PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by 1ICOT. © IC0T, 1954

471

RESTRICTED AND-PARALLELISM

Doug DeGroot
IBM Thomas J. Watson Research Center
P.0O. Box 218
Yorktown Heights, Mew York 10598

ABSTRACT

A method of compiling Prolog clauses into
single execution graph expressions is pre-
sented. These graphs are capable of ex-
pressing potential and-parallelism in the
clauses. The run-time support is minimal:
simple and officient tests suffice to detect
potential and-parallelism and no recalculation
of the execution graphs is regquired. Some
parailelism may, however, be overlooked.
An execution model is presented which hope-
fully overcomes these limitatlons.

AND-PARALLELISM

And-parallelism in logie programming in-
volves the simultanecus execution of subgeoals
in a clause. Whereas or-parallelism attempts
to achieve Increased speed by investigating
many possible solutions in parallel, and-
parallelism attempts to achieve increased
speed by investigating the subparts of a
particular selution in parallel. Many modals
of parallel logle programming attempt to ex-
ploit both of these forms of parallelism.

Because subgoals within a clause can share
variables, variable binding conflicts can arise
in and-parallelism if all subgoals within a
clause are allowed to execute unconstrained
and if two concurrently executing subgoals
attempt to instantiate (bind) a2 shared variable
to two different values. Clearly thase binding
conflicts must be prevented. Two major ap-
proaches have generally been faken to sclve
thizs problem. The most common approach,
perhaps, involves some method of annotating
wvariables, as In Parleg [Clark], 1C-Prolog
[Clark2], Concurrent-Preleg [Shapire], and
Epilog [Wise]. In these schemes, variables are
annotated in a variety of ways to indicate
which subgeals can bind wvalues to specific
variables and which cannot. In particular,
only one subgoal is allowed to bind a wvalue
to each wariable. Such subgoals are called
"producers” of those variables. In contrast,
Conery describes a sophisticated, non-
annotated, process-structured system that
dynamically monitors variables and continually

develops data dependency networks to control
the erder of execution of subgoals, never al-
lowing’ two potential producers for the same
variable to execute in parallel [Conery]. In
this scheme, a particular subgoal may be a
producer of a variable In one invocation and
a consumer of that variable in another.

Without the benefit of variable annotations,
and-paraliel execution of logic programs can
lead to highly-complex coordination problems
at run-time. Because of these problems,
parallel logic programming schemes that im-
plement non-annotated and-parallelism gener-
ally incorporate sophisticated control
mechanisms to ensure that these problems ai-
ther do not arise or are corrected. If these
contral mechanisms are not compilar-related
but instead are code segments that must be
repeatedly executed while interpreting a logic
program, they may detract from the perform-
ance gains achieved by the and-parallelism,
and could even produce negative gains. It
is impertant, therefore, to search for methods
of achieving and-parallelism which rely mostly
on compiler-related technelogy instead of
run-time technology. This paper presents one
sych method.

NON-ANNOTATED AMD-PARALLELISM

In this section, problems with achieving
and-parallelism without annotations are de-
seribed. The main problem Is the possibility
of creating binding conflicts for wvariables.
Given a clause such as

FiX) == p(X} & g(X).,
if f is called with an unbound varisble argu-
ment, then X remains uninstantiated when we
invoke both p{X) and gq({X) in parallel. During
exacution, p and g may produce sclutions with
two different values of X. Clearly we cannot
return either value of X as the result of f(X)
until one of the values has been proven by
the other goal. But this may be impossible for
gither of the two values, and it may be nec-
essary to reinvoke both p and g in order fo
derive new wvalues of X. In general, this
scheme might be viewed as repeatedly rein-
yvoking beth p and g, deriving twe completa
sets of answaers - one for p and one for g.

472

The value of f then is the intersection (join)
of the two sets that are produced by p(X)
and q(X). It is significant that this set can
be computed either dynamically or statically,
cand that if it is computed dynamically, the
sets of answers produced by all goals in the
computation can be “streamed" back as they
are cempited, forming a pipelined computation
mechanism.

If the set of answers for p(X) is small and
contains the solution X=a but the set of an-:
swers for g(X) is wvery large and does not
contain X=a, then this “join" scheme may
waste processor time by producing the entire
large set for g, while f(X), the parent goal,
waits to see if q(X) is ever going to proeduce
the value X=a. Instead, as the set of values
for p(X) is produced, we can forward each
value from p(X) to g(X), making sure that g
works only on values produced by p. The set
of answers returned by f(X) will then be the
set of answers returned by gq(X). The po-
tential for execution economias is significant.
in addition, this "forwarding" technigue can
effectively take advantage of goal reordering
to achieve further economies [Warren],
whereas the "joln" technique cannot. This
schema of "forwarding” walues from subgoal
to subgoal has been extensively proposed and
studied.

Motice that now subgoals within a clause
do not produce conflicting sets of wvarisble
bindings. Parallelism occurs because while one
goal is operating on its argument, the pre-
ceding geoal is "preproducing” a subsequent
value to be tested if necessary. But unfor-
tunately, if a program consists mostly of
deterministic procedures and clauses, little
parallelism will be exhibited by this "for-
warding” technigue. In this case, the "join"
technigque would appear to exhibit greater
parallelism as well as higher efficiency. If
many answers exist, however, the “foin”
technique exhibits great parallelism but low
efficiency. In practice, the "join" technique
may prove impractical [Conery].

Motice that in the "forwarding” scheme,
for a given potential solution only one subgoal
is ever in execution at any one time. Many
subgoals within a clause may be in execution
at the same time, but if so, they will be
working on different potential solutions,
Consequently, production of a single, specific
solution Is always the result of a sequential
execution. This Is the reason simple "for-
warding” schemes exhibit little parallelism
when executing largely deterministic pro-
grams. To derive parallellsm within the pra-
duction of a single solution, some wey must
be found to decompose the list of subgoals
into sets of parallel subgoals,

Conery's method does exactly this. His
method invelves a set of elaborate run-time

algorithms which dynamically compute parallel
execution graphs based on data dependencies
between subgoals. It can execute in parallel
both deterministic and non-deterministic pro-
grams. While Conery's scheme nearly always
achieves optimal and-parallelism, it does so
at considerable expense because of the com-
plexity of the supporting run-time algorithms.
This expense may be so high as to render the
scheme impractical. Howewver, if technigues
can be found to shift more of the algorithmic

burden te the compiler and to significantly

reduce the amount of run-time computation,
and-parallel "forwarding” schemes may prove
to be a practical solution to the problems of
and-parallelism,

VARIABLE BINDING CONFLICTS

When considering a program clause such

as
f(X) <= p(X) & q(X).,

it is generally impossible at compile time to
determine whether or not p(X) and qi(X} ecan
execute in parallel without creating a binding
conflict. If f is called with a ground argument
(any term not containing a wvariable), such
as in the call "f(4]", then the two subgoals
become at run-time p(4) and g(4). Since the
argument to f contains no variables, no
binding conflicts can arise by the parallal
executien of p and gq. If however f is called
with an unbound argument or with a non-
ground argument (a2 term .containing one or
more variables), than p and g will share at
least one variable, and hence the potential for
binding conflicts exists if p and g are exe-
cuted in parallel. Consaquently, in this case,
P and g must execute sequentially. The im-
portant point iz that some sort of run-time
test is needed in order to determine whether
p and g can execute in paralle! or if they must
execute sequaentially. .

Considar now the clause
f(X,¥) <= p(X) & q(Y).
Here it appears that X and Y are Indepandent
variables and that p and gq can execute in
parallel. This is far from certain, however.
For suppose a call to f is made similar to one
of the following:

flZ,Z).
f(Z,g9(Z)).
flglZ),h(2,2)),

Then at run-time X and ¥ will be aliases of
gach other or will have wvalues that share at
least one variable. ¥ p(X) and g(¥) execute
In parallel, then the potential for binding
conflicts exists. Run-time tests again become
necessary.

The situation can bes even more compli-
cated. Consider the clause
flX) <= p(X) & gq(X) & s(X).

If at run-time f is called with a ground ar-
gument, as in the call "£(4)", then all three
subgoals can execute in parallel. But if f is
cialled with a non-ground argument, p(X)
must first axecute while g(X) and s(X) wait.
Upon complation of p(X), if p has Instantiated
X to a ground term, then g(X) and s(X), the
two remaining subgoals, can execute in par-
allal. But if X is still non-ground after com-
pletien of p, then g{X) and s(X) must execute
uquantialrv. Thus depending on the call and
execution, three different execution graphs
rasult. Figure 1 |Ituntrate: the three graphs.

R

2

7]
V=0 ==

(A) (B) (c)
Figure 1. EXECUTION GRAPHS

Cohery uses five run-time algorithms to
monitor execution of subgoals in a clause and
to dynamically determine the execution
graphs: tha Litaral Ordering Algorithm. the
Ferward Execution Algorithm, the Backward
Execution Algerithm, the And-process Alge-
rithm, and the Or-process Algorithm. Al-
though these algorithms are quite expensive,
they do achieve nearly optimal detection of
and-parallalism.

In the neaxt section, a method is presented
which determines a much mora restricted form
of and-parallelism. An important advantage
of this method is that it requires much simpler
Tun-time support. It will, however, occa-
sionally fail to detect some potential for par-
allalism due to the fact that it computes only
one ewecution graph, and this is done at
compile=time wusing incomplate information.
Later it will be argued that this may in fact
ba an advantage. Several simple algorithms
are used in this scheme, the most complex of
which is porformed only at compile-tima: the
run-time tests are quite simple. Each is de-
scribed below.

THE TYPING ALGORITHM

This section describes a simple algorithm
for determining whan two or more terms are
independent (share no common variables) or
are interdepandent (share at least one common
wvariable). Actuoally, the algorithm can only
accurately determine when twe or more terms
are clearly independent. Otherwisa, the al-
gorithm will assuma, perhaps incorrectly, that
the terms are interdependent. How this af-

473

fects the paraliel execution of a program is
described later.

Each term is allocated 2 special type field.
A tarm can have one of threa types:

1 - a ground term (contains ne wvarlables:
this type includes integers, strings, and
complex ground tarms)

2 - a non-ground, non-variable term (i.e.,
a term with a known principle functor but
which contains at least one inner variable)

3 - a varlable (i.e.. an uninstantiated
variable)

Thase types and the special type field are in
addition to any othaer type or tag fields usu-
ally found in data representations, such as
Integers, lists, strings, ete. [Warren2]. Most
terms appearing in the source program can
easily have their type codes preset by the
compiler. Far instance, all integers, con-
stants, and complex ground terms can have
thair type codes preset to 1: local variables
(these not appearing in the head of a clause)
can be preset to type 3; and finally, all
structured source code terms centaining one
or more variables will be preset to type 2.
In a structured term, not only is the term
itself preassigned a type, but so are all
components of the term at all levels. Nota that
all variables appearing In the head of a clause
cannot have their types determined at
compile-time since their walues will not be
known until run-time. Variables in quaries,:
however, wlll be presat to type 3.

Determining the type of a term at run-time
is slightly more difficult. We clearly cannot
afford the run-time expensa of traversing
sevaral entire structures on each procedure
invecation or exit In order to determine if a
structure is ground or if two structures share
a common variable. Instead, an efficient ap--
proximation technique is desired. Such a
technigue iz now presented.

First, consider how warlables (tvpe 3) can
inherit type 1 or type 2 codas. Consider the
following program for append:

append(nil,L,L).

append(X.Y,Z,X.L) <= append(Y.,Z,L).
and the call

append(nil,a.b.c.nil,R)?.

The compiler will have preassigned type code
1 to both nils and to the list a.b.e.nil and
type code 3 to the variables R and L. Since
the call unifies with the first append clause,
R becomas bound to the list structure through
unification, and-the type code of R is then
changed from 3 to 1. This example shows
how output variables can inherit type 1 or
type 2 codes from input variables through the
nermal unification proacedura,

474

Mow consider the eall
append(a.nil,b.c.nil,5)7.
This call unifies with the head of the second
append clause, with substitution
(a2, nil/Y, b.c.nil/Z,X.L/S).

The compiler will have presat X.Y and X.L
to type 2. At run-time X, Y, and Z will all
inherit type codes of 1 and 5 will inherit a
type code of 2. As terms are being con-
structed or decompesed in unification, any
whose type code is still 2 after unification
(meaning non-ground) has its address placed
in a special "pending” list. Following the
successful termination of all subgoals in the
clause, all structures on the pending list are

investigated to see i they have become

ground terms. This is done simply: the type
codes of all the top level compenents in a
pending structure are checked to ses if they
are ground (or have become ground) terms
(have type codas of 1). If so, then the
structure on the pending list has also become
ground, and its type code is now set to 1.

In the append example above, it is easy
to see that when the subgoal completes, L
will be bound to "b.c.nil", and since this is
a ground term (whose type code was praset
to 1 by the compiler), L will inherit a type
code of 1, as in the first example. Before
returning control from the top-level call to
append, the argument 3, whose address has
been placed on the pending list and whose
value is X.L, will be checked, MNow, because
both X and L will have type codes of 1, the
type code of § is changed from 2 to 1,
meaning it is now ground. The fact that the
list "b.c.nil", the wvalue bound te Z, is
ground and has type code 1, could not enly
have been the result of a compile-tima deter-
mination but also the result of an input action
or a similar term construction sequence.

Consider this example of "finishing" a
constructed symbol table, as described in
[Warren]:

finizsh_st(nil).

finish_st{sym(S, Lson,Rson)) =-
finish_st{Lsen) &
finish_st(Rson).

Here the leaves of the tree will all ba set to
nil upon cempletion of the program. As exe-
cution of each clause completes, the subtree
representad by the head of the clause will
have become ground, and the type code of
the structure can be set to 1. Upon completion

of the procedure, the entire tree will be

ground, have a type code of 1, and contain
only components whose type codes are 1.

It is of course possible that some struc-
tures might be constructed which are at first
non-ground but which later become ground
and yet which escapa detection. For example

consider:
f(X) <= find_a_var(X,V) & V=nil.

Here, assume that X has a variable in it se-
veral layers deep and that find_a_wvar binds
it to V. When V is set to nil, we exit. X is
taken off the pending list and its top level
components are inspected. The top level
<omponent which contains V will still have a
type code of 2 (non-ground) and so the type
eede of X will not be changed to 1, even
though now X is ground. It is possible that
later some traversal program might discover
that X is in fact ground and so sat the tvpe
«code to 1, but this is far from certain. This
escape of X's might result in some loss of
parallelism, as will be explained Below. How-
ever, due to the way goals are distributed
for parallel execution, this loss is anticipated
to be low, perhaps even insignificant.

THE INDEPENDENCE ALGORITHM

Given the clause
f(X) <- g(X) & hiX) & p(X).,

@ compiler might assume all three subgoals are,
interdependent and so must be executed se-
quentially. Hewever, to see if the three
subgeals can be executed in parallel, all that
must be done Is to check at run-time whether
or not the actual parameter to f is ground and
thus has a type cede of 1. |[f so, then g,
h, and p can all execute in parallel. If not,
then we assume that they must execute se-
quentially. However, after execution of g(X),
we can again check the type code of X. If it
is now 1, then we can execute the twe re-
maining subgoals in parallel.

Consider the clausza
f{X.¥) <- g(X) & h(Y).

Here, the compiler would identify g(X) and
h(¥) as being potentially independent
subgoals and emit appropriate type checking
code which at run-time attempts to verify the
independsnce of X and Y. If they are inde-
pendent, then g(X) and h(Y) can exacute in
parallel. If the test fails, then g and h are
executed sequentially. The Algorithm used to
tast for the independence of twe parameters
is shown in Figure 2. Tests for more than
twe wvariables are similar but involve O(n2)
tests, where n is the number of arguments
appearing In the clause head. Because n will
usually be very small, and because the test
algerithm is so wvery simple, the actual over-
head is minimal.

IF TYPE(ARG1) = 1 OR TYPE(ARG2) = 1
THEN INDEPENDENT ELSE '
IF TYPE(ARG1) = TYPE(ARG2) = 3 AND
ADDRESS(ARG1) ~= ADDRESS(ARG2)
THEMN INDEPENDENT ELSE
(ASSUME) DEPENDENT;

Figure 2. INDEPENDENCE ALGORITHM.

PROGRAM EXECUTION GRAPHS

Two utility predicate routines are provided
for testing terms at run-time:
GPAR(XY,...,.Xn) and IPAR(XT, ... Xn).
The wvalue of GPAR(X1,...,.Xn) is true if all
of the arguments to GPAR are ground terms
(type ecode 1). If any argument is non-
ground, the value of GPAR is false. Similarly,
the walue of IPAR(X1,....Xn) is true if all
its arguments are mutuwally independent; but
if any two are interdependent, the value of
IPAR iz false. GPAR simply checks the type
code of each of its arguments to ensure that
they are all 1; IPAR uses the |ndependence
Algorithm. Both take an arbitrary number of
arguments: but IPAR reguires at least two.

Six types of execution expressions are al-
lowed:

1. G

2. (SEQE1. . . En)

3. (PAR E1.. . . En)

4, (GPAR(X1,...,Xk) E1 . . . En)
5. [(IPAR(X1,...,Xk) E1 . . . En)
6. (IF E1 E2 E3)

iz an arbitrary goal (procedure call}). An
SEQ expression indicates that the following
expressions are to execute sequentially, in
presentation order, while a PAR expression
indicates that they are to execute In parallel.
A GPAR expression indicates that if all the
arguments of the GPAR function call are
ground terms, then the following expressions
are all to axecute in parallel; but if any one
of the arguments is not ground, then the
exprassions are all to execute sequentially,
in order. Similarly, an IPAR expression in-
dicates that if all the arguments of the IPAR
call are mutually independent, then the fol-
lowing expressions are all to execute In par-
allel; but if any two arguments are
interdependent, then the following expres-
sions are to execute sequentially, in order.
The IF expression chooses between two al-
ternative actlons based on the evaluation of
the boolean expression E1, choosing EZ if true
and E3 if false.

All program graphs will be constructed
from these six expression types. Consider the
clause

f(X) <= p(X) & q(X) & s(X).

This clause can be compiled into sevaral dif-
ferent program execution graph expressions,
some of which are:

f(¥) = (SEQ p(X) g(X) s(X)).
f(X) = (GPAR(X]) p(X) gq(X) s(X)).

475

fiX) = (GPAR(X)
p(X)
(GPAR(X) g(X) s(X]1}).

The first allows no possibility of parallelism
and is equivalent to execution graph ¢ of
Figure 1. The second allows all three subgoals
to execute in parallel if X is ground, and
therefore to achieve execution graph la; but
if X is not ground, execution reverts back
to graph 1c. If X is ground, the third ex-
pression will achieve the maximal parallelism
of graph la. If X is not ground, however,
this third expression will first execute p(X)
and then retest X. If X is now ground, g(X)
and s(¥) will execute in parallel, as in 1b;
otherwise they will execute sequentially, as
in 1c. Thus the third expression s capable
of achieving any of the three execution
graphs of Figure 1.

Several important points should be noted:

1. First, only one execution graph expres-
sion Is created for the clause. This graph
iz created at compile-time. No reordering
of goals cccurs at run-time which can lead
to the need to dynamically create an al-
ternative execution graph. The tests made
by IPAR and GPAR and the typing alge-
rithm are all very simple and inexpansive.

2. To achieve execution graph la, the third
expression above actually makes a re-
dundant test to see if X is ground. For-
tunately, the amount of additional
overhead introduced by this redundant
test is small since the GPAR(X) test is
z0 simpla.

3. Ewen though wunder ideal circumstances
the third expression can achieve maximal
parallelism, it may occasionally fail to find
paralleliem due to the approximation
technique of the typing algoerithm. Con-
sequently, in this scheme, all three goals
might exscute sequentially while In
Conery's scheme they would execute in
parallel.

As another example, consider the clause

(X, Y) <= p(X) & q(Y) &
s(X,Y) & t(Y).

The compiler will preduce the following exe-
cution graph expression:

(GPAR{X,Y)
(IPARCX,¥) p(X) g(¥))
(GPAR(Y) s(X,Y) t(Y)))

If ¥ and Y are independent at run-time but
not ground, the execution graph of Figure 3
will be achieved. Conery's scheme will also
achieva this same execution graph. But

476

Conery's scheme has one advantage - as soon
as ql¥) completes, t(¥) can begin execution,
even if p{X) is incomplete. In the scheme
presented hera, t(¥Y) will have te wait until
the first two subgoals complete. This is a
result of the definition of an SEQ expression.
This loss of parallelism is due to the limited
axecution graph expressions and is not a re-
sult of the approximation technique of the
typing algorithm. Consequently, there are
two ways in which the and-parallalism of a
clause may be restricted.

P(X) ary)

S5(X,¥) T(Y)

Figure 3. EXECUTION GRAPH

program and the compiled execution expres-
slon:

gksort(L,5L) =<-
partition(L,L1,L2) &
gksort(L1,5L1) &
gksert{L2,50L2) &
append{SL1,5L2,58L),

(SEQ
partition(L,LT,L2)
(IPAR(LY,LZ)
qksort(L1,5L1)
qksort(L2,5L2))
append{SL1,5L2,5L))

A PARALLEL EXECUTION MODEL

In this section a parallel execution modal
is presented for exscuting the graph expres-
sions. The model is intended to run on a
tightly-coupled parallel architecture with each
processing element containing its own large,
local memory. Each processor Is assumed to
have a copy of the entire pregram resident
in its memory {or at least to have rapid pag-
ing access to the pragram).

When all processors are busy executing
pleces of a large program, it is not neces-
sarily beneficial for one processor to decom-
pose its own piece of work into two or more
piecas since it may end up having to exacute
them both anyway. The busier the processors
are, the less beneficial a task decomposition
is likely to be. We adept the following views
in the model:

1. When all processors are busy doing useful
work, it is not necessarily beneficial to
distribute work among them.

2.- When a processor executes a clause, it
assumes it will have to execute all
subgoals in the clause by itself (that is,
it assumes all other processors are busy
~doing useful work),

3. Subgoals will be distributed to other

processors only when those processors
have volunteered to halp (when they have
asked for work). This will usually eccur
only when the requesting processor is idle
(has no goals to execute) or at least is
lightly leadad (perhaps all its goals are
suspended).

4. Before distributing a subgoal set, we try
to ensure that it is nontrivial.

Because it may frequently prove non-
beneficial to dynamically decompose a task
whan all processors in the system are busy,
it may similarly prove non-harmful if an oc-
casional opportunity for parallelism iz net
detected. Consequently, the loss of maximal
detection of parallelism due to the approxi-
matien technique of the typing algorithm and
as a result of the limited execution graph
expression types is believed to be acceptable.
The return is in the extreme simplicity of the
run-time component of the model.

Each processor maintains two expression
stacks - a sequential stack and a parallel
stack. The sequentlal stack contains ex-
pressions that must be - or have been decided
to ba - executed sequentially; the parallel
stack contains expressions that can be exe-
cuted in parallel. When a user query is read,
it is convertad into an execution graph ex-
pression and placed on the sequential stack
of some processor. Each processor checks
the top of its sequential stack to obtain fts
next piece of work. [f the expression on top
of the stack is a goal, that goal is executed
as in normal Prolog systems., |If it is an |PAR
or GPAR expression, the specified test |s
performed, and if the result is true, the fol-

‘lowing subexpressions are all placed on the

parallel stack. If the result is false, the
sub-expressions are all placed on the sa-
quential stack. An SEQ expression simply
puts the following list of sub-expressions
back on ‘the sequential stack, while a PAR
expression puts Its sub-axpressions on the
parallel stack. The actual entries on the
stacks will, of course, be pointers to ex-
pressions and not the expressions themselves,

If the sequential stack becomes empty, the
processor takes an expression off the parallel
stack and executas it. However, if the par:
allel stack is also empty, the processor can
volunteer to help seme other busy processor.

When a busy processor receives an offer to
help from some idle processor, the busy
processor can, if it wants, check to see if it
has any entries on its parallel stack. |If it
does, it can select any one of these and as-
sign it to the wvolunteering processor. It
should be clear that entries on the parallel
stack can be executed in any order in paral-
lel. Entries on the sequential stack, how-
evar, must be axecuted sequentially, in
order, in a "last-in, first-out" manner.

As the system becomes busy, requests to
halp frem wolunteers will decrease, and the
number of entries on each processor's parallal
stack will tend to increase. If a parallel staclk
reaches some "high" level, the processor may
opt to process a potentially parallel expression
sagquentially. By so deing, any extra over-
head in performing the test, decomposing the
expression, pushing sub-expressions onto the
parallel stack, and popping them back off at
some: later time can be aveided. Further, by
exesuting a group of several related subgoals,
instead of a string of separate subgoals, the
architsctural and software implemantztions can
potentially take advantage of the many aspects
of pregram locality (e.g., [Tick]).

BACKTRACKING

Backtracking will behave as described in
[Chang]. Space limitations prevant a detailed
description of the scheme here. A wvery im-
portant advantage shared by this scheme is
that all backtrack points can be computed at
compila-tima. Each goal can have at most two
backtrack points. Goals in SEQ or PAR ex-
pressions have a single backtrack point; but
goals in IPAR and GPAR expressions have two
- one wsed when the IPAR or GPAR expres-
sion is executed in parallel and cne for when
the expressions are executed sequentially.
This particular backtracking scheme achisves
some of the efficiency of intelligent backtrack
schemes [Pereira].

USER-SPECIFICATIOM OF PARALLELISM

Because of the limitations of the execution
graph expressions, certain clauses may be
compiled into sequential graphs when with
only minor changes they could be compiled
inte parallel graphs, For example, the fol-
lowing clause will be compiled into the given
execution graph expression:

fFX) == g(X) & h(X)
(GPAR g(X) h(X))

This expression will execute in parallel only
if X is ground. If the clause is rewritten as
f(X) <= g(X) & h(Y) & X=Y.,
the following expression iz compiled

(SEQ (PAR al(X) hi¥]1) X=¥).

477

The second clause elearly has potential per-
farmance and semantic dif- ferences from the
first. But if the programmer s aware of
these differences and considers them non-

“harmful, he may choose the secend clause in

an effort to establish greater parallelism at
run-time. This second clause can achieve
parallelism irrespective of whether X is
ground or non-ground.

As another example, consider the follow-
ing, mers efficient quicksort program. This
program uses difference lists to aveoid the
calls to the append program.

gksort(L, SL-Rest) <=
partition(L,L1,L2) &
qksort(L1,5L-T]) &
gksort(L2, T-Rest).

Unfortunately, the restricted and-parallel
mathod presented here will fail to detect any
potential for parallelism. But if the program
is changed to

gksort(L,SL-Rest} <-
partition(L,L1,L2) &
gksort(L1,5L-T1) &
qksort(L2, T2-Rest) &
TI=T2.

then the following parallel execution graph is
cbtained:

(SEQ partition (L,L1,L2)

[IPAR (5L,Rest,L1,L2)
gksort(L1,5L-T1)
qksort(L2, T2-Rest))

T1=T2)

How freguently the programmer will be able
to assist the compiler with this type of change
remains to be seen.

SUMMARY

A methed for cobtaining restricted and-
parallelism in logic pregrams has been pre-
sented. The method involves the compila time
creation of a parallel execution graph ex-
pression for each program clause. Only one
expression per clause is created., The run-
time algorithms involved are simple and inex-
pensive. Due to the limitations of the graph
axpressions and to the approximation tech-
nique of the typing algorithm, an ocpportunity
for parallelism may occasionally be missed.
However, a parallel execution model that uti-
lizes demand-driven distribution of work may
provide efficient, parallel execution of the
graphs in a manner that renders these misses
harmless.

478

[Chang]

[Elark]

[Clark2]

[Conery]

[Paraira)

BIBLIOGRAPHY

"And-Parallelism of Logic Pro-
grams Based on S5tatic Data De-
pendency Analysis,” Jung-Herng
Chang and Doug DeGroot, in
preparation.,

"PARLOG: A Parallel Logic Pro-
gramming Language," Keith L.
Clark and Steve Gregory, Re-
search Report DOC 83/5, Imperial
College, March 1983,

"The Controf Facilities of
IC-Prolog,” Keith L. Clark and
Franlk McCabe, in Expert Systems
in the Microelectronic Age, D.

Michie, editor, Edinbirgh Univ..

Press, 1879.

The AND/OR Process Model for
Parallel Execution of Logic Pro-
grams, John 5. Conery, Ph.D.
dissertation, Univ. of California,

Irvine, Tech. Report 20d, Infor-

mation and Computer Science,
1283,
"Saelective Backtracking,” Luis

Moniz Pereira and Antonio Porto,
in Legic Programming, Keith L.
Clark and Sten-Ake Tarnlund,
editors, Academic Press, 1982,
pp.107-114,

[Shapiro]

[Tick]

[Warren]

[Warren2]

[Wise]

"A Subset of Concurrent Prolog
and Its Interpreter,” Ehud Y.
Shapire, 1COT Tech. Report
TR-003, February, 1983, Toloye,
Japan,

"Towards a Pipelined Prolog
Processor,” Ewvan Tick and David
H.D. Warren, Proc. of the 1984
International Symposium on Logic
Programming, |EEE, pp. 29-40.

A_Enﬁed Logic - Its Use and Im-
plementation as a Programming
Teol, David H.D. Warren, .D.
dissertation, Dept. of Artificial

Intelligenca, Univ. of Edinburgh,
1977.

"An Abstract Prolog Instruction
Set,” David H.D. Warren, Tech-
nical Mote 309, Octobar 1983, SRI
International.

"A Parallel Prolog: the Con-
struction of a Data Driven
Model,” Michael J. Wise, Univ.
of New South Wales, Australia.

