesai{curenv,env,newrtno)
glse [Returnprocess{curenv,el,newrtn).
Feturnprocess(curenv, a2 ,newrtn}]
whera{ [e1.a2]=env }.

Returnprocess{cureny,[],newrtn)= [].

Returnprocess{cureny, [*failure],newrtn)}

= ["failure].

Returnprocess]
{cureny, newenv, [rtnl. rastrtnal)
= Returnprocess](curenvl,newenv,restrins)
where{ [ovar,rvall=zrtni,
curenvi=entry{uvar, getval(rval, newanv},
ecupenv) 1.
Returnprocess]{cureny,newenv,[])= curenv.

== #% GATHER process **

Gather([el.e2])

= if leafenvp(el} then [el.Gather(e2)]
else append(Gather{el),Gather{e2)).

l:}at-he:-E H*f‘ailurn] .2])= CGather{e).
gather([])= [].

513

4.2.3 GATHER Process

The function "Gather® collects alternative
aglutions for a goal atom on the top level. It
traverses the envirorment tree generated by the
goal atom procesaing in order to find leaf
environments, It then gathers wvariable
bindings from each environment and outputs
variable values in the goal atom,. By using
lenient cons, the PORprocess®, PANDproceszs® and
fGather® can be executed concurrently, thereby
achieving & high degree of parallelism in logic
programs.

3.3 Execution Example with Eager Evalustion

Conaider the following program which defines
the "append™ relation:

append([®a . "b],%c,[%a , #%d])

£~ append(®h, ¥ 84},
append([],%z, %) <= .

Figure T 13 a snapshot taken during the
execution of the above program using the eager
evaluation mechanism. This figure exhibits the
behavicr of an activated "ANDprocesa® for
solving a find-all type of query
"append(®x,¥%y,[1,2,3])" as a goal.

Froceas ¢1 forka into two parallel processes
o2 and o3, Procesas o3 then forka into paralial
processes ol and o5, and so on. When & proceas
forks into its descendent processes, new cells
are created to retain the results. Due to
lemient oons, thase cella are returned to the
parent process before the results of descendent
processes are cobtained. For instance, the
result ef o2 (#x=[],%y=[1,2,3]) can be returned
immediately when it is cbtained. The =ame may
be zald for process 3. Thos, the solutiona
can be immediately returned to "Gather® every
time the selutions are obtained,

{"-"I;iﬁ{ tE!JE112I3]}’ ([1].[2.33}- ee }

¢l |T" ap I‘.'l.'I-E'I,Z.al‘.I

.F" ‘\
"], 9y=01,2,3) \U,_.,,.‘f ((11,02,31), .)
F [

[
ap([],%=, %) a3

E.]}{Eh.'bJ.'ﬂ.[‘.-E.aJ}
bl], %es(2,3]

<= ap{¥:,¥%,[2,3])
ap([]1,%,"%)

a2

*h.-n:":{ (21,030, .. }

L] H«P{[E-'ﬂ-'ﬁ[!-ﬂ]]
<= ap(®b,%e,[3]}
P !
¢ 13

i

o4

Fig. 7 BExecution of "append® with
eager evaluation mechanism

514

Program 2

-- OR parallel interpreter (lazy evaluation)
== Only essential part of bounded parallel
== control is ahown here,

== #% GATHER proocess ##
Gather({[el.e2],count)
= Af leafenvp{el) then ([e1.3],r)
where{ (s,r)=Gather{e2,count-1} }
glse {append(a?l,s2),reatenv)
vhere{ restenv=gase{ null{ri)=>rz,
null(r2)=>ri,
otheps=>[r1.r2] },
{a1,r1)=Gather{el,count-1},
{s2,r2)=Gather(e2,count) }.
Gather(['delayenv,denv], count)
= Qather(forae denv,count-1).
Gather{[["failure].env],count)
= Gather{env,count-1).
Gather({[],count)= ([],[1).
Gather(env,0)= ([],env).

== #% potivation control #8
Activateclause
([elause, restolauses],goal, env, count)
= if count=0 then
["delayenv, delay Activateclause(
restalauses, goal,env, Resetoount())]
elaa
[OR1proceas{elause, goal, env, count),
Activateclause(
reatolauses,goal, env,count=1)].
Aotivateclause([],goal, env,aqunt)= [].

-~ #% (B! process W9 a-
CRlprocesa(clause, goal, env, count)
= if leafenvp({env) then
ANDprogess(clause, goal, env, count)
alse [OFiprocess(clavge,goal,el,count),
OR1proceas(eclavae, goal,e2,count)]
where{ [el.e2]=env }.
OR1process(clavse, goal,[],count)= [].
OR1process(cleuse, goal, ["failure],count)= [].
OR1process{clause,goal, ["delayenv,denv] ,count)
= ['delayenv,denv].

=2 da
Fig. 8 Example of
bounded parallel

Fig. 9 Example for n=3

5 ACTIVATION CONTROL

As mentioned before, eager evaluation
contains an Pexplosive activation" probles.
This problem derives from the fact that the
funetion T"hotivateslause® 4in Program 1
activates all OR candidates. This activation,
however, ecan be suppressed through the lazy
eveluation mechanism which involves a counter.
The essential part of an interpreter employing
thiz mechanism is shown in Program 2. Here,
the function "Aotivateclause™ limits the rumber
of "0R1Process™ activations to a number
specified by "eountn,

When the counter value reaches 0, evaluation
of Mictivateclause" is delayed and the counter
iz initialized to the value specified by the

function "Resetoount™, The unf'orked
"ORiprocesa® ia invoked when a demand is sent
te the delayed "Activateclause™ frem the

fidather® function at the top level {(the demand
i3 isauved when the required mumber of zolutionas
has not yet been obtained).

The above-mentioned execution ascheme leads
te realization of the bounded parallel
execution, and enables a sophisticated
combination of depth=first and breadth-first
search executiona. In practice, this means
that by changing the counting ascheme in a
dynamic manner, wWe can properly use each
specific search strategy aeccording te the
rescurce utilization cdroumatances,

Figure 8 shows an exasple of an (OR)
environment tree coreated in the execution
proceas, where the number of activations ia
limited to n. The example for n=3 is shown in
Fig. % and the remaining unevaluated
environment tree aftep tha r"Gather™ has
extracted several scluticns iz shown in Fig.
10. Figure 10 i3 for a case where foup
solutions have been obtained and a demand iz
about to be sent to the rest of the environment
tree to enables the ascertaining of another
solution.)

Note that the activation count = 1 ecase
corrasponds to a depth-firat seareh execution.
If the elss part of the function
fictivateclause™ in Program 2 is changed to

[OR1procesa(clause, goal, env, count=1) ,
Aetivateolause(

restclauses,goal, env,count)], (F-3)

demand

reat-envlronmenk

Fig. 10 Remaining OR environment
tree after GATHER process

breadth-firat search execution ecan then be

achieved,

5.1 Example of #Activation Control with Lazy
Evaluation

Consider the [ollowing program which defines
fon™ and "above" relaticnshipa.

above(®x, %) <{- above(®x, ¥y, on(fy, ¥z),
above(®a, ¥} <- on{%a,"),

on(a,b).

en(b,a).

on{e,d).

For a program wWith a left-recursive
structure, the same problem arises asz in Prolog
execution. For instance, the solution for the
goal Pabove(®x,d)" cannot be obtained if the
clause is sequentially executed from left to
right. and in a depth-first search manner as in

On the other hand, with OR-parallel
execution, s=olwtions can be ocbtained because
solutions for the goal "on{%a,¥y)" are

immediately found. If we use eager evaluation
to execute this program, asclutions will be
found mush fastep. However, the execution

never terminates since the process which solves

the goal Rabove(tx, Sz} is activated
*:;c
{eount=1}
1
{connk=0) {count=f}
ab[*x,d) ab(*a,d)
a2 | <= ab(*x, *y) ,on(*y,d) @l | £= on(va,d)
*a=¢
{-}]
ﬂ‘f.b
{eount=1}) ﬂ\
ab{*x,d)
e | <= ab(*x,*y) ,on(*y,d)
W
- =g
(%3, *y) .
s{ (a,b). .
[b,c), on{c,d)
{e.q) }
(count=0) it T {count=0}
ab(*x,vz) ab{%a,*b)
o4 | <= abi*x,*y) ,on{*y,*z) e5 | <= on{*a,*b)
{*a, *h) =] [a:b) s {b,e),
{c.d) }
{b}
Fig. 11 Examples of activation control

with lazy evaluaticn mechanism

515

infinitely. This problem can be
the lazy evaluation mechanism.
Figure 11 shows some snapshots taken during
execution of the above mentioned progrsm using
the lazy evaluation mechanism, The modified
"hetivateclause™ given in (F-=3) .12 used here to
support the breadth-first search strategy and

solved using

the aetivation ecount i1z set to 1 by the
functicon "Hesetcount™,

Figure 11 (a)} shows the activated
"ANDprocess® far solving the goal

"above(®x,d)". Processes c2 and o3 are delayed
aince the activation count reaches 0. Note
that the count 4is decreased by one at the
"0R1procesa® activation.

When a demand is sent from the "Gathern
funetion, o2 and e3 are forced (at that time,
the activation count is reset to 1), and the
fipst #x=c soluticn obtained from the result of
¢3 ia then returned to the GATHER process.

The next activation result for o2 1= shown
in Fig. M (b}, Another demand frem- tha
"Gather™ triggers activation of processes ol

and o5, and then the second ¥x=b solution is
cbtained from oS,
6 CONCLUSION
i new execution model for parallel

procesging of logic programs has been presented

that was based on a dataflow ooncept. The
exagution model , which embodies an
‘implementation of & proof tree model, is well
suited to dataflow implementation. The eager

and lazy evaluation presented here were shown
to be effective in realizing OR=parazllel and
AND-pipeline processing. EBEager evaluation was
used to enhance OR=parallel forking, while lazy
evaluaticon was used to prevent combinatorial
explosion of OR parallelism,

An activaticn control method has also been
presented., It uses a lazy evaluation mechanism
and a counter to control the number of OR
procesas activations in accordance with resource
utilization oircumstances, By dynamically
changing the counting scheme, it 1a pomeible to
properly use both depth-firat and breadth-first
search astrategies, However, many problems
remain to be solved before this method can be
effectively utilized for practiecal
applicaticns, because the optimal solution for
deciding when whiech strategy should bes used
depends on the manner of query.

Work is now moving forward invelving the
study of heuristic ssarch methods for the proof
tree and pruning @echanism, wherea an
OR-parallel and AMD-pipelined interpreter are
employed. The interpreter written in Valid is
now running on the Valid language system Valisp
[19], which 1is & Valid-to-Lisp translator
developed on =& conventional machins. This
interpreter will be ipplemented on the dataflow
machine prototype DFM now under development at
the Musashino Electrical Communication
Labeoratory, NTT.

516

ACENOWLEDGEMENT

The authors would like to thank Dr.
Neriyoshi Euroyanagi, DMrector of the
Communication Prineciples Research DMvision at
Musashino Electrical Communication Laboratory,
for hia guidance and oonstant encouragement.,
They also wish to thank Dr, Yasushi Eiyoki for
his thoughtful comments, and tao express thelir
gratitude te the members of the Dataflow
Architecture Oroup in the Second HResearch
Section for discuasiona,

AFPPENDIX

A subaet of Valid-E is introduced below that
deals with pattern matching and lazy evaluation
facilities.

(1) Patterns for lists a, b, ¢ are:

[] == nd1, [a.b] == cons(a,b),

[a,b] == [a.[b.,[1]], [a,b.e] == [&.[b.c]].
Patterns may be written any place at which a
velue is defined,

{2) Value defindtion

LeftPatterns=RightPatterns
This provides for data strocture selection
through pattern matching. Both Leftpatterns
and Rightpatterns may be a tuple of patterns.
If the left and right patterns do not mateh,
the wvalue definition 4a i1llegal and the
execution is abarted.

[x.¥]1=["a.'b] ==> x=ta, y='b,

(['a.x],["b.¥],2)=(["a."b],["'}, a],["4, al}

— Il'h,' F[IE]! ﬂf‘d,'l] L]

['a,'b,x)=[¥,"b,"]

==2 ir y="a then x="ec else Error.
{3) Function definition

FuncName(Pattern, .. ,Pattern)=Expression
Function activation is pattern-directed, Only
the function with a head that succeeds in
mateching all argument patterns is activated,
{4) Expression

Exp where {ValueDef, .. ,ValuaDef}

Value pames wused locally in primitive
expression Exp ean be defined in a "where { ...
" bloak.

(5) Lazy evaluation

A demand for evaluation of the delayed
expression can be apecified by either using a
force operator as force Exp, or using implicit
Porcing for lazy cons. In the case of implicit
foreing, primitive "head® and "tail® operatera
raapeatively trigger the evaluation of the car
and ecdr part of the cona cell.

REFERENCES

{1] J.B.Dennis, "Data Flow Suparcomputers,”
IEEE Computer wol.13, mo.11, 1980, pp.48-S&.
[2] Arvind and V.Kathail, "A Multi-Processaar
Dataflow Machine
Procedures,™ #th Ann. Symp.
Architeature, 1981, pp.291-302.
31 P.C.Treleaven, D.R.Brownbridge and
R.P.Hopkina, "Data
Computer Architecture,” ACM Computing Survey,
vol.14, no.1, 1982, pp.93-143.

Computer

That Supporta Generalized -

Driven and Demand Driven *

[4] R.M.Keller, G.Lindstrom and S.3.Patil, mj
Loosely-Coupled Applicative Multi-proceasing
System, " Proe. of the 1979 Natieral Computer
Conference, AFIPS, 1979, pp.6i3-622.

[5] J.0urd and I.Watson, "Data Driven System
fer High Speed Computing, Part 1" Computer
Deaign, June, 1980, pp.91-100.

[6] M.Amamiya, R.Hasegawa, O.Nakamura and
H.Mikami, "A List-Processing-Oriented Data Flow
Machine Architecture,® Fproe, of the 1982
National Computer Conference, AFIPS, 1982,
PP, 143=151.,

[T] M.Amamiya, R.Hasegawa and H.Mikami, "Liat
Progessing with Data Flow Machine,” Lecture

Notea in Computer Science, Ho. 147,
Springer-Verlag, 1983, pp.165-190.
[8] §.Hasegawa and M, Amamiya, "Papallel List

Proceasing using Data Flow Machine,® Trans., of
IECE (D), J66-D,12,pp.1800=1407, Japan 1983.
[5] H.Amamiya, R,Hesegawa and Y.Eiyoki, "Eager
and Lazy Evalvation Mechani=zm in Data Flow
architecture and Its Application to Parallel
Inference Machine,® Proec, of Work Meeting for
Computera, IECE, Japan, Nov., 1983,

[10] M.Amamiya and §.Hasegawa, "Dataflow
Computing and Eager and Lazy Evaluation,” New
Generation Computing, wel. 2, Ne. 2, 1984,
[11] J.8.Comery and D.F.Eibler, "Parallel
Interpretation of Logie Programs," Proa, of
the 1981 Confersnce on Functional Programming
Languages and Computer Architeoture, ™
PP 163=-1T70, 1981,

[12] M. Amamiya, R.Hasegawa and M.Hashizume, "An
Execution Scheme for Parallel Inference Based
on a Dataflow Concept,® Proc. of Work Meeting
for Computers, IECE, Japan, June, 1982.

[13] M.Amamiya and R.Hasegawa, "Execution
Mechanisms of Logie Programs using Data Flow
Control,™ Proe. of The Logice Programming

Conference, Sponsored by ICOT, Mar., 1983,

[14] S.Umeyama and K.Tamura, ", Parallel
Execution Model of Logic Frograms,® The 10th
Ann., Int. Symp. on Computer Architecture,
PP.340-355, June, 1983,

[15] A.Ciepielewski and 5.Haridi, "An
Or-Farallel Token Machine," Loglie Programming
Workshop 83, Mgarve/Portugal, also
TRITA-C3-8303, PRoyal Institute of Technology,
Stockholm, 1983.

[16] R.Hasegawa and H, Amamiya, "On tha
Toplementation of Lazy Evaluation with Data
Flew Machine,™ Poe, A4nn. Cenf. IPSJ, Japan,
1982,

[?‘r] M. Amamiya, R.Hasegawa and ¥.Ono, "Valid, A
High-Level Functional Programming Language for
Data Flow Machines," To appear in Review of the
E.C.L, Vol.32, No,5, 1984,

[18] R.A.Kowalski, P"Predicate Logie as a
Programming Language,™ IFIF Congreas, 1974,
Pp.569=-5Th.

[19] R.Hasegawa and M.Amamiya, "VALID Language
System: Lazy Evaluation Mechanism and Ita
Implementation,® Proo. Meeting on Software
Ergineering, WGSE-84,IPSJ, Mar., 1984,

