PROCEEDINGS OF THE INTERMATION AL CONFERENCE
ON FIFTH GENERATION COMFUTER SYSTEMS 1984,
edited by ICOT, & ICOT, 1984

479

THE ARCHITECTURE OF A PARALLEL INFERENCE ENGINE — PIE —

Tohry MOTO-OKA, Hideliko TANAKA
Hitoshi AIDA, Keijji HIRATA, and Tsutomu MARUYAMA

Department of Electrical Engineering, The University of Tokyo
Bunkyoku, Tokyo 113, JAPAN

ABSTRACT

This paper presents a highly parallel com-
puter architecture which is oriented toward logic
programs. One of the execution models of logic
programs Is the goal rewriting model based on
OR parallelism. In this model, goals are
independent of each other and stored in a goal
pool. Each unify processor fetchs a goal, unifies
it with definition clauses, and generates a few
new goals., The Parallel Inference Engine (PIE}
which Implements this model has a highly
modular architecture that interconnects 100s —
10005 inference units with two level networks.
Several kinds of control mechanisms are intro-
duced for the consistent and efficient execution of
logic programs. This includes the unification pol-
icy control regarding goal selection and literal
selection, the global control mechanism to imple-
ment guard and NOT operations, the distributed
load leveling mechanism among unify processors,
the process optimization scheme to reduce the
goal size, and the sharing mechanism for struec-
ture data. The kernel part of unify processor is
designed and implemented through TTL ICs.
From this implementation, it is found that the
unification operation can be done in 5 — 7
machine steps/cell. Software simulators are
used for the evaluation of control mechanisms
and of total system performance. Several control
schemes are suggested by the results. Using a
few test programs in PROLOG, the total system
performance of PIE with 256 units is shown to
be 170 times higher than the single processor
machine. Lastly, extensions of PIE basic model
including the elimination of duplicated goals and
the set operations are discussed.

1. INTRODUCTION

The Fifth Generation Computer Sysiems are
considered to be knowledge information process-
ing systems, which are based on logic program-
ming. The architecture of the fifth generation
computers should support the efficient execution

of logic programs. As logic programs are thought
to have a lot of paralielism in execution level, we
would be able to expect substantial speed-up
through the parallel execution of logic programs.
Up to this time, there proposed a few execution
models for parallel inference processing such as
AMD-OR. process model (Conery and Kiblar
1981), reduction model (Darlington and Reeve
1981), goal rewriting model (Goto et al. 1982,
1984), data flow model (Amamiya and Hasegawa
1983, Ito et al. 1983) and so on (Ciepielewski and
Haridi 1983). However, concrete architecture pro-
posals are very few, and evaluation results of the
architectures are not reported at all. In this paper,
we propose and evaluale a highly parallel com-
puter architecture which is oriented towards logic
programs. The execution model of logic programs
is baged on the goal rewriting model which we
proposed before (Goto et al. 1982). As this
maodel uses the OR parallelism, goals are logically
independent of each other. However, if goals
share some data physlcally, it makes the parallel
execution difficult. So, the major part of each goal
is created (copied) physically independently also,
in this model. The machine which implements
this model can be seen as a direct execution
machine of logic programming languages such as
PROLOG. We call this machine, Parallel Infer-
ence Engine — PIE. Section 2 summarizes the
model and describes the basic architecture of PIE
(P1E-1). Section 3 is the description of control
algorithms used to enable the consistent execution
of parallel inference and to improve the execulion
efficiency. Section 4 shows Lthe hardware imple-
mentation results of a unify processor which is the
kernel part of PIE. Section 5 describes the
software simulator of the basic architecture, and
shows the evaluation results with a few control
algorithms as parameters. Section 6 introduces
the structure memory concepl to improve the
overhiead of PIE-I, and makes clear the architec-
tural requirements to incorporate the concept. Sec-
tion 7 proposes the second version of PIE (PIE-
1I) based on the evaluation results of PIE-I, and

480

discusses the further study points. Section 8 is the
conclusion of this paper.

2, THE BASIC MODEL OF PARALLEL
INFEREMNCE ENGINE — PIE

2.1 Parallel Inference Model

From the analysis of inference operations, we
can distinguish 4 kinds of parallel execution as fol-
lows:

(1) unification with multi clauses of the same
predicate.

(2) multi new goals to be processed.

{(3) multi AND literals which constitute a goal.

(4) multi arguments in a literal unification.

{1) is the parallelism found when several OR
goals are created from a goal. On the other hand,
{2) is the parallelism due to the fact that we have
simultaneously many OR goals which should be
solved. (3) is the AND parallelism. (4) is the
inter-argument parallelism. From the computer
architecture point of view, (1) can be imple-
mented comparatively easily through providing
several literal-unifiers. (2) can be implemented by
having many unify processors which handle the
unification of goal level. Though (3) can be
implemented easily when the literals have no
shared wvariables, it is difficuli to implement as il
needs consislency check generally. However, we
can get other kind of parallelism through pipeline
control, when passing the result of a unification of
a literal to the unification operation for the other
literals. (4) can also be implemented by having
several argument-unifiers in each literal-unifier,
though shared wvariables make the parallel opera-
tion complicated just like the (3). _As the first step

toward the parallel inference machine, we defined
the basic model of PIE as follows:

(1) Sequential unification with multi clauses of
the same predicate;

{2) Many unify processors are available;

(3) AND operations are processed sequentially:

(4) Unification of each argument is processed
sequentially;

(5) New goals are independently created of each

other (copy).

As the extension to the mulli literal-unifiers
will be straightforward, we assumed to have a zin-
gle literal-unifier for each unify processor as the
basic model. Items (3) and (4) result from the
Fact that consistency check is too heavy operation
to justify the parallel execution, and that the
speed-up gain ol inter-arguments parallelism
would be 2 or 3 at most. ltem (5) is a tentative
assumption to make the first machine mode] sim-
ple, which will be removed in section 7.

2.2 Machine Organization of PIE-1

Based on the model described previcusly, we
designed the machine organization of PIE as Fig.1
{PIE-I). Definition Memory (DM) stores all
definition clauses (whole programs). Memory
Module (MM) stores the goal representations
{called goal frames). Unify Processor (UP)
fetches a goal from MM and several candidate
clauses from DM, unifies them, generates new
goals, and returns them to MMs. Activity Con-
troller (AC) creates and maintains a part of the
inference tree that is jocal to the AC, and controls
the activity with communicating each other. Each
Inference Unit (IU) is composed of a DM, a UP,
a MM and an AC. Activity Manager (AM) is a

o System * SW. Network
Manager : :
DM D DM
UP Up up
T 1 T F | «ossan 1
MM MM MM
AC AC AC
1 * 3
Activity
Manager

Fig. 1 System Organization of PIE-]

central controller for all ACs. Systern Manager is
a central controller for the whole PIE machine,
which controls the input-oulput as well. This
organization of PIE-I, is a straightforward imple-
mentation of the basic model, and serves as a
foundation to build up a further refined version.

2.3 Activity Control

The goal reduction process of machine PIE is
to feich a goal frame from the goal pool, to unify
it with all candidate clauses of the same predicate
for a literal of the goal, to create several new
goals, and to refurn them into the goal pool, This
cycle makes up the substantial part of inference
process. Wilhin this cycle, several control items
can be distinguished, which are discussed in next
section.

3, CONTROL ALGORITHM OF PIE-1

3.1 Unification Policy

Since all goals in the goal pool are basically
independent, we have a freedom fo select goals to
be processed when the number of goals in the goal
pool exceeds the number of inference units. We
have studied four strategies for goal selection as
follows:

{1} FIFQ,

(2} depth-first,

{3) breadth-first,

(4) conclusion precedence.

(4) is a strategy to give precedence 1o such
poals that seem o be nearer to the conclusion
{true or false). That is, when we assign to each
literal a level number which designates the depth
in the inference tree, the highest priority is given
to such a goal that the minimum level number of
its goal literals is the maximum among all goals,
In general, depth-first selection finds a solution
earlier, while FIFO or breadth-first completes tolal
search faster. On memory usage, depth-first
requires less amount of memory Lo slore waiting
goals. The selection strategy (4) seems better at
both time and space requirements than others, but
it requires a little more complicated selection
mechanisri.

We have also a freedom in selecting the
literal 10 be resolved in a goal frame. ln most
application programs, it is nalural to select left-
maost literal, and it is good enough compared with
the cost of literal selection in some complicated
method. However, in some application programs,
such as generator-consumer Lype programs, some
literal selection mechanism should be equipped
with. We have examined a simple literal selection

481

method based on an annolation concept, which is
similar to read-only annotation in Concurrent Pro-

log, and found it works well at a low cost (Aida et
al, 1984).

3.2 Load Leveling

It is always a quile difficull problem how to
use as many processors as possible efficiently in
multi processor systems. In PIE, the leveling of
processing load is done by sending newly gen-
erated goal frames to other units. Since sending
geal frames costs network delay, it is a trade off of
load leveling and network cost. We have examined
three strategies for load leveling. One is so-called
"first-self*, in which method the first one of newly
generated poal frames is stored into its own MM,
while other goal frames are sent out to other
MMs. The second one is so-called "emply-self’, in
which method newly generated goal frames are
slored into its own MM if and only il the number
of goal frames in ils MM is less than a threshold
which is specified by the activity manager. The
third one is a random scheme which distributes
newly generaled goals to MMs randomly.

3.3 Global Control

To implement unification policies as described
in 3.1, there shouid be some mechanism to associ-
ate goal frames with each other. The derivational
relation among goal frames is especially important
when we implement extended control features of
logic programming languages, such as negalion-
as-failure or guarded clauses. The simplest way to
implement such mechanisms is 0 record the
derivational relation in a tree form. In PLE, this
tree is called inference tree and stored in dedicated
memories in ACs. ACs manage the tree by send-
ing "node control commands’ one another.

The inference tree is expanded by the infor-
mation included in the header part of a newly gen-
erated goal frame. The header includes parent
node id. in Lthe inference tree and the atiribute of
the newly generated node. The MM Controfler
picks up these information from the goal frame
and passes them to the AC. Then the AC sends a
"son’ command to the AC which manages the
parent node, and establishes a parent-son relation
between the parent goal frame and the newly gen-
erated goal frame. UP makes a dummy goal frame
which includes a control information when no
more clauses can be unified with the input goal
frame. The conirol information includes the
number of newly generated goal frames, and the
new attribute for the parent node. When AC
receives these information, AC changes the state
ol parent node and sends & command to the MM

482

to delete the goal frame itself in order to save
memory space. Therefore, only goal frames wait-
ing for reduction and just under reduction are
stored in the goal pool,

When the resolution of a goal frame ended in
success (null clause) or failure, the corresponding
branch of inference tree is trimmed from the leaf
toward the root. [f activity control is not busy,
unnecessary relay nodes each of which have only
one son node are also removed by exchanging
four commands between ACS,

3.4 Process Optimization

In eonventional inference operation, goal size
becomes larger with the inference steps. How-
ever, at the reduction stage in UPs, all the infor-
mation unnecessary for later reduction (such as
intermediate variables) can be discarded. There-
fore, the size of each goal frame can be expected
to preserve its original size by using this size
reduction mechanism, while the number of goal
frames in the goal pool is dramatically changed.

UP may not return its last producing goal
frame to MM, but may begin the next unification
cycle with it immediately. Especially, if the literal
to be resolved is deterministic (such as arithmetic
evaluable predicates), there is no transfer of goal
frame between UP and MM, and the network
delay can be saved. The deterministic predicates
amount to about half of the total reduction, in the
< B-queens> program execution, for example.
Accordingly, we can expect saving the round trip
delay time by this ‘short-cut® scheme.

4. UNIFY PROCESSOR

4.1 Design of Unify Processor
To get time values of a few elementary opera-

tions which will be vsed for the system. evaluation.

through simulation, we built an experimental UP
by TTL 1Cs. A UP performs unification of literal
pairs of the Goal Frame (GF)} and the Definition
Template (DT, definition clause stored in DM),
The unification algorithm used in UP is currently
almost the same as that of DEC-10 PROLOG, If
the unification succeeds, UP gathers only the
necessary information from the GF and the DT,
and then generates a new GF. This operation is
called size reduction. The main features of size
reduction are as follows.

{1) Elimination of unreferred cells
{2} Elimination of bound variables
(3) Renumbering of variable numbers

Fig.2 is the block diagram of a UP. The fune-
tion of each block is as follows.

{1} Local Memories

A GF is copied from the Input Buffer to the
Goal Frame Local Memory (GFLM). A DT is
transferred from the DM to the Definition Tem-
plate Local Memory (DTLM).

(2} Unifier

The unifier unifies the selected goal literal of
the GF in GFLM and the head literal of the DT in
DTLM. After the unification ends in success,
variable substitutions remain in the Local
Memories.

(3) Reducer

Size reduction is performed by the Reducer,
It produces a new GF into the Output Buffer from
the GF and the DT using the variable substitution
information.

(4} System Predicate Processor

The Systemn Predicate Processor executes
built-in system predicates, such as *add”.

(5} Input / Output Buffers

Input and Output Buffers are buffers for the
interface with the networks. These buffers
enables the pipeline operation of the processing in
UP and the transfer of GFs in the network.

(6) Tnterfaces

Interfaces are with MM — UP neiwork, UP
~— MM network, the DM, and the system
manager.

D KF Sys.Man. I/'F 1
3

Sys.Pred.Proc I

DTLM ! Unifier

Local Memory —

GFLM I
UP Contrafler E
Input Buifer Output Boffer

;
— HH-IP VF _p——_ UP-MMIF }—-

|

Fig. 2 Block Diagram of Unify Processor

4.2 Hardware Implementation.

We implemented a UP for experimental pur-
poses. The UP Pilot Machine is divided into
UNIRED and SVP. UNIRED is a special
hardware for unification and reduction and
corresponds to the Unifier / Reducer, Local
Memories, and Input Buffers in Fig.2. SVP is a
general purpose microprocessor system (68000
CPU) and simulates the funetions of the System
Predicate Processor and Interfaces.

Special features of UNIRED are as follows:

(1) tagged architecture,

(2) horizontal microprogrammed control (58 bit /
micro instruction),

(3) dedicated internal busses for GF and DT,

(4) dereference of variables by the hardware,

(5) eleven functional registers, six of which are
counters,

(6) multi-way jump facility according to the con-
tents of the registers,

(7) three hardware stacks which are
pushed/popped at the same time,

(8) high speed local memories which can be
accessed simultaneously.

UNIRED is made of about 500 TTL ICs and
128 CMOS RAMs (access time 45 ns). Table 1
and 2 show the implementation results of
UNIRED at the microprogram level. A success
unification requires 23 u-steps (approximately
5us) for <6-queens> and 74 w-steps (15us) for
<PENT>. A failure of unification is detected
after 10 — 18 w-steps (3us). A reduction requires
185 p-steps (37us) for <6-quesns> and 1565 u-
steps (313us) for <PENT>. It needs 4.6 — 6.3
p-steps (0.9—1.4us) to reduce one cell of a GF.

Table 1. The Unification Clocks in UNIRED

average
program fe-steps
success | failure
f-gueens 234 10.6
equivl 26.2 10.1
PENT 74.0 9.9

Table 2. The Reduction Steps in UNIRED

average | average | reduction
[rogram GF reduction [e-steps
length w-steps per cell

b-gueens 35 185 5.25
equiv2 57 267 4,61
PENT 248 1565 6.29

483

5. SIMULATION OF PIE-I

5.1 Simulation Model and Simulator

Software simulators were made based on the
machine organization of PIE described in 2.2,
The operation of each UP is divided into 3 phases,
i.e., preparation phase, candidate clause selection
phase, and unification and reduction phase. From
the implementation results of UP, it is found that
the total duration of preparation and selection
phases are nearly constant, and the duration of the
unification and size reduction phase is proportional
to the GF size. As some multistage network such
as omega network is assumed for the distribution
network, the transmission delay is proportional to
the logarithm of the number of 1Us and to the GF
size. The swilch control time Is negligible com-
pared with the transmission time of a GF, as the
GF size is pretty large (aboul 100 cells). The
delays of olher networks can be set as constant, as
their effect on the overall performance is rather
small.

The simulation parameters for PIE-I are
assumed as follows:

{1) Each module in IU has unbounded buffers in
its each input port;

(2) The 3 phases of UP take 100 machine clocks,
50 clocks and 7 clocks/cell, for their process-
ing, respectively, and every p-step takes one
machine clock;

(3) The delay time of distribution network is 4 x
(log,n) x (goal size in cell) clocks, where n
= number of the IUs, and cell = 4 bytes;
The conflict of GF transmission on the net-
work is not taken into account;

(4) GF selection strategy is FIFO;

(5) Load leveling strategy is ‘empty-self”;

(6) The processing time for the global control
described in 3.3 isn't considered.

This simulator is writlen in language C and
partly in assembler of VAX, and has about 9,500
lines. In order to simulate concurrent processes,
several process control functions are provided in

this simulator. This simulator can simulate 256
IUs.

5.1 Simulation Results

(1) Total performance

Fig.3 shows the relative speed agains! a single
UP. The total performanee of PIE of 256 1Us for
the test program <8-queens> is about 170 times
faster than the single processor machine. The per-
formance for the test programs <6-queens> and
<LL2P> is saturated (<LL2P> is & program of
cryptarithmetic problem (LISP 4 LOGIC) = 2 =

484

PROLOG). From the measurement of maximum
number of parallelism for each test programs, the
main reason of the saturation for these test pro-
grams can be thought to be due to the shortage of
the parallelism of the test programs against the
number of UPs. This means that if the program
have enough parallelism, PIE can exhibit high
performance corresponding to the parallelism.

(2) Load leveling

Fig.4 shows the number of the working
unifier/raducer in each simulation time. As shown
in Fig.4, ‘empty-sel is better than ‘Arst-self’. In
this simulation, the wvalue of the threshold of
‘empty-sell” is always set to 1. The value of the
threshold influences the traffic of the network and
the total system performance. The method to
decide the optimum value of the threshold should
be examined through more precise simulations.

(3) Goal selection

Goal selection strategies deseribed in 3.1 are
examined. Fig.5 shows the total number of the
GFs in MMs and the time (designated by *) when
the answer was found. On memory usage, the
strategy (4) seems better in this test program. In
practice, goal selection strategy should be changed
dynamically according to the memory usage.

{4) Glohal control

Through the simulations of the global control
mechanism, it is found that when one GF is
created, 4 — 6 node control commands are gen-
erated at the busiest time. This means that ACs
rnusl execute these commands in 100 ~ 200
clocks. It is not difficult to realize this execution
speed on real machine.

g. 2001 < B-queens>

g

—

=

g

4 100

£ <LL2P>

=

= < f-queens >
0 100 200 300

number of UPs

Fig. 3 Relative Execution Speed of PIE-I

The traffic of the node control commands
depends on the load leveling strategy, ‘Empty-self”
tends to increase the command traffic compared
with ‘first-sell”. However, the number of com-
mands transferred through the command network
is at most & per one AC in each 2000 clocks,
because the elimination of unnecessary relay node
keeps the size of the inference tree small. The
command size is no longer than 4 cells. Accord-
ingly, il 10s 1Us are available, the command net-
work may be implemented by bus.

load leveling strategy

—— (1) first-self
----- (2) empty-self
— (3) random

number of working UPs

0 100 200
simulation ime % 10°)
Fig. 4 Effect of Load Leveling
<LLIP> UP = &4

goal selection strategy

—— (1) FIFO

2001 ~=—= (2} depth-first

—— (3) breadth-first

==== {4) conclusion precedence

number of GFs in MMs
=

0 100 200 ;
simulation time (% 10°)

Fig. 5 Effect of Goal Selection
<LLIP> UP = &4

Since the traffic for global control is little as
stated above, the total system performance will
not be much influenced even if the processing
load of global control is taken into account.

(5) Size Reduction

Fig.6 shows the average GF size at each
unification depth. The goal size can be preserved
constant by incorporating the size reduction
mechanism, while the size grows linearly with the
unification steps when the size reduction is not
applied.

6. ADDING THE DATA SHARING CONCEPT

6.1 Structure Memory Concept

From the previous section, it becomes clear
that the GF size is a predominant parameter to
decide the system performance, though the size
can be kept not to explode through the size reduc-
tion mechanism. In this section, we introduce the
structure memory concept to reduce the copying
overhead. Though the conventional structure
memory (Amamiya and Hasegawa 1983) stores all
of the structure data, our structure memory stores
only a part of the structure data so as to match the
highly parallel architecture, Fig.7(a) shows the
representation of a GF in PIE-I system, where
the structure area includes all of the structure data
as well as the undefined variables and ground
instances,

As the first step toward data sharing, we
divide the structure area into 2 parts: One is the

oY
[=]
=
(=]
I

non-reduced

reduced

0 100 200
unification depth

Fig. 6 Effect of Size Reduction
< PENT=>

485

part which includes undefined wvariables, and
another is the part which does not. The first part
is placed in the MMs the same as PIE-I, and
exchanged between UPs and MMs in a lump. As
the second part does not change the content any
more, we placed this part in the structure memory
which is shared by all UPs (Fig.7(b}}. That is, the
immutable structure data is placed in the shared
structure memory, and accessed by UPs on
demand basis. The size of immutable structure
data which GF possesses changes dramatically
depending on applications. But when unification is
done, UP requires only a part of it, so the access
to the structure memory occurs on a small amount
basis. We decided this amount as a node data
which constitutes structure data, We call this
access on 2 node basis as ‘lazy fetch’. When some
new goals are generated, new structure data are
created using a part of the structure data and some
constants. New ground instances in the new
structure data are stored in the structure memory.
The rest of the new structure data is stored in
MMz independently of each other, so that they are
not shared. When the size of immutable part is
large, we can expect 2 fold pains through the
decrease of transfer data, and the decrease of gize
reduction time.,

{a) GF format of (&) GF format for

PIE-I structure sharing
i
headar part header part
N 7| apartof
. . GF stored
literal part literal part |\ o MM
b
structure . W
o mutable
part structure part
A
2 reference
Fmin other GF
-/
immutable /
SM [structure

part

Fig. 7 Internal Representation of Goal Frame

486

6.2 Simulation

A simulation program is written to evaluate
the effectiveness of structure memory mechanism.
The program size is about 3.800 lines in language
C. We measured the number of lazy fetch opera-
tions, the transferred data size, the size reduction
time, and so on, for 3 test programs (<equiv2>,
<PENT>, and <LLIP>).

As the results, the average size of transferred
data between a MM and a UP decreased to S0%,
The size reduction time decreased to a half to a
tenth, depending on the applications. As this time
is several times larger than unification time in

Table 3. Evaluation of Lazy Fetch Operations

number unifications | averaget
program of without LF
unifications LF (%) operations
equiv2 7943 90.5 1.20
LL2P 19485 68.4 1.00
PENT 5865 05.6 1.93

T per one unification when needed

level-1 System

PIE-1 architecture, this decrease is expected o
improve the system performance considerably,
Table 3 shows the number of lazy feteh
operations. From these results, we can say that
T0~96% of unifications don’t need the structure
memory access, and 1—2 Lazy Fetch (LF) opera-

tions per one unification are done when they are
needed.

7. DESIGN OF THE SECOND MODEL

7.1 The Architecture of PIE-IT

Based on the evaluation results of PIE-I and
the structure memory, we designed the second
model of PIE (PIE-IT) as Fig.8 and 9. The
modified points are

(1) 2 level modular architecture,

(2) introduction of structure memory,
and

(3) consideration of Input / Output path.

M

r—*l level-1 Metwork
' ¥

Iu L8] raaa

AM

level-1 System

SM

r—| level-1 Network
i i

18] 1 s oew

o
[T2
z
U z
L=
s

L

levei-1 System

= I U E=

{—'-I_ level-1 Metwork
4 1

1 AM

—

AM

I

Fig. 8 The Global Architecture of PIE-II

(System Manager)

Our target parallelism is more than 100, This
valug is too high to support a shared memory for
the structure data. So, we divided the whaole sys-
termn into level-1 systems, each of which is made of
Inference Units (IU} and a Structure Memory
(8M). Fach structure memory is shared by the
IUs in the level-1 system. When some goals are
distributed to other level-1 system according to
the lpad balancing mechanism, the structure data
referenced by the goals are added to the goal data,
and transferred to the other level-1 system. As
structure data is immutable in PIE-TL, this copy
operation can be implemented easily. Each U is
equipped with an AC. AM controls the ACs in
the level-1 system to adjust the load balance
among 1Us and interfaces to the level-2 network.
System manager is a central controller of the
whole system.

To incorporate the structure memory, a Lazy
Fetch Buffer (LFB) is provided in each IU. Each
UP fetches structure data through the LFB which
is a buffer to access the structure memory through
Lazy Fetch Network {LFN). A few 1Us in a level-
1 system are Input Output Units (IOU}, each of
which ineludes an [/O Processor (IOP). The
level-1 network of Fig.9 is made of 3 kinds of net-
works: LFN, Distribution Network (DN) and
Command Network (CN}, DN is used to transfer
GFs from UPs to external MMs at processing
stage so as to distribute load to other 1Us and
Definition Clauses between 10U and IUs at pro-
gram loading stage. The CN is a network (o
exchange activity control commands among ACs,

v Lazy Feich
] Metwork
{LFN)
LFB DM |
)
- UP

Distribution

I,i_._y}
- L Metwork

MM ——= (DN)

AC
T Command
L MNetwork
(CN)

Fig. 9 The Internal Architecture
of Inference Unit

487

and between ACs and the AM, in the level-1 sys-
Lem.

The lazy fetch operations require quick
responses from the structure memory, while the
total traffic is about less than one tenth of GF
traffic. Accordingly, low delay networks such as
bus are suitable for LFN, and the number of 1Us
in a level-1 system should be less than 20. DN
transfers a large size data (of the order of 100s
bytes), while low delay characteristics are notl
required so strictly if the goal quene of each MM
does not become empty. Some multi-stage net-
works such as omega network will be adequate for
this purpose. As the traffic of activity control
commands is low compared with the goal traffic,
and does not make significant influence to the
total performance, @ conventional bus can be used
for the CN. This low sensitivity to the perfor-
mance comes from the loose coupling characieris-
tics between unification processing and activity
control. The fevel-2 network should support the 2
kinds of traffic for DN and CMN. However, low
delay requirement is not so severe that some high
throughput network will be enough for it. We
expect that the performance of 64 level-1 systems
{hence 1024 1Us) will be a few hundreds times
faster than the single IU system. As the opera-
tiong of level-1 systems are independent of each
other, the level-2 control is basically very simple.

7.2 Future Extensions

(1) Removal of unneeded goals

As the goals of PIE are processed indepen-
dently, the goal pool may include duplicated goals.
They can be removed except one of them. Furth-
ermore, if the machine can memorize the resulis
of each goal unification, we can use them to make
the inference process effective by removing such
goals that are equivalent to the failed goals.

In some application programs, the same GF
appears more than once in the execution of a
input goal. If the capacity of the goal pool is large
enough, we could leave GFs even after their
reductions complete, and check whether a newly
generated GF is already processed before. If the
GF is found to be redundant, it is unnecessary
and can be removed in most cases. If the GF is
under a negation-as-failure node, however, the
nodes of inference tree should be merged into one
rather than simply removed.

Redundancy check may be done in a literal
level instead of a GF level. Memorizing failed
goal literals reguires less memery and more practi-
cal, while memorizing successful goal literals is a
kind of knowledge acquisition.

488

(2} Set operation

In some application programs, it is desirable
to collect all the solutions in a set, If the search of
all the soluticns should be done in parallel, some
kinds of AND parallel processing mechanism
should be introduced to make up the solution set.

Suppose a lollowing example:

7- setof(X,p(X),8),q(S).
p(X) - a(X).
p(X) - b(X).

The GF including ‘setof* literal can be
divided into child ‘setol” GFs corresponding to
each definition of p(X), and the rest parts with
*setmerge’ literal in its head, in UP, Since child
*setol” goals and the rest parts are AND related
with shared variables, the rest parts are suspended
by AC and wait the finish of the execution of
child ‘setof” goals. When a subset of soclutions is
gained by one of the child ‘setof® poals, the AC
picks up the pointer to the set (stored in the struc-
ture memory) from the final GF and slores it in
the corresponding argument cell of ‘setmerge’
literal. When the execution of all sub ‘setof” goals
is finished, AC activates the rest parts of the goal.

If the parallel execution of the rest parts with
‘setol” goals is required, it should be supported by
higher level operation of SM such as ‘cons® opera-
tion.

B. CONCLUSION

In this paper, a highly parallel computer archi-
tecture for logic programs is proposed. This
machine PIE is made of 100s — 1000s inference
units. The inference operations which are done
on unify processors in inference units are almost
independent of each other., As the control
mechanism is loosely coupled with the inference
operations, very flexible control is possible in spite
of the highly parallel architecture. The kernel part
of the unify processor is implemented of TTL ICs,
Software simulators are also made to evaluate the
control mechanism and the total performance of
the basic model of PIE. From the results, a few
control schemes are recommended for each con-
trol items. The total system performance of PIE
of 256 inference units is 170 times higher than the
single processor. Some exiensions of PIE are also
discussed regarding the efficiency improvement
through eliminating the duplicated goals, and the
set operations.

Further study items are as follows: Incor-
porating more than one literal unifiers in a UP,
the experimental productions of other units than
UP, the system evaluation for larger PIE and for
many other applications, and the interface
clarification to the knowledge base machines.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Atsuhiro Goeto
(Now at Electrical Communication Laboratory),
Messrs. Masanobu Yuhara (Now at Fujitsu), Shui-
chi Sakai, Naoki Hamanaka, Hanpsi Koike, and
Kenji Matsubara of our laboratory for their cor-
porative works and helpful discussions.

REFERENCES

Aida, H., Goto, A., Tanaka, H., and Moto-oka,
T.. On Utilization of Read-only Annotation in
Goal-rewriting Model of Logic Programs, Proc. of
Biannual Meeting of IPSJ, 4H.5, 1984 (in
Japanese).

Amamiya, M. and Hasegawa, R.: A Logic Program
Execution Mechanism Based on Data Flow Con-
trol, Proc. Logic Programming Conference '83, 9.1,
ICOT, 1983 (in Japanese).

Ciepielewski, A. and Haridi, 5.: A Formal Maodel
for Or-Parallel Execution of Logic Programs, Proc.
IFTP 83, pp.299-306, 1983,

Conery, 1.5. and Kiblar, D.F.: Parallel Interpreta-
tion of Logic Programs, Proc. Conf, on Functional
Frogramming Languages and Computer Architecture,
pp.163-170, 1981,

Darlington, J. and Reeve M.J.: ALICE: A Multi-
processor Reduction Machine for the Parallel
Evaluation of Applicative Languages, ibid, pp.65-
76, 1981,

Goto, A., Aida, H., Tanaka, H., and Moto-oka,
T.: The Basic Architecture of Highly-Parallel Pro-
cessing System for Inference, [ECE, EC82-43,
1982 (in Japaness).

Goto, A., Tanaka, H., and Moto-oka, T.: Highly
Parallel Inference Engine PIE = Goal Rewriting
Model and Machine Architecture —, New Genera-
tion Computing, Vol. 2, No. 1, pp.37-58, OHMSHA,
1934,

Ito, T., Onai, R., Masuda, Y., and Shimizu, H.:
Data Flow Type Parallel Prolog Machine, Proc.
Logic Programming Conference '83, 9.3, 1983 (in
Japanese)},

