PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1584,
edited by ICOT. £ TCOT, 1984

449

PERFORMANCE ESTIMATES FOR THE DADO MACHINE:
A COMPARISON OF TREAT AND RETE*

Daniel P. Miranker

Department of Computer Science
Columbia University
New York, New York 10027

ABSTRACT

DADO is a highly parallel, VLSI-based,
tree structured computer, intended for the rapid
execution of production system programs. In
this paper we describe -a new match algorithm
for executing production systems on DADO that
is capable of handling both temporally
redundant and pontemporally redundant
production -systems. We argue that the new
algorithm is faster tham the original DADO
algorithm intended for nontemporally redundant
syslems, We also show that the expected
performance of the new algorithm executed on
parallel hardware is faster and more space
efficient than parallel implementations of the
RETE match algorithm, which is appropriste for
temporally redundant systems

1 INTRODUCTION

DADO is a highly parallel, VLS based
computer comprisin a large number of
processing, elements %F'E‘s] interconnected in a
complete binary tree. Adjacent to the root of
the DADO tree is a convenbional coprocessor
which acts 2s a file server and performs the
uzual activities of a host. Thus, DADO may be
viewed as a peripheral deviee of ‘a conventional
machine. Communication between PE’s in the
DADO machine oceurs along the tree edges. In
addition, any PE in the]%ADO machine may
broadeast data to all of its (logically) connected
descendants in the tree, or may be mstructed to
report & value to all of its ancestors.

In the DADO1 prototype now operational
at Columbia, thers are 15 PE's (Stollo et al,
1983). Each PE is composed of an 8 it
processor, a ROM resident operating system, 8K

This research is su]iyg:rted cooperatively by:
The Defense Advanced Research Projects Agency
under contract NO0033-84-C-0165,° The New
York State Science and Technology Foundation
Intel Corporation, = Digital Eqﬁlpmeni
Corporation, Valid Logie S[',Irs ems Ine.,, Hewlett-
Packard Corporation, Bell Laboratories and
International Business Machines Corporation

bytes of RAM, and an 1/O seclion The
DADO?2 prototype presently under construction
has 16K bytes of RAM at each of 1023 PE's.
Under the contrel of software, a PE may
operate in one of two modes: master or slave.
In master mode the PE runs a computer
program stored in its local memory. However,
instructions embedded within the master’s
program may be broadeast to descendant PE's
operating in slave mode for immediate execution.
Each of the slave PE’s executes the instruction
on different data stored in its local RAM mn 2
manner similar to an array processor, or the
ILLIAC IV (Lowrie, 19‘?5?. This type of
parallelism is known as single instruction stream
multiple data stream (SIMD) execution (Flynn,
1972). Furthermore, the machine can be
arbitrarily partitioned inte a number of
independent subtrees. The root of such a
subtree logically disconnects itself from its
parent and becomes the master of the PE's
logically connected below. This type of machine
has become known as a multiple g {MSIMD)
architecture (Siegel, 1981).

The DADO machine has been designed as
a special purpose processor capable of achieving
significant performance improvements in the
execution of preduction system programs.

A production system (PS) (Newell, 1973) is
defined by 2 set of rules {or productions) and a
collection of dynamically changing facts called
the working memory (WM). A rule in a
production system consists of 2 left hand side
(LHS) and a right hand side (RHS). The LHS
15 a2 collection of condition elemenls to be
matched against the contents of the WM. The
RHS contains actions effecting changes in the
WM. A production system repeatedly executes
the following cycle of operations

1. Mateh: For each rule, compare the LHS
against the current WM. Determine if the WM
satizlies the LHS.

9 Select: The set of satisfied rules s
called the conflie! set, Some subset of the
conflict set i3 chosen according fo some
pradefined eriteria.

450

3. Act; Add to or delete alements from
the WM as specified by the RHS of the selected
rules,

An example rule using the OPS5
production system language (Forgy, 1981)
(assumed to be familiar to the reader) 1= shown
in figure 1. The pair of WM-elements matching
the condition elements is called an instantiation
of the rule

(p categorize-jobesizes : role name
rmum.ge “jok x> Csize <y “status new)
;x> and <y
i . »are patlern variables
[class-def “size <y> “class-name medium)

B_ma.h job “job-name <x> “class medium)

This rlIIJe may, be as;
If there i5 a vrlemtn(blu the syste
representing a message about 2 new J“IJ.

d the job's s
et dots siue atches the class

the
" create a new W—rhmﬂn tagging the job
.

with the class pame me
Figure I: An Example Production Fule,

1.1 Temporal Redundancy

A distinguishing property of production
systems 15 temporal redundancy. A PS5 is
considered temporally redundant if on each cyele
few changes te WM are made. R1/XSEL,
which inerementally builds a solution to the
VAN configuration problem (see (MeDermott,
1982)), s typical of temporally redundant FS's.
Systems which search through large databases,
such as ACE (Stolfo and Vesonder, 1982), or
sensol based systems as would be found in a
robot, tend to be nontemporally redundant.

2 THE ORIGINAL DADO ALGORITHM

One approach to the parallel execution of
P8s on the DADO computer is to logically
divide the tree into three distinet components.
One of these components consists of all PE's at
a particular level within the tree, called the
PM-level. The PM-level delimits an upper and
lower portion of the tree (see figure 2).

A fine grain DADO computer would be
one with perhaps & hundred thousand wvery
simple PE's, each having 1 to 2K bytes of
memory. For a fine grain DADO, the original
DADO algorithm (Stelfe and Shaw, 1982)
suggests each PE at the PM-lavel be used to
store & single production. The portion of
working memory relevant to the rule contained
in the PM-level PE iz distributed uniformly in
the subiree below. A working memory element

Uppar Traa:!
aynchroni ze
s@lect & act

B lewel:

» match, determine
ralevance and

mnatantiate

Figure 2: Functional Divisions of the DADO Tree,

iz considered relevant if it satisfies the constants
and the intra-condition (Forgy, 1982) restrictions
of any condition element in the rule. The
subtrees formed by the PM-level are to be
considered as a collection of independent parallel
associative pmcessors“q‘{oster, 1976} providing
parallel access to the -elements.

The upper portion of the tree is used for
synchronization and selection. The original
algorithm 1s described as follows:

During the act portion of the production
system cycle, additions to WM are performed by
broadeasting the WhM-element to all the PE's in
the tree, he PM-level PE's determine if the
Whi-clement is relevant to their rule. [If so, the
Whi-element 15 stored in an available PE.
Daletions from WM are processed by
broadeasting the WM-clement to all PE's in the
tree. The PE's then compare Lthe broadecast
element to the element in their local store. [
it is Lhe same, the PE marks itsell as free.

During the mateh phase, each PM-level PE
enters master mode and broadeasts Lo its slave
PE's the first condition element of the rule
The slave PE's compare the pattern against the
working memory elements and report, to the
Ph-level master, the success of the match and
the bindings of any variables in the condition
element, Fach variable binding is then
substituted in the remaining condition elements,
and the mateh routine is called recursively for
the remaining condition elements,

Since no state is saved between cycles, and
the algorithm exploits massive parallelism during
the match phase, the original algorithm s
considered to be best suited for nontemporally
redundanl production systems where many
changes to WM occur on each eycle of
execution,

3 THE RETE MATCH

A medium grain implementation of DADO
as opposed to a fine grein implementation
would comprise on the order of tens of
thousands of PE's, each made up of a state-of-

1. Initiafize: Distribute a mateh routine and =
artitioned subset of rules to each Phd-level PE.
get. CHAMGES Lo the initial WM elements,

2. Repeat the following:
3. Aet: For each Wh-change in CHANGES do;
a. Broadeast Whi-change to the PM-level PE's
and an instrustion to match.

b, The mateh phase is initiated in each PM-
level PE:

i. Each PM-level PE determines il WM-
change is relevant to its local set of
rules by a partial match routine, 0T
so, ita WM-sublree is updated
accordingly. [If this is a deletion, an
associative probe is performed cn the
element (relational selection) and any
matching instances are deleted. IF
this is an addition, a free WM-subiree
PE is identified, and the element is
added].

ii. Bach condition element of the roles
stored at a PM-level PE is broadeast
to the Whd-subtree below Tor
matehing. Any variable bindings that
seour are reported sequentially to the
PM-level PE for matching of
subsequent condition elements
{relational join).

A loeal conflict set of rules is formed
and stored along with a priority
rating in a distributed manner within
the Whd-subtree.

¢, end dog
4. Uﬂm termination of the match operation, the
PM-level PE's synchronize with the apper bree.

&. Select: The max-RESOLVE circuit is used to
identify the maximally rated conflict set instance,

fi. Report the instantiated RHS of the winning
instance to the root of D

7.5t CHANGES to the reported action

apecilications.
8. end Repeal;

Flgure 3 Original DADOQ Algerithm.

the-art processor cireuit with about 10K bytes
al local memory. A medium grain DADO
permits a parallel implementation of the RETE
msztch.

The RETE algorithm compiles the left
hand sides of the production rules into a
discrimination network. Changes to WM serve
as the input to the metwork. The network, in
turn, reporte changes in the conflict set. There
are two primary categories of nodes in the
matech network: test nodes and memory nodes.
When a WM change enters the network, a
“plus” or a “minus” sign is appended to the
Wh-element indicating whether the element is
to be added or deleted from memory. A
pointer to the change, called a loken, is then
replicated and passed to & number of entry
points into the network.

451

The RETE algorithm first compiles into
the network sequences of teste which perform
partial matches of condition elements. These
tests are called single input tests sinee they
consider only one attribute of a condition
element and one token at a time. Thus, each
node has only 2 single arc entering and leaving
the node. The match network for the rule in
Figure 1 is shown in Figure 4.

diatribute
M changes

massage c lass=defintion

~status naw “g lass madium

tast for
conaiatent sizes

changasz to
conflict aat

Figure 4: RETE Match Network for the
Rule in Figure 1.

Associated with the last output are of a
chain of ome input tests is a token memory
node called an alphe-memory. Plus tokens that
have salisfied Lhe one input tests are added to
the alpha-memory MNote that the alpha-
memories conlain precisely those WhM-elements
that are relevani to a particular condition
element, Minus tokens that have reached an
alpha-memory node have a corresponding plus
token already present in the alpha-memory.
The corresponding plus token is removed. Both
types of tokens propagate further to two input
test nodes.

The two input test npodes tfest for
consistent variable bindings between two
condition elements. When a token enters & two
input node, it s compared against the tokens in
the memory on the opposite arc. Any tokens
which have consistent wariable bindings are
paired with the first token, to form a new
token, that is stored in a token memory and
propagates lo the next node in the network,
Token memories that store paired sets of tokens

452

are called bela-memories. Tokens that
propagate {rom the last two input nodes reflect
changes ko bthe conflict set.

4 THE TREAT ALGORITHM
The original DADO algorithm does not

save any state across production system eycles.
In a temporally redundant P3, where few WM
changes are made on each cycle, the original
algorithm must recompule many comparisons of
W%J[. The opposite is true of the RETE
algorithm., The RETE algorithm saves sufficient
state in the mateh network to guarantee that
no comparizon of two working memory elements
is recalculated at a later cycle. If large changes
to WM are made, a large overhead 1z incurred
maintaining the state information,

The Temporally REdundant Associative
Tree algorithm (TREAT) for production systems
on DADO attempts to synergistically merge the
advantages of the twe aforementionsd
algorithma. The approach of the TREAT
algorithm exploits the observation that most of
the state saving elfects of the RETE match are
achteved by partially matching the condition
elements and retzining the confliet set between
eveles. In other words, it i3 important to
construct the alpha-memories and to remember
the conflict set between cycles, but the beta-
memories are of little vse. We will argue below
that state saved by the construction of beta-
memories 15 less benelictal than the owverhead
involved in theirr maintenance.

Further, though TREAT may have to
recompute some comparisons, there are many
processors available to do the computation and
the delay required for the computation may be
negligible. In a VLSl machine based on an
intelligent memory paradigm, the fradeoff
between having memory to store all the contents
of the beta-memeories or having sufficient
processors to recompute them quickly eould lean
towards the latter

The first observation that leads to the
development of TREAT iz that when a new
element iz added to WM, any pew rule
instantiations entering the conflict set must
necessarily contain the new Wh-element.
Therelore, the new Whi-element may be used as
a seed which acts as a constraint when building
new rule instantiations. DBy constructing the
alpha-memories we can quickly compute the set
of condition elements which match the new
Whi-element. ‘When the mateh proceeds with
the remaining condition elements, only the
subsel of WM that has partially satisfied each
condition element is considersd

By similar reasoning, if & WhM-element is

removed from WM, then any rule instantiations
removed from the conflichk set must also contain
the Whi-element. The TREAT salgorithm stores
the conflict set in & distributed fashion in the
DADO tree. When a WM-element is deleted,
the conflict set is examined in a parallel
associative manner and all conflict set elements
containing the WM-element are removed from
the conflict set concurrently.

If rules contained only positive condition
elements, the two actions above would bhe
sulficient, When a WDh-element matches o
negated condition element, the salgorithm is
slightly more complicated. I the action of a
RHS adds a ‘\'\Rﬂ-element that matches a
negated condition element, then some rule
instantiations in the conflict set may have to be
removed, Unlike the removal of a WhM-element
that matches a positive condition element, the
Wi-clement matching the negated condition
does not appear explicitly in the conflict set,
To determine which conflict set elements must
be removed, the condition element is temporarily
considered to be positive and the new WM-
clement is used as a seed to buld rule
instentiations. These rule instantistions are then
compared with the conflict set. Any
instantiation appesring in the conflict =set 1=
removed

The fourth case iz when a WhM-element is
removed, and it matches & negated condition
element. In this case, removing the element
may permit rule instantiations to enter the
conflict set. These new rule instantiations are
precisely those that would enter if the condition
element were positive and the WM-element had
just been added.

There may, however, be another WM-
element similar to the removed element which
prevents these new instantiations [rom entenn
the conflict set Such an element woul
necessarily satisly the negated condition element
precisely the same way as the removed element,
1e have all the same constant and wvariable
values as the removed element. Before building
the new rule instantiations, WM is quickly
scanned for such an element.

5 COMPARING TREAT AND RETE

Both TREAT and RETE may be easily
explained by adopting the terminclogy of
rell;tiuual database theory. If the entire WM is
considered as tuples in 2 relational database and
each rule is viewed as a database query, then
the partial match of TREAT and =ngle input
testz of RETE may be considered as & seguence
of select operalions. The salpha-memories
contain the resulting relations. If two condition
elements have a common variable, the act of

finding pairs of WM-elements with consistent
variable bindings may be viewed as a join of
the corresponding alpha-memories.

In RETE, when a tuple enters {rom one
arc of a two input node, 1t is compared against
all the tuples slored in the memory associated
with the other are. Successful pairs of tuples
are placed in the beta-memory. The two input
test nodes of RETE incrementally build the
partial join results, and thus the beta-memories
contain partial join results of the query.

In this context, during the act cyele, the
TREAT algorithm places changes to WM in
“new" alpha-memories. The mateh cycle is
performed by doing 3 join reduction with each
new alpha-memory and the old alpha-memories
corresponding to the remaining condition
glements of the same rule. After the reduction,
the new alpha-memory is concatenated with the
old.

The join reduction may be done in any
order. It has been shown in relational database
systems (Zloof, 1977) that the best way to
process a query of this type is to order the join
operations by increasing cardinality of the
relations. It is a byproduct of this optimization
that permits TREAT to perform well for both
temporally redundant and nontemporally
redundant systems. I changes to the WM are
few on each cyele, the new alpha-memories will
contain 1 or 2 tuples. The optimization will
then use the new alpha-memory as the seed of
ite query. If, however, there are large changes
to %\’M, the joins will still be performed in
optimum order rather than sequencing through
the changes.

We note that TREAT must perform a
search when WhM-elements are added or deleted.
If more than hall the WM changes each ecycle,
the original DADQ algerithm may still prove to
be better.

Te mambain consistent beta-memeries,
RETE must perform the joins in 2 Nxed order.
The order is determined at compile time when
no information is available about the constituent
relations. Indeed, it is not possible to statically
determine the characteristics of the relations
{Stolfo, 1984). Thus, it is unlikely that RETE
periorms the joins in optimal order.

5.1 Implementing TREAT and RETE on
a Medium Grain DADO

The following 15 common to both
algorithms. [t haz besn noted that in many
OPS5 programs, the production level parallelism
is between 20 and 30, That is, no more than
30 different rules may be satisfied at a given

453

time. The PM-lavel 15 selected at the fifth level
of the tree with 32 PEs available. The rules
are partitioned among the PM-level PE's. It is
assumed that there is a good partitioning
algorithm that prevents two rules that may be
satished simultaneously from being placed in the
game partition. (See (Ishida and Stolfo, 1984)
for example.)

Within each partition, the condition
elements and associated alpha-memories are
numbered uniguely, The select operations for
each condition element are distributed among
the PE’s in the WM-subtree. During the aet
cycle, changes to WM are broadeast to all PE's,
which in parallel perform their local fests. Any
successiul selection is reported to the PM-level
processor and the WM is stored in the
approprizte alpha-memory,

EiRiatio hidds
2

1
2

F——{ wt-E1amant -|—>

Flgure 5: Working Memory Elements Indexed
by Condition Element Number.

The alpha-memories are stored in a
distributed fashion in each subtree, indexed by a
preassigned number (see Fig. 5). An effort 1s
made to place at most one -element per
alpha-memory in a =gl PE If this s
impossible, the disparity in the number of
elements 1n different PE's is never greater than
1. In the TREAT algorithm, changes to WM
are saved in & distinet partition until the match
phase. In the RETE match the beta-memories
are alse numbered and stored in a fashion
similar to the alpha-memories.

A join step is performed by broadcasting
one tuple of one relation to every PE in a
subtree. The PE's then compare the broadeast
tuple to any tuples of the second relation stored
in their local memory. In TREAT, if the
comparizon 15 successful, the second tuple is
reported to the PM-level PE and the query
continues in depth first fashion. In RETE, the
gecond tuple is reported, but the pair of tuples
musl also be assembled and stored in a beta-
memary. We summarize TREAT by the
abetract algorithm in Figure 6

454

. Initialize: Distribute the match routine and a

titioned subset of rules to each PM-level PE.

oad Lhe partial match tests for each condition

glement in a PE below the FPM-level PE

containing the associated role. Set CHAMNGES to
the initial WM elements.

2, Repeat the lellowing:
3. Act: For each WM change in CHANGES do;
a. PBroadcast the WM change to all PE's,

b. Each PE performs the partial makch Lests
stored in its local memory.

e. For each suecessful partial mateh test,
place the change im the corresponding
"new" alpha-memory. Each PM-leve] PE
does this independently of the others.

d. end do;
4. Match: Process deletes.
a. For each nonempty “new™ alpha-memory
d’D‘-

b, Associabively probe the old alpha-memory
for elements appearing in the new alpha-
memory. Hemove them,

2. Casze: If the alpha-memory corresponds to a
positive or a negative condition element:

i. Positive: Associatively probe the
conflict set for elementz containing
elements of the new alpha-memory.
Remove Lhem.

i, Megative:

1. Associabively probe the old
alpha-memery for elements with
the same wariable bindings as
eny in the new alpha-memaory,
If found, remove the element
from the new alpha-memory.

2. Perform a join reduction, in
optimal order, of the new alpha-
memory and the old alphs-
memaries of the zame role.

3. Add these new instantiations to
the conflict set.

d. end do;

5. Mateh: Proeess adds,

a. For cach nomnempty “new” alpha-memory
do;

b. Perform a join reduction, in optimal order,
of the new alpha-memory and the old
elpha-memories of the same rals.

¢. Case: Il the alpha-memory corresponds to a
positive or a negative condition element:

i. Positive: Add these pew
instantistions to the conflict set.

ii. Megative: Associatively probe the
conflict set for emch of these new
instantiations and remove il Tound,

d. end do;

Figure 8: Abstract Algorithm Ilustrating TREAT.

5.2 Partitioning Algorithms

The TREAT algonthm provides a simple
way Lo detect active rules and provide
information for partitioning algorithms.

In the TREAT algorithm, it is easy to
maintain a running count of the size of each of
the alpha-memories. For a particular rule, if
any of the alpha-memories corresponding to its
condition elements are empty, then the rule
cannot contribute to the conllict set, and no
work 15 performed for that rule. The rule is
considered to be nonactive. The overhead for
recognizing ackive rules s small When
updating the size of an alphs-memory, we need
only test for transitions from zero to one and
from one to zero. Upon this transition, a test
must be made of the other alpha-memories for a
rule. I they are nonempty, the rule is added
or removed from an active hst.

It ts this test that provides a mechanism
for developing adaptive partitioning algorithms.
A good partition algorithm would keep the
number of active rules in different partitions the
same. If the production system monitor
discovers two rules in a partition are active af
the same time, the monitor may then pass this
information to the partitioning algorithm. The
partitioning algorithm may then be careful not
to place these two rules in the same partition
for the next run.

8 EXPECTED PERFORMANCE OF
TREAT FOR OPS6

Using statisties generated by studying
OPS5 production systems, (Gupla, 1984a) has
detailed performance estimates for a fine grain
DADO employing the original DADO algorithm
a5 well as performance estimates of a medium
grain DADO employing the RETE match. In
thiz section, we make performance estimates of
the TREAT algorithm on OPS5 by elaborating
on Gupta's study. It should be noted that the
study was based on OPS35. The semantics of
OPS5 were restricted to facilitate efficient
implementation of the RETE match on a
sequential machine. The study is not indicative
of the performance of a DADO machine
employing a less restrictive language that has
the ability to express more parallﬁiﬂm in the
problem. Ongoing research aims towards the
eventual implementation of a preduction system
formalism we have come to call HerbAl (in
homor of Herbert Simon and Allen Newell),
HerbAl will permit the expression of parallel
constructs not presently capable of OPS style
systems.

To make use of the data from the OPS5
study, we must first determine how many more

comparisons TREAT requires than RETE as a
result of eliminating beta-memories. Since
DADO has many processors matching a
breadeast data against theirr local store in
parallel, the basic umit that should be counted is
the required number of parallel matches.

=
F‘IEP n h
bata] alpha,

PanY
beta np Tlalphﬂa
\

c3

alph n n alphay
Cl c2

Figure T: RETE Metwork Representing an Average Hule.

Since the performance of these algorithms
iz statistieal in nature, we can only make a
qualitative statement based on the expected
performance of an average case. The average
rule in an OPS5 system has four condition
elements. The RETE match network
representing the memories and two input test
nodes for such a rule are illustrated in Figure 7.
Let's assume that each alphs-memory contains n
Wh-elements and that there is uniform
Embabllih’ p thet any 2 tuples matel. T&eg
ela-relations Bl, and will contain n®p, n 3
tuples, If a WM-element partially matching C1
is added to the system, it will be compared
against n tuples in alphas, np of them can be
expected to match. These, in turn, must be
compared to the n tuples of alphag. This step
requires nnp cﬁrmparimnﬁ and can be expected
to produce |:'3p results. These results, in turn,
must be compared to the n tuples in alphay
The total number of cnmpar'ésons TD]'Equ glement
entering Cl is them n 4+ n“p + n°p®. I Lhe
element partially matches €2, the number of
comparisons i5 the same. I we add one more
Whﬁe[ement with equal probability to the four
condition elements and do & similar analysis for
elements partially matching C3 and C4, the
average expected number of comparisons will be:

n + 0.51:‘3;& + U.TEnspE

The analysis for an element partially

455

matching C1 does not make use of the resulls
stored in the beta-memories. Since the TREAT
algorithm retains no beta-memories, the number
of comparisons required for the TREAT
algorithm for a new element partially matching
any of Cl through C4 is the same as the RETE
algorithm for an element partially matching C1.
Note that hall of the time, when 2 new element
partially matches C1 or G2, the number of
comparisons for the two algorithms is identical.
The number of comparisons for TREAT is:

n+ n2p+ na]:h2

These equations reflect the number of
individual comparisons. However, the
appropriate measure for the DADOQ machine is
the number of parallel matches, I we assume
there i no more than one tuple of a relation in
a processor, then the expected number of
parallel matches iz egual to the number of
comparizons divided by n. Thus:

Parallel Matches for
RETE = 1 + 0.50p + 075n2p2,
TREAT = 1 + np + nZp?

The TREAT algorithm is only slightly
worse, Agymptotically, the two algorithms
perform identically. The average values for n
and p derived [rom six large production
gystems SGupLa.J 1984b) are n= 256 and p =
0.030. Ino this case, the expected number of
parallel matches is 2.23 and 298 for RETE and
TREAT respectively.

However, this is an “unrealistically”
average case. Indeed, for the R1 program
Gupta reports an average of 56 Whlelements
per alpha-memory with a standard deviation of
61. [we remove the assumption that all
alpha-memeries contain the same number of
tokens, what is the likelihood that the RETE
mateh has compiled the four joins in the
optimal order? The compilation is done by the
lexical order of the condition terms Therefore
it i3 fairly likely that the optimal order is not
used. Sinee TREAT will optimize the order of
the joins on every cycle, it 15 a fair assumption
that despite the lack of beta-memories, the
number of parallel match operations perlormed
by TREAT will be, on average, the same as
RETE We conclude thal the beta-memocries do
not reduce the average number of parallel
matches; therefore, it is mnot worthwhile fo
expend the time and space required to construct
and maintain the beta-memories.

456

6.1 Performance Estimates for TREAT on
a Medium Grain DADO

The parallel implementation of RETE
includes the parallel associative look up of
conflict set elemenis to be removed when a
Wi-element 15 deleted. With the exception of
the construction of the beta-memories, the
activities of the two algonithms are almost
identical. Gupta estimates for RETE that the
average cost of adding a WM-element is 3750
instruetions. Of these, 040 instruction are
needed to construck the beta-memories. A
delailed explanation of this may be found in
(Miranker, 1984). The estimaie for the cost of
deleting & Wh-element is 1800 instructions, Of
,these, 330 instructions are required to process
the beta-memories. On average, there are 2.5
changes in WM per cycle. Rule selection and
right hand side evaluation iz assumed to take
500 instructions, The total number of
instructions per cyele is them

1.25 ([3750-040)+(1800-330)) + 500

= 5850 instructions.

These instruction counts are based on a
DADO PE constructed out of an 8§ bt 1
address processor running at a speed of 2msec
per imstruction. Where Gupta has predicted
performance for the DADO 2 prolotype using
the RETE match to be 67 production cycles per
second, the TREAT algorithm is capable of 85
production eyeles per second. Furlhermore, it
has been noted that the size of the beta-
memories iz often explosive (Gupta, 1984b),
contaiming the full cartesian product of the
antecedent memories. Thus, ’I%EAT is mors
space efficient as well.

Similar arguments modilying the original
DADO algorithm for 2 fine grain DADO have
been able to show an improvement [rom Il
production cycles per second to 102 production
cycles per second. Space does not permit a
complete analysis here. The reader is
encouraged to see [Miranker, 1884) for details.

We note with interest that the above
analysis was performed for the current DADO
prototypes whose eonstituent processor
technology is comparable to processors available
in the late T0's. I’:I'h.la technology was chosen to
expedite prototyping within the limits of 2
university environment. With suitable changes
to current processor techmology, (1 MIP, 32 bit
processors), future DADO machines may easily
attain performance improvements of 8 to 16
times [aster than the estimates detailed above.

T CONCLUSIONS

The TREAT alporithm OVercoTnes
disadvantages of the original DADO algorithm
by saving state across production system cycles,
Hewever, the internal structures of TREAT are
simpler than these of the RETE match. As a
result, TREAT may dynamically optimize the
order of match operations en the WM and thus
efficiently execute both temporally redundant
and nontemporally redundant production
syslems

Using the expanded abilities of TREAT
and DADO, a new, more powerful production
system language, HerbAl, is being designed to
capture more parallelism than 13 possible to
express in OPS.

We note that Guplta reports that a
VAX-TE0 running the fastest OPS interpreter o
date, OPS83 (Forgy83, 1983), is capable of only
30 to 50 production cycles per second {Gupta,
1984a) A DADO machine, using similar
processor technology, is expected to perform 85
production cycles per second on OPS5 style
systems. Yet such a DADO machine is
considerably simpler and less expensive than =z
VAX-T80.

8 Acknowledgments

[am gratelul to my advisor, Sal Stolfo, for
nurturing this work and seeing me through the
fruition of thiz paper. [thank Doug Degroot
and the IBM Corporation for their financial
support and providing me with the opportunity
to have extensive discussions with Aml Nigam
whose feedback has contributed greatly to this
research. I would also like to thank Pandera
Setian, Bruce Hillyer and members of the
DADO project for their comments on earlier
drafts of this paper.

References

Flynn M.] Some Computer Organizations and
Their Effectiveness. The [Instilule aof
Electrical and Eleclrornic Enpgineers
Transactions on Compulers, September
1972,

Forgy ©. L. OPS§5 User's Manual. Technical
Report CMU-CS-81-135, Department of
Computer Science, Carnegie-Mellon
University, July 1981

Forgy C. L. Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern
Matching Problem. Arlificial Inlelligence,
1982, 18, 17-37.

Forgy, C. L. Overview of OPS83. Technical
Report, Carnegie-Mellon University, 1983.
Unpublished manuscript.

Foster, Caxlon C. Content Addressable Parallel
Froeesgors. WVan Nostrand Reinhold
1976,

Gupta, A. Implementing OFS5 FProduction
Syslems on DADO. Technical Report,
Department of Computer Science,
Carnegle-Mellon Universiby, 1984,

Gupta, A Measurements on Produclion
Syalems. Technical Report, Carnegie-
Mellon University, 1984,

Ishida T., and 8.]. Stolfo. Simulfaneous Firing
of Produetion Rules on Tree-slructured
Mauaehines. Technical Report, Department
of Computer Science, Columbia University,
1984

Lowrie, D. D, T. Layman, D. Daer and J. M
Randal, A Programming Language for
Miac IV. Comm. ACM, 1975, 18 8.

MeDermott J, R1; A Rule Based Confligurer of
Computer Systems. Arlificial Inlelligence,
September 1982, 19/1), 39-88.

Miranker D. P. Performance Eslimales for the
DADO Machine: A Comparisen of
TREAT and RETE. Proc. Institute for
New Generation Computer Technology,
November, 1984,

Newell, A, Production Systems: Models of
Control Structures. In W. Chase (Ed),
Visuwal In formation Frocessing,
Academic Press, 1973,

457

Siegel. PASM: A Parlitionable SIMD/MIMD
System for Image Processing and Pattern
Recognition. [EEE Transactions on
Computers, December 1981, C-50{12),
034-047.

 Stolfo S, Learning Control of Production

Systems. Cognilion and Brain Theory,
1984 .

Stolfe 3. J, and D E. Shaw. DADO: A Tree-
Structured Machine Archifecture for
Froduction Systems. AAAI-82, Carnegie-
Mellon University, August, 1982

Stollo 8. 1, and G. Vesonder, ACE: An FErpert
Syslem Supporling Analyais and
Management Decision Making. Technical
Report, Department of Computer Science,
Columbia Universily, 1982, (To appear in
the Bell System Technical Journal),

Stelfe 8. 1, D. P. Miranker, and D. E. Shaw.
Architecture and Applications of DADO:
A Large Scale Parallel Compuler for
Artificial Intelligence. Proceedings of the
Eighth International Joint Conference on
Artificial Intelligence, August, 1983

Zloof, M. M. Query-by-Example: A Data Base
Language. IBM System J, 1977, 163,
324-343,

