PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEN TION COMPUTER SYSTEMS 1984,
edited by ICOT. @ ICOT, 1934

497

ASSTP-T. A THEOREM PROVING MACHINE

Werner Dilger and Hans-Albert Schneider

Computer Science Department
University of Kaiserslautern, Postfach 3049
B-6750 Kaiserslautern, FR Germany

ABSTRACT

An associative processor for theorem
proving in first oxder logic is de-
scribed. It is designed on the basis
of the deduction plan metheod, intro-
duced by Cox and Pietrzykowskl. The
main features of thisz method are the
separation of unification from deduc-
tion and the incorporation of a method
for intelligent backtracking. This
kind of backtracking is based on a
special wnification procedure. An im-
proved version of this unification
procedure ig given in this paper,
which outpuats a unification graph with
constraints. In the case of a unifica=
tion conflict, sufficient information
for a diracted backtracking step can
be gained from the unification graph.
pccording te the deduction plan method,
the ASSIP-T procassor has two associa-
tive memories, one for the deduction
plan and the othaer for the unification
graph. It can perform deduction and
unification in par&allel. The data
structures for the representation of
the deduction plan and the unification
graph are given here explicitely,
whereag the algorithms operating on
them are only sketched. A proposal for
the realization of the ASSIP-T memories
is presented.

1 INTRODUCTION

The progresg of microelectromics
allows the realizations of more and
more powerful processors for special
purposes. One such type of processors
is the associative procgessor. Its asso-
clative memory allows content oriented
parallel access to the data stored in
it. This makes the associative procegs-
gors well suited for pattern handling
processes. In artificial intelligence
2¢.9., oSt processes are pattermn di-
rected deductions. Ona of it is theo-
rem proving. In this paper a model of
apn asgoclative processor is described
which is able to prove theorems of
first order logic. It is designed on

tha basis of the deduction plan method,
.2, 1t incorporatas & method for in-
telligent backtracking.

After some basic definitions in the
second section, the deduction plan
method is described. The special uni-
fication procedure used within this
method follows. The output of this
progcedure is a unification graph with
constraints. In the case of a4 unifica-
tion conflict, the unification graph
givaes sufficient information fer a di-
rected backtracking step. This is de-
scribed in section 5. Then the struc-
ture of the ASEIP-T processor which
iz aimed to perform the deduction plan
methoed is described. Section 7 con-
tainzs the data structures which are
t& be mapped on the ASEIP-T memory and
the algorithms which run on the pro-
cessor. Finally, the representation of
the data structures in the ASSIP-T
memory Lz sketched.

2 BASIC DEFINITIONWS

A labelled graph is a triple G =
(ViG) ,I(G) ,E({G)) where V{(G), I{G), and
E{G) are the sets of nodes, labels,
and edges respectively. A path in G
is a seguence w = MEEAT A LA LA

L UL [(m&0) with vy £ ¥(G) and
ej € E(G). If v, = LR the path is

called elosed. A closed path which
contains each inner node at most once
1s called a cycle.

hAssume there are given disjoint
alphabets of wvariables, function sym-
boals and predicate symbols. Each func-
tion and predicate symbol has an arity.
A constant is & O-ary function symbol.
An expression 1s a varilable or a term.
A term 1s a constant or a etring of
the form ftql,..+.qﬂﬂ, whare £ is an
n-ary function symbol (nzl) and
ql,....qn Are exXpressions. An atom is
a " string of the £6rm P{(g, s _}s
where P is an n-ary predicate SBmhnl
(nz0) and ys---,9 Aare expressions.
If a is an &Atom, then A and -a are

498

literala. B clause is a finlte set of
literals. The empty ¢lause is denctad
by O.

A constraint is a set consisting of
two expressions. A set of constralints
is called a constraint set., If p and
g 2re expressions (terms), then p iz
a subexpression (subterm}) of g Lf p=g
or gq = l{ql;...,q } and p La a sub-
expression” (subterm) of one of the g, .
An expression (term) p is a subexpres-
glion {(subterm) of a econstraint set C,
if thera is a constraint {g,.2.} in C
such that p fig a subexpresalon (aub-
toarm) of g, or ¢f g.. The sat of all
suhaxprn:iinns of €714 denostad by
SEXPR(C) .

A substitution iz a finite set of
pairs (v,q), dencted by vfgq, where v
is a variable and g an expression and
v # g, Application of a substitution
g = {w fQyreeesv /9 } en an expressicn
or a literal p il tRe replacement of
aach occcurrence of v, in p by gq,, for
all £ = 1,...,n. o i3 called a ‘enaming
if g,+...,q_ are palrwise different
varidbles aRd {V,,...sv_} N {ayveverg }
= . A clause gl i=s called a varia
of a clause <l if cl, and Elz have no
variakles in cgmmun and there is a
renaming ¢ such that cl, = ual2+ ILf
E = {p EEER D]' iz a 'E%- of eaxpreasalons
than a ;uhutifuhiun g iz called a wni-=
fiar of B, if Op, = «s+ = @p_. E is
then called uniflabia- o is Balled a
most general unifier of E if for sach
unifier v there is a unifier p such
that T = g=p.

Liet C = {c res s gt _} bz a constralnt
sot. The sat BE(C) 8f Boolean expras-
sions over C is defined by
1. 0.1.c1.+..;c“ Z BE(C).

2. 1f BB, E BE(C): then {Hl v Bz},
(s, A B%) € Be(C).
3. nz}cl contains no other alements.

3 DEDUCTIOH PLANS

The deduction plan méathed {5 a re-
golution based method, i.e. a refuta-
tion method. It starts with &4 set of
¢clauses and tries to construct a
"closed” and "correct”™ deduction plan.
If it succeeds, the clacee sot is pro-
ved to be unsatisfiablae. The central
idea of the method is to gsaparate de-
duction from unification. This allows
the application of a special unifica-
tion algorithm which, in the case of
a unification conflict, not simply
stops with failure, rather it yields
information about the causes of uni-
fication conflicts, namely certaian de-
duction staps=, which can then be reset.
In section 5 this way of processing is
called "intelligant backtracking".

The nodes of the deduction plan are

the input clauses and eventually vari-
ants of them. Two clauses can be con-
nected by an edge if they contain
literals with the same precidate sym-
boel but different signs (negated or
not negated). Therefore a (labelled)
edge between two clauses cl, and cl
i a tedple (el, {t.u,v),cl_). whars
u and v are litérals in cl, "and cl
respectively, satisfying t‘m cundi&inu
on their predicate symbols and negation
geigns. t 15 the type of the edge.
There are two types of edgaeas: SUB and
RED. All edges are of type SUB except
these refering backward to a clause
which is already in use. If sach li-
teral in each clause occuxs in an
edge, tha deduction plan is closed.
If the set of pairs of terms arising
from the pairing of literals by edges
ig unifiable;, the deduction plan is
correct. CE. for this section (Cox
and Pietrzvkowski 1979) and (Cox and
Pietrzykowski 1981}.

Pefinition

Let & be a sat of lnput clauses and
L = cg Lcl. A deduction graph on § is
a q:apE G = (V(G).I(G).E(G)) which
has the wariants of 5 as node =et V(G),
I1{G) = {SUB,RED}*LXL with: if e =
{(el, ;b,el,) € E(@) thean b = (t,u,v),
u E"el, ,; € ecl,. t 13 called the
type n* the edge e, u the starting
literal and v the target literal. h
literal u of a glause cl is called
key Iiteral iff there 1= an incoming
edge with type SUBR and target literal
uw. Each literal u of a clauge cl ia
called a subproblem Lff it is not a
key literal. A subproblem u'€ cl is°
open iff there is no ocutcoming edge
wlith starting literal u. A subproblem
u is callad ciosed iff it is not cpen.
os(G} 1is the set of open subproblems
of a deduction graph 6. 6 ia called
closed, iff os(G) = @.

A node cll is called predecessor of
a node ¢l iff there is a path from
e¢l, to el. which contains only edges
of” type Ean (sUB-path). If u i= tha
starting litexal of the first edge of
a SUB-path from e¢l, te ¢l_., then u is
called preceding Jitarﬂl of nl2 and

clz iz called successor of all+

We omit the definition of the de-
duction plan here. It is a deduction
graph which is constructed by a number
of deduction steps, i.e. edge drawing
staps, starting from a basic plan which
consistes of one nede only.

A subgraph H of a deduction plan G
is called subplan iff for each node
cl € V(H) (1) and (ii):

(L} all predecessors of cl Iin G are
in V{H)},

{ii) if & is an edge in E{G) of type
0B with end node cl, then e is
in E(H).

Example
{{p(x), Qiy), B{E(x,¥)) 1},
{-Plgtx}), vi(x)},
{=Pig(x}), =Vix)},
{_Q“‘f-}f S5{x), _T{-“}]':
{=g(a)},
{-5({b)},
{Tib)},
{~-Rix)}}

is a sat of eight input clauseas.
Figure 1 shows a closed deduction plan
for 8. The edges are drawn in such a
way that they begin beyond the start-
ing literal and poinrt to the target
literal. Therefore they are only label-
led by their type and, beyond it, by
the numbers of the steps in the plan
construction within which the edges
ware drawn. The literals -Bl{gl{x_)},
=Vi{x -0(x,), s{a), T{(b), and™-Rix.}
are ﬁay 1ita§ala the other literals
are subproblemg. The first clausge in

8 is the basic node, it 1s a predeces-
gor of all other nodes.

Definition

Let G be 2 deduction plan and & an
edge of G with label (t,u,v}, where
{omitting the sign) u = Plu,un],
v = P(v ,...;vn} [nED). To 8 a con-=
straint set C{e) is assigned by

{{uirvi}....,{un,vn}} if nzil

Cle)
@ if n=0

A coenstraint set C(G) 1s assigned to
G by

c{G} = clal)

eEg{G}
G i3 called correct iff C(G) is umni-
fiable., A correct subplan H of G is
called maximal correct 1£f there is no
correct subplan H' of & such that

V{H) = ¥(H') and E(H) € E{(H").

1
D

SUB|t suBls 50| 7

(CPlabgh wigl) (CRly) Sty) -Tixgl) (Rig

Figure 1: A closed deduction plan

459

B{G) denotes the most general unifier
of €(G). B({Glos(G) is the clause
derived Ffrom G. If @ is cloaged, 1.e.
os({G) = @, the clause derived from G
iz the empty clauss.

Scundness and completeness of the
deduction plan method are shown in
the references given above.

4 DHIFICATION GRAPHE WITH COMNSTRAINTS

Unification by means of unification
graphs with constralints is closely
related to the unification method of
Cox, (Cox 1981). It simplifies this
method but iz still socund and complete.
cf. for this section (Dilger and
Japson 1933} and {(Dilger and Janson
1984).

The unification process starts with
a constraint set C. By two steps, the
transformation step and the sorting
gtep, 1t yields a undfication graph
with constraints, Uwl for short, for
C. An UwC consists of

= the node sek WV(0WwC) = EEXERIC)
- the label set I(uwc) = 2C
- the edge set E(UwC) = EU{UWC) U ED(DwC)
whers EU(UwC)} v(Uwe)x(2C-{g})v (UwC)
and ED(DWD) € Vilwc)= {@} Y (UwC)

EU{UwC) is & set of undirected edges,
ED{UwWC) a set of directed edges. Con-
struction of UwC starts with the ini-
tial graph Uw€_. which consists only

of the nodes. EU(UwC) is determined
in the transformation step, ED({OWC) in
the sorting step.

befinition

A path in UwC which containas only
edges from EU(UwC} is called a con-
nectiop. A connection v = pl.E '”"En'

is called simple iff p # P

£821a11 1,3 such that 15i<sknel Jie.
all nodes are pairwise different. A
connection of length © 13 called tri-
vial. A closed path in UwC which con-
tains at least one edge from ED{UwC)
is called a loop. A loop is called
simple iff p, % p. for all 1,3 such
that 1<i<j<n*1. 1 e = (p,a,qg) is an
edga in E{UwC), then a is called the
value of e, denoted val{e) = a. Leat
Wom Py B B sD be a path in

Uwe. "Thén the Pallld'or w is

0, vatte . if nm

val(w) =
@ ¢ 1€ n=0

The transformatien step

The algorithm of the transformaticn
step can be found in (Dilger and Jan-
gon 1984). It draws undirected edges
between the nedes in the following way:

If c, = {p,g} i=s a constraint, the

500

the nodes p and g are connected by the
edge & = (p,{c,},g). Then the con-
straint set C{*} {cf. section 3) is
added to the input constraint set,
and the constraints of C(e) are trea-
ted later on in the same way.

Example
Let € = {cl,cz} be & constraint
set with
e, = {Gls,z), G(u,Piy,¥)}}
¢, = {n, Fly,Gls,2))}

The initial UwC eonsists only of
the nodes SEXPR(C) and is shown in
figure 2. The first constraint e, is
removed, an undirected edge is a&dad
to the UwC and the new constraintes
{#,u} and {z.Ply,v)} are added teo the
constraint set., This results in the
UwC of figure 3.

Now the second constraint is re-
moved from the constraint set. Be-
cause u iz a variable, there cannot
be formed any new constraints, oaly
an adge iz added to the UWC. Thus one
gets the Uwl of figure 4. The remain=
ing two constraints are treated as
the second one. Because they had their
origin in tha first constraint, the
edges in the UwC are labelled by {e,)}.
At the end of the transformation step
the UwC has the form represented in
figure 5.

Gls,zl Glu,Fly,yli z Fly,y

5 u Fly,Gis,zil ¥

Figure 2: The initial UwC for the constraint set C

fe4)
[
Bis,z) Glu,Fly,yll z Fly,y!
5] Fly Gls.zli Y

Figure 3: The UwC after the first substep

ley)

Gis,z) Giu,Fly, ¥l T Fiy, vl

5] FlyGls,zll ¥
2

Figure &: The UwC after lhe secord substep

The sorting step

The transformation step classifies
the nodes of UOwC in =such a way that
Ewoe nodes belong to the same class iff
there is & connection betweeen them.
In the.example above we have four clas-
ses. In the sorting step, first a
graph 7 is constructed which consists
of these classes as nodes apnd which
haz a diracted edge labelled by f Ffrem
class X to class ¥ 1ff there is a tarm
Eip ,.,..pn] in X and an expression
P, tie {1%....a}) in v. This graph
15 shown for the example in figure &.
How the edges of U are carried over
toe the UwC, but not all, rather only
those which are contained in a cycle
are added to the UwC as edges between
the appropriate nodes and labelled by
#@. Bo we get the complete UwC of fig-
ure 7.

Soundness and completeness of the
unification algorithm are proved in
(Dilger and Janscn 1984) . The main
theorem is: A constraiot set C i3 uni-
fiable iff all terms in Uw which are
connected by & simple connection bha=
gin with the same function symbol and
IwC containg no simple leoops.

Thus, e.g., our example constraint
set 15 not uniffable becauss the UwC
of figure 7 contains a simple loop.

Ieq} feq}
| i— |
Gis,z] Glu,Fly, ¥ 2 Fly, ¥l

5 u Fly,Gls,zl} ¥

Figure B: The graph U for the Uwl

{eqd {ey)
Gis,z] Glu, Fly,y1 z Fly,yl

FI;«,IGI;,!:II ¥

'!'-'-1]' [52]

Figure T: The complete UwC al the end of the sorting step

5 INTELLIGENT BACKTRACKING

If during the unification procass a
unification conflict has been detacted
i.e, a clash {unification of terms
with different function symbols) or
a cyele, the actual dedocticon plan is
net correct., One or several steps in
the construction have to be raeset in
order to get a correct subplan. By
means of the information kept by the
Uwe these steps can be determined im-
mediately. The numbers of the deduc-
tion steps are contained inm the labels
of the undirected edges of UwC. There-
fore, we have to examine the values
of certain paths through UwC. First,
the relevant values are gathered in
the sets ATTACH and LOOP.

ATTACH := {a = C la is tha value of a simple
connecticn in UwC between
terms p and g with differest
function symbols}

LoOP = {acC la ls the value of a simple
T loop in TwC)
Let B be a function en 2 which
yields Boolean expressions defined by
EH{a] = cEn C
Wow an the basis ©of ATTACH and LOOP
the Boolean expressions B

are dafiggshigl

Broop' 2™ Byyrr
1 , if ATTACH = @
B =
ATTACH
ghmcnﬂ (&), otherwise
1 ; Lf LOOP = @
B =
LoOD)
ELCIDPB {a} , otherwisa
Bmir °~ Parrace " Prooe
It is easy to wverify that B is a

copjunction of disjunctive L

tarms. The minimal disjunctive normal
form of this term has the form

BII.TNIF = Bl WeooV Bk
for some k&l, where esach Bi is a con-
junctive term. From B! the minimal
conflict sets are detdbfined by

mes, e u {e} (L= 1,...:k)
C oCccuars
in B.T.

For detaills cf. {(Dilger and Janaon
1984 .

Exampleg

consider the UwC of section 4, fig-
are 7. Clearly, ATTACH = @. There are
twoe simple loops in the UwC, which
have the same value, namely {cl,az
thus LooF = {{c .c }} Then B =1,

B = qa, Voo und =] ETFM%EEJ -

LOOP 1 2* UNIP

501

cl ¥ cz. Thereforas EUNIF = El L) EE.

Therefore two minimal conflict sets

exist, mes, = {cI} and mes, ™ {Ez}-

Take as aneother example the deduc-
tion plan of sectien 3, respresentaed
in figure 1. Following the edges ac-
carding to their nuombers we get the
constraints
1: fx roglxg))

2: Xy

3: %x]. x }

4:

5t i ﬂ.?

(=¥ b}

7: {Eix pr¥yde X }

The OwC for these constraints is
shown in figure B. It has no directed
edges, because the graph U, constructed
in the sorting step:; contains no
cycles.

There is a clash in the UwC, namely
& simple connection between a and b.
Therafore, ATTACH ={{5,6}}. Clearly,

LDOP =“#+ Thus, BATEhsgﬁl-EBT 6, nd
ub89F-"(55, BNEE o {e). | UMIF

Mow by means of the minimal conflict
sets a maximal correct subplan B of a
deduction plan G i=s determined in
three steps: Let mes, = {i,,...,4, }
ba a minimal conflic£ sat of G.

il fa} {2}

Figure 8: A complete UwC

!
{Hﬁl Gy, numkﬁﬂ)

SuB|! SUB{& S8|7

'F'H"IH H'h?I_} (_ﬁui} sh-ﬁl vT[x‘]-_}

IRED SuB |2 SUB |8 BE

F-mu;u WigT)

Figure 8: A closed correct deduction plan

502

1. 5et H := G.
2. Remove the edge ij in E for all
j-l!r!‘!Jl'

3. If i, of type SUB, remove all nodes
and ;dges beyond of 1,.
(i.e. attainable by Eaﬂ-pathis

from 1).
1
If it happens during this process
that some literals, say w,,;...,;4

become open subproblems buat therg are
ne literals at hand to close them,then
for sach uw, & preceding literal has
to be fuuna which can be closed by yet
ancother literal. If for one of the u
no such preceding literal exists; tha
backtracking process was not success-
ful and another mes, has te be chosen.
Example

Consider the deduction plan of
section 3, figure }. As shown in the
example above, the constraint set cor=-
rasponding te this plan is not unifi-
able., Take for the backtracking step
mcs, = {5}. Edge number 5 and node
-8(a) are removed from the plan. There-
by, the literal E{xa] becomes an open
subproblem. But there is another
clause in the input clause set which
£its to close the literal, namely
{=82(b)}. This wields the closed cor=-
rect deduction plan of figure 9. The
reader is invited to check that back-
tracking with mes, = {6} doas not re-
sult in a correct plan.

& THE STRUCTURE OF ASSIE-T,

In the deduction plan method, de-
duction and unification are saparated
from e¢ach other. For deductien the
data setrustura "deduction plan® is
needed, for unification the data struc-
ture "unification graph with con-
straints”. In ASEIP-T, both are kept

cofregntio head contrel HC —s 1JO
nal
|memory
Cu I‘
5€1 5c2

associalive memory | | associalive mamary
A1 Az

Figure "0: The structure of ASSIP-T

in appropriate asscciative memories.
Therefore ASEIP-T has two storage
units of this type, namely AM1 for
the deduction plan and AM2 for the
Uwg, cf. figure 10. The control unit
of the. processor consists of four
components:

- the head control HC

= two subcontrols 8C1 and S5c2

- a conventional memory CM

The subcontrols eperate on the UwC.
They can work independently from each
other, but under contrel of HC, =0
they can work in parallel and this is
useful during the initial construc-
tion of the UwC and during its recon-
struction after a backtracking step.
Thus, we have not only parallel access
te the data in the associative memo-
ries, rathar thers are twoe further
steps to parallel processing: one by
the parallel treatment of deductian
plan and UwC, the other by the use of
8C1 amd 5C2 in parallel. For details
cf. (Dilger and Schneider 198%). For
an introduction te and a survey on
the field of asscciative processors of.
{(Fu and Ichikawa 1982), (Kohonen 1984),
{Parhami 1973) and (¥ou and Fung 1975).

7 DATA STRUCTURES AND ALGORITHMS
FOR ASSIP-T

Two data structures are used for the
representation of deduction plans and
UwCs in the asscclative memories,
namely CLAUSE and EXPRESSION respecti-
vely. CLAUSE represents clauses to-
gether with the edges of the deduction
plans, and similarly EXPRESSION is
degigned to keep expressions as well
25 the different types of edges in the
UwC. Here is the type definition for
CLAUSE:

CLAUSE =
RECORD
status : RECORD
in use: BOOLEAM;
naxt_}itarul.
compl literals: CARDINAL;
ENB;
was_basic node: BOOLERN;
number of literals,
number of variants: CARDIMAL;
variants:
LIST OF
RECORD
index,
open_subproblems: CARDIMAL;
key literal: POINTER TD LITERAL;
END;
literals: LIST OF LITERALS;
END;

The design principle of this data
type is to represent a clause together

with its wvariants. Thus, only those
parts of a ¢laugse have to be stored
several times,; in which the variants
differ from each other, namely an in-
dex (number of the wvariant), the open
subpreblems and the key literal. The
status information and the was_basic
nodae-variable are used for the con-
struction of the deducticon plan. LIST
can be realized e.g. as an ARRAY of
appropriate length. The data type
LITERAL is defined as follows:

LITERAL =

RECORD

sign: BOOLEAM ;

pradicate symbol: SYMBOL;

arity: CARDINAL;

arqumants: LIST OF POINTER TO EXPRESSION;

variants:

LIST OF
RECORD
index,
Eﬂgeinmnar: CAREDIMAL;
adge type: (SUB,RED);
corr literal:
RECORD
cl: POINFER TC CLAUSE:
lit: POINTER TO LITERAL;
ind: CARDINAL;
END;
erased: BOOLEAM;
potential: CARDINAL;
END;

END;

The data structore LITERAL consists of 2
gconstant part (sign,predicate symbol,
arity, arguments) and a variant part
which is related to the variants of
the clauses by the property "index".
In the wariant part of LITERARL the
edges of the deduction plan are stoered,
becaunse in fact they are drawn between
variants of clausas. The literal
wherein an edge is stored is its
gtart literal, and corr*litural is
the target literal of the edge. Edges
can be erased by a backtracking step,
but they must be kept to avoid their
redrawing, therefore thay can be mar-
ked as erased by a speclal record
entry. The potential of a literal is
the numbar of literals whiech are pog-
sibly complementary to it. SYMBOL can
ba realized as ARRAY OF CHAR or as
CARDINARL, if all symbols are numbered
at the beginning. The definition of
the data type EXPRESSION is

EXPRESSTON =
RECORD
status:
RECORD
active,const,in use,marked:BOOLEAN
EHND;

503

content: SUBEXFPRESSION;
variants:
LIST OF
RECORD '
index,number of neighbours:CARDINAL;
neighbours:
LIET OF
RECORD
node: POINTER TO ENPRESSTON;
ind: CARDINAL;F
label: SET OF LABELS:
END;
class: CARDINAL;
pushed: BOOLEAN;
cycle: ARRAY OF BOOLEAN;
END;
END;

The status information is used Ffor
construction and handling of the UwC.
The variants corregpond te the variants
of clauses in the decution plan (by
"index")}. Each variant of a clause
produces new expressions which are
identical to former ones in the sym-
bols they contain, but differ in the
aedges to some other expressions, and
these are kept under the prepearty
“"variants", especially under "neigh-
bours". Bxpressions which are coanec-
ted with each other, thus belonging
to the same class, have the same
number under the property "class”. By
the notation of neighbours, the un-
directed edges of the Uw(C are repre-
sented, whereas the directed edges
are represented by means of the cyele-
array. "pushed" 1a used for the hand-
Ling of the UwC. The type LABEL keeps
the labels of the undirected edges
which correspond to the numbers of
the edges. SUBEXPRESSION is defined
ag follows:

SUBEXPRESSION =

RECORD

name: SYMBOL;

CRSE type: (fnct,var) OF

fnckt: arity: CARDINAL;
arguments: LIST OF POINTER TO
EXFRESSION
END;

SUBEXPRESSION contains only a sym=
bol if the expression 1a a warlable,
otherwise 1t contains also the arity
of the function symbol and an argument
list.

Example
Assume there are given the clauses:
1) {Plgi(x),x), R{£{2,b),g(x)]}
(2) {-plu,E{gl{u),v}), Q(E(v,u)}}
{3y (-QUf(w.b))}

These clauses contain the following
expressions and subexpresgsions:

504

(1} gi=) {7y E{giul,v}
(2) = (8) giu)

(2} £{z.b) 2y v

{4} = (10) £(v,u)
(3 b (11} £(w,b)
{8} u {12} w

In the data structure CLAUSE the
clauges are respresented as follows:

cl: [[F,1.0],F.2,1,0) ([T, P,2,(el,22).0)]:
(TR, 2,(ed,el), (3]1]

c2: [[F,1,0],7,2,1,0),([F,P,2, (e6,a7),(}],
[T.0.1,(e20), 031}]

e3: [[F, 1,07 100,00, (PQ,1, (e11), 0 1)]

e2l,e2,... are pointers to expressions.
This is pot yet a deduction plan be-

causa the lists of wvariants are empty,
it is only the respresentation of the
clauses in the data structure CLAUSE.

The axpressieons in the data struc-
ture EXPRESSIONW have the form:

el: [[v,7, 7, Fl.0g.1,0e20],00]
al: [[T,F,F;F]:[KI:”I

e3: [[T,F,F.Fl,i£,2 (ed,e5)], 03]
ed: [[7,F,F,Fl,[2],10}]

e5: [[r.1.F,F]l.[b,0.03].00]

af: [[T,F;F;F],[H],{]‘] .
al: [[TiFthFlt[frzrLEBIEE}]"{]j
eB: [[v,F,F,Fl.(o,2,te8)],03]
ed; [[T;Frf‘:?],.[“]-{]]
Elﬂ:[[TrP-P:F]i[flzi{EEJEE}]Fr}]
ell:[[T,7,F.F],[£,2,({e12,e5)],0()]
.:2:[[T;F:PfF]![“]r{}]

Again, this is not an UwC but only
the representaticon of the expressions
in the data structure EXPRESSION.

The algorithms for the construction
and handling of the deduction plan
and the UwC can be found in (Dilger
and Schneider 1985). Within the con-
struction of the UwC an important task
is to determine new constraints from
the arguments of terms. Assume a con-
straint {p,g)} i= given and p and g be-
leng to different classes, 1.e. there
is no connection betweaen them. This
can be immediately realized by the
property "clags". This situation
happens often during the construction
process, especially at the beginning.
Wow; all terms of the classes to which
p and g belong have to be determined
and from their arguments new con-
straints are computed. The search for
terms is performed by the subcontrels
of ASSIP-T and can be done in parallel
because the classes of p and q are
disjoint. Synohronization of the ac-
cess to AMZ is simply realized by
semaphores. RAugmenting the number of
subcontrols, further parallelism could
be introduced, but then the ocverhead
for synchronization would increase.

Bxample

FProm the clauses of the exzample
above the following deduction plan
can be constructed:

el: [[7.3,0],7,2,1,([1,1,01L]),
tlr,»,2,(et,e2), ([1,1,508,[c2,11,1]
F,oD)].[T.R,2, (3,01}, ([1,0.2,[],
F,oD))]

c2: [[TaafolrFrirl.r[[lJofll]}r
{[FiPrzl {eb,eT) |{[1IQJ?¥;[]r
r,0 1, [1.9.1, (e10), ([1,2,508,
[e3,11 Alre]i]

3 [[Tnzrﬂl;Flll1!{[liﬂflij:|r
{[Pfgilftejl}r{[llﬂrli[li
rai]

It is illustrated in f£igure 1%. This
deduction plan iz not closed, because
in' ¢l there is an cpen subproblem.The
edges of the deducticn plan yilield the
constraint set

¢ = {{gix),ul, {x,Flglu),vi},
{£{v,u),Fl{w,b}}}

which is for the purpose of ASSIP-T
denoted by

§ = ([[e1,1],[e6,1],{1}],
[[ﬂz;lin[ﬂ?ll]sfl}]; 11,
[e11,

)
1

The pumbers "1" and "2" dencote the
deduction step from which the res-
pective constraints has been obtained.
The unification algoerithm builds from
the input set 5 an UwC of which the
first four expressions represented in
the data structure EXPRESSION are
shown below and which is illpstrated
in figure 12.

[[eic
11,{2}

ei: [[T.P¢,P,F].[a.1,(e2}],
f[lJli{[EE:-‘-{J—}]JrllFJ{T}]j]
al: [[T“FJF-{FII[x].l'{[11"!{[!1'1!{1}]].!sz.!
<])]
e3: [[r,F,F,F],[£,2,(et,45)],
(l1,0,0.,3,F,<F,F>]1]
ed; [ET-P:F;F] ¥ [E.T- {[l.l'ﬂf 0 }lel{:‘J}]

Those expressions with a T in the
cycle array are involved in a cycle
with regard to the respective argu-
mants.

The UwC contains a oycle, therefore
the constraint set C is not wnifiable.

& THE ASSIP-T MEMORY

We will zketch here a possible
realization of AM2 which can be
adopted for AM1l as well. The Uw(l is
stored in AMZ as a set of objects of
type EXPRESSION. It seems natural to
divide AM2 into egual parts sach of
which is provided for an EXPREESION.
But ona will hesitate to call such
a part a "cell", because it has to

store a considerable amount of infor-
mation and it should be able to per-
form a let of instructions which tend
to go beyond those which usually are
performed by associative memory cells.
Rether it seems adeguata to conceive
auych & paxt as an asscclative proces-
gor itself. PThus, acssociative access
to AMZ proceeds on two levels: the
first one is that of the head control
and the subcontrols by means of the
instructions "FOR ALL expression..."
and "POR_ONE expression..." occurring
in the algorithms, the second one is
that of the subprocessors to tha data
stored in their registers. A subpreo-
cessor has to perform entry, change
and query instructions on the compo-
nents of a single EXPRESSION. The sub-
processor memory can be realized as

a linear array of cells each of which
consists of

{I‘I:.rl Ftll'lt.ll,ll_)

Piu,fighul,vil GlFwull

suB | 2
(aifiw, 1)

Figure 7. A deductien plan

L] iz}

glx) u b iz, b z
L]
0 .
giw) ¥ w
I bl
x Hghul) flw,u) Flwe B}

Figure 12: A UwC with a cyele

D =

llogieal unit

T_!_r aata - register].1

Figure 13: A subprocessor enll of ASSIP=T

505

logical anie

contrel bBit

4 bit £flag registar
32 bit data raglster

cf. figure 13. The purpose of the
flag reglister is to characterize the
type cof informatien which actually

ls stored in the data register; e.g.
status information, index aad class
of variants, information about neigh=
bours e€tc. Thud, each call can store
an arbitrary part of an EXPREESSION.

9 CONCLUSION

As far as we know there is no other
approach similay to ours. The archi-
tecture of the fifth generation in-
farenca machine is data flow oriented
and does not take into consideration
agsociative accemns to data cf. [(Moto-
oka and FPuchi 1983). The main problem
with the realization of our approach
is the size of the asscelative mamo=
ries needod £for the processor. We
hope to find a solution for this pro-
blem on the basias of the work of
Tavangarian (Tavangarian 1982 and
1983) . At present we are pusy to im-
plement simulation programs to get
gome exporience with ASSIP-T so far
described, and later on we will try to
improve and to axtend this processor
maodel,

REFERENCES

Cox, P.T. On determining the causes
aof nonunifiability. Auckland Computer
Science Raport Ne 22, University of
Auckland, 1981

Cox, 7.7, and Pletrzykowski, T Do-
duction plans: A basis for intelligent
backtracking. University of Watarloo
Res.Hep. CS-79=-41, 1979

Cox, P.T. and Pletrzvkowski, T De-
dauction plans: A basis for intelli-
gent backtracking. IEEE Trans. Pattern
Analysis and Machine Intelligence,
val. PAMI-3, (1) 19Bl, 52-55

Dilger, W. and Janson, A. Unifikations-
graphen als Grundlage fdr intelli-
gentes Backtracking. Proec. of the
Garman Workshop on Artificial Imtelli=
gence, Informatik-Fachbearichte 76,
Springer-Verlag, 1983, 189-19&

506

Dilger, W. and Janson, A. Intelligent
backtracking in deduction systems by
means of extended unification graphs.
Interner Bericht l1oo0/84, Fachbereich
Informatik, Universitdt Kalserszlau-
tern

Dilger, W. and Schneider, H.-A. A
theorem proving assoclative processor,

In preparation.

Fu, K.8. and Ichikawa, T. (ada)
Speacial computer architectures for
pattern processing. CRC Press, Ecca
Raton, Florida, 1982

Kohonen, T. Self-organization and
asgociative memory. Springer, Berlin,
1984

Moto-oka, T. and Fuchi, K. The archi-
tectures in the fifth generation
computers. Proc. of the IFIP B3, 1983,
589=602

Parhami, B. Assoclative memories and
procesgorga: An overview and selectad
bhibliegraphy. Proc. of the IEEE &1,
1973, 722=T730

Tavangarian, D. A nevel modular ex-=
pandable associative memory. Proc. of
EUROMICRO 82, 1982, 303-312

Tavangarian, D. A general purpose
associative processor. Proc. of
EUROMICRO B3, 1983, 187-197

You, 8.5. and Fung, H.5. Assoclative
processor architecture - a survey.
Proc. of the Sagamore Computer Con=-
ference 1975

