PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by TOOT. £ ICOT, 1584

LPS Algorithms®

Andy Lowry, Stephen Taylor, Salvatore J. Stoifo
Columbia University, Department of Computer Science
New York, New Yark 10027, USA

Abstract

LP% is a Logic Programming System currently ander develop-
ment and specifically targeted for implementation on massively
parallel architectures, We present a detailed explanation of al
gorithme under development for parallel execution of LPS pro-
grams. The explanation is significantly more detailed than those
published previously, An abstract proof procedure is developed
which encompasses these algorithms and several variants, as well
as the standard sequential Prelog algorithm. This abatract pro-
cedure provides a conceptual basis for our discussion and for a
critical analysis of varions execution strategies.

The algorithms have been succeasfully implemented and demon-
-arated in simulation on a number of emall programs, Work i
currently underway to tranafer this implementation to a working
prototype machine based on the DADOD parallel architecture.

1 Introduction

Logic programming has attracted a great deal of attention ns
a mediam for the development of software for parallel execu-
tion. Two major factors contributing te this perception are the
demonstrated suitability of logie programming for the sxpres.
gion of a wide variety of software Lasks, and the identification
of several sources of parallelism inherent in the logie formal-
izm itself. Thus logic programming languages appear to offer a
framework in which programs naturally lend themselves to effi-
cient parallel execution, but in which the programmer need ot
b overly cognizant of this goal

With this view in mind we have developed mothods for the exes
cution of logie programs writben in a language we call LPS, un-
der a particular parallel execution model (12: Taylor et al. 1984;
14: Taylor et al. 1984). Our meihods are not well characterized
by any of the sowrces of parallalism identified in [Conery 1083),
although they bear some resemblance to OR and AND paral-
lolism. We unify 2 conjunction of goals simultaneonsly through-
out a network of what may be considered intelligent HERoY
devices, Eael of these devices roceives the entire goal list and
attempts unification of each goal with every literal in its own
local store. Upon completion of this activity, a series of network
queries and combining operations results in the construction of
a single rolation representing all potential solutions of the opig-
imal conjunction. The cycle repeats by selecting one member
::1’:]-;& relation and preducing from it a new conjunction to be
vad.
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We may view our proof search as a perusal through a tree of goal
lists, where each node gives rise to children that can be obtained
wia resolution of cne or more of its goals with clauses in the
program. The structure of this tree depends on which goals are
chosen for rezolution in each node. In particular, we note that
the standard sequential Proleg algorithm® chooses exactly one
goal in each node, whereas the current LPS algorithms® always
resclve every goal in the goal list. Both algorithms pursue a
depth first search, although the LP3 search tree, in comparison
to the Prolog search tree, i characterised by:

¢ Shorter paths to leaves
+ BEarlier termination of unproductive paths

# Barlier consideration of most goals, cavsing
earlisr branching but not necessarily higher
branching factors

* A substantially recrganized leaf structure, re-
sulting in a different order to the construction

of soluticns

Although the LPS algerithms may appear to exhibit something'
of a breadth first nature duee to the simultanecns eonstroction
of all children for whichever node is under consideration, that
view iz misleading. Although the children are constructed in
unison, cne child's sebtree is searched before any other child is
considered, so that the search pattern itself i= purely depth first.
The process may be viewed as a hill-climbing strategy in which
all b}'ﬂncha are equally favored.

In this paper we begin by presenting an abstract proof procedure
that encompasses both the LFPS and the Prolog algorithme, as
well as many variations, We proceed with a specific example of
the algorithm at woek, followed by detailed explanation of the
current LIPS implementation in terma of the abstract algorithm,
Finally, several alternative execotion strategies are developed
and analyzed in the context of the abstrack proof procedure.

We include disenssion of the trade-offe among various execution
strategies in terms of performance, storage regquirements, and
appropristeness to various types of logic programs. Much of
the analysis presented here is intuitive in nature, due to a lack
of observed performance measurements. Meaningful measure-
ments are difficult to oblain hesspga:

+ Char corrent implementation i in the form of
a simulation on a sequential machine, so that
sample execution of any but the tiniest pro-
grams is prohibitively expensive. Implemens
kations on a functioning parallel machine are

% Bow (Warren 1077). We will beneeforth refer to this algerithm: s simply
the “Frolog sigorithm®

¥ We note that the algorithms are umder ongoing development



currently underway.

¢ The algorithms do not as yet provide for ex-
tensions Lo the Horn clause formalism such as
negated condition elements, evaluable predi-
cates, and goals with side-effects, These fea-
tures are generally required by logic programs
that attempt to deo anything substantial and
useful, so most existing programs cannet be ex-
ecated in our eurrent framework.

It is hoped that future work will remove these obstacles and
allow for statistical analyses providing grester insight into the
effects of the varions strategies. This should in turn suggest
opportunities for & more general matkematical anakysis.

Far an introduction to logic programming methods the reader
iz peferred to [Kobinron 1965; Robinson 1979; Kowalski 197%]).
A very briefl description of the Prolog language, on which much
of LPS has been modeled, may be foand in {Shapire 1982); for
complete details see (Bowen ef al. 1982), A description of the
computing model for which our algorithme are targeted may be
found in {12: Taylor et al. 1984). The DADQ architesture,
for which a specific implementation is underway, is described in
{Stolfo and Shaw 1982; Stolfo ok al. 1983). The reconciliation
operation which we use may have been independently discoverad
by Pollard {Pollard 1981), although we have encountered signif-
icant difficulty in obtaining this referenca. Related algorithms
are described in (Khabaza 1984).

2 An Abstract Proof Procedure

2.1 Proofs

We define a proof for a given directive to be sequence of goal lists
beginning with an instance of the directive and terminating in
the empty goal list, Bach goal list iz composed of contributions
from the individual goals in the preceding goal list, whera each
goal contributes any one of the following:

o Iteelf, as a singleton goal list. In thiz case we
say the goal has heen retained.

* The emply goel list, if the goal is satisfed via
gome fact. In this case we say the goal has besn
removed.

¢ The instance, under some subatitution, of a rule
body whose rule head, under the same substi-
tion, is identical to the goal. Here we say the
goal has been expanded.

Our preof procedure ean then be viewed as the ssareh for such
a sequence. In addition, if a preof is found, the minimal sub-
stitution that transforms the directive into the frat goal list in
the sequence is displayed. We call this substitution a seluticn
for the directive.

Since there may be more than one way o satisfly any given goal,
one goal list may give rise to more than one successor goal list,
any or all of which may lead to o successful presf. Thus there
may be several proofs for a single directive. In general we will
want our proof procedure bo be capable of pursuing all possible
proofs in & systematic fashion.

The difference stated in the Introduction between the search
teess traversed by the Frolog and LIPS algorithms may now
be restated as follows: The Prolog algorithm pursues proofs in
which each proof step consists of either removing or expanding
the first goal in o goa! list and retaining all other goals. In the
current LP3 algerithms no goal is ever retained in a goal step;
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rather, each goal is cither removed or expanded.

2.2 The Procedure

Our deseription of what constilutes a proof allows us to quite
readily verify proofs that are handed to us, but 1§ is substantially
mere difficult to discover correct proofs when they exist. Two
processes allow us to identify the substitutions that give rise to
procfs: enification and reconcilintion.

Unification {Robinson 1985) provides a method for determining
whether a substitution exists that will transform two terms into.
identical terma. Such a substitution is called a unifier, although
in the sequel we shall use this term to refer specifically to the
most general unifier. By “most gemeral® we mean that if U s
the most general unifier of terms T; and Ty, and 8 iz any other
unifying substitution, then (T, ] is an instance of U{T, ).
Reconciliation (Pollard 19681; Khabaza 1984) is a procedure for
determining whether two substitutione are compatible, and if so,
producing the “most general” substitution that subsumes both.
By this we mean that if K is the reconciliation of substitutions 5,
and 8, , then for any term T, R{T) is an instance of both §, (T)
and 54 [T). As with unification, by “mest general® we mean that
any other substitution with this property, when applied to any
term T, gives rise to an instance of R(T).

Given the mechanisms of unification and reconciliation, the con-
gtruction of & solution for a directive can be accomplished as
shown in Figure 2-1. Starting with the directive itself as a goal
list, the algerithm produces successive goal lists until either an
empty goal list is constructed or a failure condition is encoun-
tered. Upon successful termination, Substitution.List contains
a sequence of substitutions whose composition is a solution for
the directive,

Clonstruction of & new goal Hst from its predecesser proceeds as
follows:

1. Each goal is analysed individually to produce:
its contribution to the new goal lisl; a substitn-
tion {which we call an instantistor] that will be
applied to the contribution before its addition
to the new goal list; and another substitution
comprising constrainés on the overall solution.

2. The constraining substitutions are combined
via reconeillation to produce & substitution
supporting thiz goal etep as a whale. This sub-
stitution is saved as a component of the solution
that we seek.

3. All instantiators are updated through compo-
gition with the above reconcilistion.
4. Each contribution is passed through its corre-

sponding instantiator, and the results are col-
lected into a single goal list.

2.2.1 Contributions

Contributicns (in their pre-instantiated form) are determined
as follows:

« A RETAINED GOAL contributes itaelf,
verbatim 4

« A REMOVED GOAL contributes nothing.

» An EXPANDED GOAL contributes the body

4 Heep in mind that we are presonting an abstract proof procedurs which
encompoases several practical atralegies. Thus klthough we heave stated
that the LPS algorithma never retain o goal, we inchede goal retention in-
our mbatract procedure in order ko actamadnte both the Prolog algorithm
and severn] vorfants on the LP3 algorithms.
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Goal List := Diractive;
Substitution_List = NIL;

WHILE Not Empty(Goal List) DO
Constraint _Sat = NIL;

FOREACH goal G in Goal List DO
Decide whether G is to be retained, removed, or
expanded;
IF retaining G THEN
Contribution(3) = G;
Instantiztor(G) = NIL;
ELSE IF removing G THEN
Find a fact unifying with G, call the unifier U;
IF none can be found, FALL;
Contribution[G) = NIL;
Instantiator(G) = NIL;
Restrict U to bindings for variables in G, add
the result to Constraint_Set;
ELSE IF expanding G THEN
Find a rule B whoae head unifies with G, call the
unifier U; IF none can be found, FAIL;
Contribution(G) = rele body of unifying ruls;
Instantfator[G) = U restricted to vartables in B;
Imaert bindings to new ereated variables into
Instantiator(G) for all variables from R not bound
by U;
Restrict U to bindings for variables in G, ndd
the result to Constraint_Set;
FIL;
oD;

Compute reconciliation of all substitulions in
Constraint_Set, call the result Rec; IF reconciliation
fails, FAIL; '

Add Rec to Substitubion_List;

New_GoalList = NIL;
FOREACH goal G in Goal List DO
Instantiator{3} := Instantiator(G) composed with R;
Instantiate Contribution{Q] wsing Instantiater({Q),
and add the result to New_Goal_List;
oD,

Goal List = New_Goal _List;
oDy

Figure 2-1: Abstract Proof Procedure

of the rule with whose head it unifies, verbatim.

2.2.2 Instantiators

MNon-empty instantiators are only produced for expanded goala,
It would be pointless to compute an stantiator for a removed
goal since itz contribution is always empty; in the case of a
retained goal, all instantiation information comes from the con-
straints imposed by unifieation of non-retained goals, so an
emply instantiator is set in place awaiting composition with
the reconciliation of those constraints.

The instantiator for an expanded goal is simply the unifier that
resulted from unification of the goal with a rule head. We only
include bindings for variables that are contained in the rule [rule
variables, since other bindings cannot contribute to instantia-

tion of the rule body. We also insure that every rule variable
is represented in the insiantiator by binding any unbeund rule
varfables to mew ereated variables, Such & binding adds no in-
formation; the ebjective is to insure that the instantiated role
body will contain none of the original rale variables.

2.2.3 Comstraints

Conetraints are produced by unification of removed goals with
facts and expanded goals with rule heads. Bach unifier is added
to & constraint set, after resiricting it to variables that cccurred
in the goal {goal varinbles). The constraint st is used to pro-
duee a consistent substitution for the preceding goal list which
supports ita transformation into the succeeding goal list. Thus
the only bindings of interest are those for goal variables, which
is why the unifiers are pruned before sdding them to the con-
straint set. Indeed, if the same fact or rule head iz nsed to anify
with more than one goal, inconsistent bindings for non-goal vari-
ables might resalt, but these must not prevent the proof from
progressing. For example, consider the following program:®

Rule 1: tasty([X]} :- sweet(X).
Fact 1: sweet [cookies).
Fact 2: awest{cake).

Directive: tosty[cookies), tasty (cake).

We guppose that (az would be the case with LPS) our algorithm
chotses bo expand both of the original geals in its first step, us-
ing Rule 1. Unification of tasty(cookies) with tasty(X) pro-
duces the wnifier [X/eookics], while unification of tasty{cake)
with tasty(X) produces [X/cake]. Reconciliation of these two
unifiers cannot succesd since variabla X cannot be bound to
both cookies and cake simultaneously. Clearly, though, the
directive i3 provable. Thiz problem of unwanted binding in-
teraction does not occur if we discard bindings for X prior to
reconciliation. Note that these bindings remaln in instantiators
5o that they may be wsed for instantiation of ruke bodies.

Similar reascuing ehows why it ks necessary Lo include *dummy
bindings® for non-unified rule variables in the instantisters for
expanded goals. If this were not done, those rule variables might
end up occuring in two or more goals ab some poiat during
the proof. This would cause unwanted imteractions since the
algorithm would insure that only mutually compatible bindings
were produced for all cecurrences of these variables, while the
separate sccurrences should in fact be treated independently.

The purpose of composing each mstantiator with the constraint
seb reconcilialion is to insare that each goal list is cast in berms
of the current state of knowledge of the solution under construe-
tion. That eolution is constructed as a seguence of component
substitutions, where each proof step produces one component.
If goal lisks are not kept up bo date in this fashion, the same vari-
able may end wp bound by two or more different components.
During later compozition of the components, all but the first of
these bindings would be completely lost. For example, the com-

position of [X/cookies] with [X/cake] is simply [X/cookies].

In general, it will be the case that ne goal list will ever contain a

variable for which a binding existz anywhere in the component

substitutions produced thue far in the proofl procedure.

5 For gur examples we adopt the Prolog convention that aymbols begin-
ning with & capital lebler are comidered vorinbles, while nll others are’
connidered predicate and function mymbok.



2.8 Some Observations

[ue to the Yimest general” natvre of unification and reconcilia-
tion, our aigorithm compules the most general solution that will
support tha constructed proof. This translates into conciseness
in the solution set reported for a directive, although it does not
guarantee that no solution will be an instance of another. Thia
may arize if there are mulliple proof pathe for some particular
solution.

Upon failure of a particalar proof path, both the LPS and Frolog
algorithima backtrack to the most recant choice peint and pursue
an alternate path, In the LI'S algorithms we find that all of thess
allernate paths have already been staried by the simultanecus
construction of all possible successor goal hists from the choice
peint. The Prolog algorithms do nob benefit from such & head
start. As mentioned in the Introduction, this feature may easily
mislead one to sospect that the LPS eearch strategy includes
some breadih Gret component rather than being strictly depth
first.

Finally, it will be seen that in LP5S the composition of the coms-
ponent substitulions is performed incrementally as each compo-
nent is produced, rather than computing the entire composition
at the ellui of the proaf,

3 A Proof Example
Consider the following program:

Rule 1: can_eat(X) - food_stors(S), open(8 now),
has_money(X).

Rule 2: has_money(X) :- friend(Y,X), bas_money{Y).

Fact 1: food_store[mama_joys).

Fact 3: food_atore(take_home).

Fuct 3: friend{chris,andy).

Fact 4: friend(torichris).

Suppose the author Is intereated in whether o not ke is currently
able to eat. First, from goneral knowledge of neighborhood food
stores, and by subtly questioning his friends, he arvives at the
following additional facts:

Fuet 5! openfmamo_joys,now).
Fact @: hus_money(bori).

Wext he invokes the proof algerithm with the directive
can_eat{andy) and observen the following execution:

1. The initial goal list is {can_eat{andy}}. We choose to
expand the single goal via Rule 1. Unification with the ruls
hiad produces the substitution [X/andy].

Our goal's pre-instantinted contribution is the rule-body,
{food_store(S), open(S.now), has_money(X)}. The in-
stantiater b [X/andy, S/_1], where _1 is a created variable
to which 8 is bound since it was not bound during unifeation,
This expansion contributes nothing to the constraint seb since
no gozl variables were bound during unification (ludeed, there
were ne goal varizbles lo be boundl).

Reconciliation of our (empty} constraint set produces an
emipty substitution, so our imstautistor 8 not afected, and
the mext goal list @ {food store{ 1), open(_1,now),
has_money(andy)}.
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3. Current goal list: {food_store(.1), open(_Inow!,
has_money (andy)} '

Retain goal food store(..1):
Contribution: food_store(_1)
Instantiator: NIL
Conztraint: NIL

Remove goal open(_1,mow) via Fact §:
Caontribution: NIL

Instantiator: MIL
Constraint: [_1/marms joys]

Expand geal has_money{andy) via Rule 2:

Contribution: {friend (¥ X}, has.money{¥)}
Instantintor: [X fandy,Y /_2|
Constraint: NIL

The overall constraint set is {[_1/mama_joys|}, whose ree-
enciliation is just [-1/mama_joys]. The only instontia-
tor that is affected by this reconciliation i the first, which
becomes |1 mame joys]. Instastiating all of the con-
tributions with ther instantiators then produces the new
goal list:  {food store(mama joys), friend(_2,andy),
han_money (-2) .
8. Current  goal lat: {food_store(mama_joys),
friend(_2,andy), bas_money(_2)}
Remove goal food_store{mama_joys) via Fact 1:
Ceontribolion: NIL

Instantistor: NIL
Constraint: INIL

Remeve geal friend( 2,andy) via Fact 3;
Contribution: NIL
Instantiator: NIL
Constraint:  [_2fchria)

Expand goal has_money({_2) via Rule 2:

Contribution: {friend(¥,X), bas_.uoney[¥)}
Instantiator: [X/_8, ¥ /_4|
Conetraint; [._.B,..ﬂ-]

The overall contraint sct is {2 /chris], [_2/_3]}, whose rec-
onciliation is [_2/chris, _8/chris]. This afects the instantia-
tor for the shird goal, which becomes [X/chris, ¥ /_4]. Instan-
tiating all of the contributions with their instantintors yields the
new goal lisl: {friend(_4,chris), bes_money(-4)].

4. Carrent goal list: {friend(_d,chris), has money( L)}
Remeove goal friend{_d,chrla) via Fast 4:

Contribution: NIL
Instantiiztor;: NIL
Constraint: [_4/fteri]

Ramove goal har_money{_4) via fact &

Contribution: NIL
Instantistor: NIL
Constraint:  [_d4/tori)

The overall constraint set is {]_d4/tori], [-4/torl]},? whose

0 .
O caurse, this sonatroint set b not really o ped mince ik contoing o b
enbries, R."""'""""- the berminobogy i ueeful In a Inﬂ;:;n, :nld E::Iiur:
ront LPS implémentation will in fack po through the work of reconciling
bwo identical conetraints rather than removing the duphicily.
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reconciliation is [_d/torl]. All contributions are nil, so the new
goal list is empty.

6. Current goal list: {3

The algerithm terminates snccessfully wpan encountering am
empty goal list.

The sequence of reconcilistions that was generated by the algo-
rithm is:

(i

[-1/mama_joys]
[-2/chris, _3 fchriz|
|4 /tori]

The composition of these components yields the overall substi-
tution: [-1/mama_joys, -2 /chris, _3/chris, —4tori], The

sequence of generated goal lists is:

{can_eat{andy}}

{food_store(_1}, open(_1,now}, has_money{andy)}

{food_store(mama_joys), friend{_2,andy),

" has_maoney{chris)}

{friend{_d4 chiris), has_money(_4)}

NIL
If we apply the sverall substitution to this ssquence of goal lists,
we arrive at our final proof:

{c:m_eu.l.{mpdy}}

{food _store(mama._joys), open{mama_joysnow),
has_money[andy) ¥

{food_store[mama_joys), friend|chris,andy),
has_money{clris)}

{friend(tori,chris), has_moneytori)}

NIL

4 The Curreni LPS Implementation

The LPS algorithms that we have formulated can most easily
be understosd as comprising three computational phases: anif-
cation, foin, and substitution. In this section we will discuss an
actnal LPS implementation in terms of these components, relat.
ing each functionally to the abstract algorithm sutlined above,

The implementation is based on the computing model deseribed
in [12: Taylor et al. 1984), Very briefly, we envision a network
of independent processing efements (PE's) each oquipped with a
moderate local skorage capacity. The network is controlled by a
contal processor (CP) which coordinates global communication
and invokes individual instructions as well as local procedures
in unison throughout the PE network. Global communieation
consists of broadeast messages from the CPF to the network, and
reports solicited by the CP from individual PE's.

4.1 The Binding Set Representation

A hinding set represents the resuli of applying a single step of
our proof procedure to o goal list. It coniaine the fellowing
information:

# The reconciliation of the constraint sst pro-
duced by unification of geals with: facts and rule
heads.

# A list of rule body keys by means of which rule
bodies may be obtained at the CF for instan-
tiation and inclusion in a new goal list. Note
that & single rule body key may appear more
than once. This will be the case if the same
rule head was used to expand more than one
goal in the goal list.

Instantiation Ccp : N
Selutions i’
Rule Bodies
Binding Sels
Goal Lists
Facy o
 Unificziian %@5‘ #‘#
Reconcilistion PE’s %
Subatitution
Ry
vk

Figure 4-1: Flow of Data in LPS Exscution

* An instantiator for each rule body hey con-
tained in the binding set. If a key EDpEArs more
thas ence, each is associabed with jts aWh in-
stantiator.

Recall that the current LPS alporithms never retais gonls fram
one goal list to the next. Thus the above set of information
includes everything required to construct the successor goal list
28 well a3 the solution component produced by this goal step.
The overall data structure may be viewed i comprising sev-
eral "layers,” each identified with a layer *marker.” Each layer
containg a substitution of some sort — sither the single recon-
cilintion carried by the binding set or one of the possibly many
instantiators, In the farmer case, the layer is called the commeon
layer owing to its nature as & substitution that encompasses all
‘the constraint set components contributed by the unificibions.
The layer marker for the commen layer is the atom, COM-
MON. A layer containing an instantistor is called o rule layer,
since & non-emply instantiabor is produced only for a goal that
is expanded by unification with some rule head. The marker for
a rule }nﬂr is & key identifying the rule that wos used in the
expansion.

A binding set with no rule layers is of special interest, and we call
it & simple binding set. Other binding sets are symmetrically
termed conmplex binding sets. A simple binding set is important
bm:}:u it is reported omly at the completion of a successfy]
proof,

4.2 Distribution of Data

As we shall see, all unification is performed in the individual
PE% that form the processor network, whereas imstantiation
takes place in the CP. For this reason we store all facts and rule
heads, (that s, all the positive literals of our program) in the PE
network itsell. Each literal resides in a single PE, although any
PE may contain several literals. Rule bodies, on the other hand,
are kept in the CP. Each rule head in the PE nsbwork s tagged
with a key which can be used to identify the corresponding rule
bady in the table maintained by the CP.

Dharing execution of a legic program, goal lists are constructed
in the CP, initizlly from the directive and sulsequently from
the goal list contributions carried in the binding sets. When a
goal list is complete it is transmitted to the PE network where
unification, reconciliation, and composition operations produce
new binding sets. OF the possibly many binding seta preduced,

- a single s=i is selected for transmission back Lo the CF, and the

entire cycle iz rosumed while the other binding sets lie dormant
in the PE network awaiting later selection. The operation &
shown pictorially in figure 4-1.



4.3 The Unification Phase

The first phase of the LFS algerithm begins with the transmis-
gicn of a goal list from the CP into the PE network. Residing
in each PE is some [possibly empty) collection of facts and rule
heads that were placed there when the program was initially
loaded into the machine. Omee the transmitted goal list haa
been captured, each PE unifies every goal with as many of its
resident literals as possible, producing uwnifiers which are stored
in the PE' local storage.

Unification: with o fact produces a simple binding set whose
common layer is the constraint sat contribution specified by the
abelract algorithm fer a removed goal. That is, the anlfier is
stripped of all bindings for variables that were not prezent in ths
unified goal, and the resulting substitation becomes the commen
layer.

Unification with a rale head produces a complex hinding set
whoar common layer is the unifier stripped of its non-goal vari-
able bindings [same as the commen layer for 2 removed goal).
The rule layer is the instamtiator for the exponsion, as spec-
jfied in the abstract algerithm. In other words, the unifier
iz stripped of all bindings for now-rule variables, and supple-
mented with bindings to new created variables for all anbound
rule variables.” The marker for the rule layer is the key associ-
ated with the unifying rule head.

Each binding set produced during the unification phase & tagged
with 2 Jevel number which identifies, via ita position within the
transmitted goal list, the goal whose unification gave rise to the
binding set. 1t will become clear during the discussion of the

join phase why this tagging i required.

4.4 The Join Phase

We have named the secend phase of our execution loop as the
*join phase” due to a useful interpretation of the basic opera-
bion as an equi-join over o set of database relations. Indeed, if
we recall that each goal s the transmitted goal sel gave rise,
during the unification phase, to a collection of binding sets with
a common level mumber, we see bhat the level number provides
us with 2 key to the “relation” dafined by the correspending
goal. The database from which the relation was produced is the
collection of literals (facts and rule heads) present in the PE
netwark.

With this interpretation in mind, one sees that joining these sev-
eral relations, using reconciliation as the basic pair-wise match-
ing eperation, computes reconciliations for all compatible com-
Binations of unifiers for the goals in the transmitted goal list.
At the completion of the join phase, every one of these binding
sats will reside in the PE network and will be elegible for later
selection and elaboration of the particular prool path it repre-
sents. Thus the transntitted goal list ean be discarded at that
point.

Any matching eperation performed on two binding sets will re-
quire that the two bindings sete be accessible to the same pro-
cessor. In general that will not be the case at the completion
of the unification phase, since each binding set is stored in the
PE containing the unifying literal. The join phase thus requires
communication of binding sets around the network. This com-
munication is ecordinated by the GP.

¥ Mote that variables created by two difforent PE's must be distinguish-
abibe. This I eaably done if the PE's can be assigned unigue identifiention
togs, na those tagn moy then be incerperated into the created vorinble
nnmes, Such tags may be asaigned ab ayatem stactup uning resalve and
repert operations, Alternatively, many existing and propasad machines
mﬂmr model con generate unique I0He using wariows highly eficient
me
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Tlhe basic step in the join phase consists of selecting two rela-
tiong out of the several to be joined and joining those two nto
& single relation, thus decreasing by one the inmber of relations
to be jeined. When only cne relation remains, the join phase is
complete.

In order to jein two relations, one of the two is chosen to “fecd
iuto* the other. The CP loops over the feeder relation, extract-
ing one member from the PE network during sach iteration. As
each element s obtained from the feeder it iz broadcast to the
cntire PE network, and any PE that holds elements from the
“eonsumer” relation attempts ko reconcile the commen layer of
the feeder with cach of its resident consumers {remember, the
common layer is where the constraint set contributions were
placed during the unification phese). Whenever reconciliation
suceeeds, a new hinding set is created whose common layer con-
tains the reconciliation. Amy rule layer that appeared in either
of the contributing binding sets is included in the new binding
set, and the level number is set 50 as to identifly the new binding
gt as helonging to the new joined relation under construction.

Each fesder binding sot is discarded as soen as it has been
matched against all possible coneumers, and when the entire
pair-wise join has been completed, the original consumer rela-
tion is discarded as well. Thus two relations have been dis-
carded, and one hes been produced, bringing us nearer to our
goal of a single relabion.

4.4.1 A Heuristic For Ordering The Join Fhase

In cur computing model communication sheuld be held to a
pinimunt since it must all be funneled throogh a single channel
{the CF). Due to the commutative nature of the reconciliation
operation, we may axercise 3 gimple heuristic that should, under
most circumstances, keep join phase communication close to
minimal. Specifically, we always choose the smallest existing
relation as the feeder, and the largest relation as the consumer.
Cases can essily be constructed in which some other ordering
turns out bo be preferable, bat the heuristic seems reasonable in
the shssnse of methods for predicting the sizes of intermediate
join results.

In the genersl case we choose to implement an approximation
to the above heuristic since our computing model does not pre-
vide an efficient means of determining the sige of & distributed
relation.! We make use of a sequencing mechanism applied to
the relation members. The idea s that within each relation the
individual hinding sets are assigned unique sequence numbers in®
the hope that the difference between the highest and lowest se-
quence numbers in a relation will generally be a useful estimate
to the size of the relation.

In the current LPS implementation, sequence numbers are as-
signed during the unification phase according to the order in
which the clanses were asssrted during program loading. Thus
any binding set that is produced by unification with the pro-
gram’s first clanse is assigned a sequence number of one. Unifi-
cation with the program’s second clause yields sequence number
tweo, and o on.

The assignment of sequence numbers to join results is analogous
te the calculation of storage offeets to multi-dimensioned array
elements. The frst “dimension” is represented by the sequence
nutmber of the contributing binding set from the first relation
{level number one), and so forth., The “effset” calculation can
he performed cfficiently by precomputing (in time linear in the
number of relations] & “dope wector” similar to that wsed by

& Moke, however, :.hn.s.'mm architectures fitfing our model do in fact allow
for fosé network-wide sums, making the heurlstic viable ns presented.
_We hepe to elarily the need for such a mechanbm through slabistical
ioveatigatians.
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many programuming languages for array indexing. All sequence
nambers are multiplied [again in linear time) by the dope vector
elemente corresponding to their level numbers prior to the com-
mencement of the join operation. Then when two binding sets
reconcile suceessfully, the sequence number for the new binding
seb i the sum of the twe contributing #equence numbers.

In addition to their contribution to the join ordering heuristic,
sequence numbers provide a method for ensuring a predictable
perusal of the proof space by our implementation, Although
from the poiut of view of pure theorem proving such predictalil-
ity is invasential, under some circumstances such as 1/ and re-
cursion, it is crucial if the programming system is to be wseful
for & more general class of programs, as is the case with Prolog.
Unfortunately, the sequence numbers as deseribed here do not
appear to provide an ordering that is easily comprehended or
well suited for many programming tasks, =o that alternatives
must still be investigated.

4.4.2 Partition Of The Join Phage

For reasons that will become apparent in the upcoming discus-
sion of variable purging, it may be desirabls to impose a global
constraint on the join phase ardering so that the relations aris-
ing from any single goal list contribution are fully joined among
themselves prior to any attempt at combining results from dif-
ferent contributions. We adopt this strategy in the corrent LPS
algorithms by conducting the join phase in two eteps. First, a
serics of partial joins takes place in which each goal list contri-
bution is reduced to a single relation in the PE network. When
the partial joins have complated, a final join joins each of these
relations inte a single relation representing the successors to the
goal list under congideration.

4.5 The Substitution Phase

The last task to be performed upon the discovery of a successful
proof is the compoeition of the various substitubions that were
generated along the way, As indicated in the abstract alge-
rithm, these sabstitutions are the constraint set reconciliations
computed to support the individual proof steps. Their compo-
sition is computed in the substitution phose of our algorithm.

A5 was briefly mentioned in the observations following the ab-
stract proof procedure, we have chosen in our current imple-
mentation to compute this composition inerementally as the.
individual eomponents are generated, Thus each time a new
reconciliation is produced, we compute its compoaition with all
pricr reconciliations in ita proof path. Once this has been com-
puted, the individual reconciliation itself can be discarded.

In order to achleve thiz strategy, we store in the common layer
of a binding set, not the individual reconciliation that produced
the binding set, but its composition with all prior reconcilia-
tions on its proof path. This is easily implemented becanse all
of the binding sets produced by a join phase share & commen
proof histery, and the cumulative substitution representing that
history is exactly the substitution etered in the common layer
of the complex binding set that gave rise to this proof step in
the first place.

In our LPS implementation, then, the substitution phase in ne-
complished by transmitting the prier reconciliation histery to
the FE network following the join phase and computing in each
PE the composition of that substitution with any new reconcil-
fations.

Three possible benefits derive from our incremental subatitu-
tion strategy. First, compodition computations are performed
in parallel in the PE nebwork rather than individually for each
reported solution: by the CP. Second, debugging is easier be-

cause the progress represented by each binding set can be read
directly in berms of the original directive variables rather than
an obscare collection of created variabies, Finally, we avoid a
bookkeeping chore in the OF which, depending upon whether
cortain variants on the basic algorithms are chosen, may be ex-
tremaly expensive in both time and space.

4.6 Managing Created Variables

In order to keep communication and processing costs bo o min-
imum, it is desirable 1o discard bindings from oo binding sets
whenever they are ne longer needed, In general the instantiator
stored in a rule luyer of a binding set will conbain a binding far
each variable appearing in the rule body, and no other bindings.
Thus rule layers are nob & problem in this respect. The cammon
layer is more complicated,

In general there are two possible reasons for keeping a binding
in the common layer of a binding set:

» The binding will be required in order to cons
struct & solution, should the current proaf path
auncceed,

# The binding might interact with other bindings
to constrain the search space, so that discard-
ing the binding could lead to incorrect proofs.

If at any point a particular binding can be determined nod to ful-
fill either of thess conditions, we may freely discard the binding
and proceed witly our proof,

When we report a solution, we limit the report ts a display of
& minimal substitution that will transform the directive into a
satisfiable goal list. In particular, the intermediate goal lists
are not displayed, in cither their instantiated or uninstantiated
form. Recall that our substitution phase is implemented incre-
mentally, so that common layer substitutions always represent
the tetal accamulated current knowledge of the solution being
pursued. Thus we see that our fret condition demands only
that we not diseard bindings for variables that appear in our
eriginal directive (top-level variabiss].

Other bindings are required for their constraining effects. How-
ever, we obaerve that once a binding has been produced for a
wariable, 1t is immediately used to remove all appearances of the
variable from the binding set. Aside from this instantiation, the
only way a binding ean ever act to constrain the search space is
through reconciliation with another binding for the same vari-
able. But by the instantiation itself, we are guaranteed never to
see the variable in a foture goal list along the same proof path,
=0 that no future bindings for it will ever be produced. Thus
no further constraint by the variable is possible. We conclude

-that we need never maintain bindings for a variable (other than

& top-level variable) onee a binding for it Las appeared at the
end of a proof cycle,

We do not claim that the binding would net undergo further
changes were it to be maintained throughout the remainder of
the proof. For instance, if we produce the binding [-1/p(_2))
we may laber produce the binding [—2/a]. The overall proaf
substitution would then include the binding [_1/p(a)]. How-
ever, the search constrainks that are represented by this refine-
ment are accomplished by the comstruction and reconciliation

‘of bindings for _2; the refinement of _1's binding is & more or

less passive side-cfoct. Since .1 b nob a top-level variable, we
have no intorest in this side-effect, so there is really no point in
producing & in the first place.



We see, then, that when a binding set is reported to the CP
from the PE network its common layer should contain bindings
anly for top-level variables. However, more can be said about
the other variables as well In particular, we recall Lhe join
phase partitioning strategy discussed earfier, in which the join
phase procesds by a series of partial joins invelving relatiosns
produced by common goal list contributions, followed by a finai
join of the paréial join results. It turns out that many bindings
can be pruned from the binding setz before the final join takes
ploce, thus saving in communication costs during that jein,

Recall that if a rule variable iz not bound during unification the
resulting instantiator is augmented by binding that varizhle to

a new created variable. The created variable will thus appear

in exactly one of the goal Hst contributions represented by the
complete binding set, and hence in exactly onc of the partial
join result relations. Such a variable cannot constrain the final
join, and since it is not a top-level variable, it will be discarded
when the final join is complete. We can save communication
costs In the final join if we discard the variable prior to the final
join.

A list of such discardable variables may be computed easily by
the CP during instantiation of a rule body by gathering together
term gides of all variablefvariable bindings in the instantiators.
For example, if the binding [_84/_48] appears in an instantin-
tor, we can safely discard all bindings for variable _4% prior to

the ensuing fnal join,

Wi note hare that if we are to diseard bindings before the final
jein takes place, we must account for the possibility that some of
our top-level variables are bound to terms that include discard-
able variables. Thus the compesition eperation that constitutes
our subskitulion phase must im fact be perfermed prior to the
final join. We may apply the operation simultanesualy to all the
relations that will take part in that join by waiting until all the
partial joins have completed.

5 Alternative Unification Phase Strategies

We consider two strategies for the unification of goals in a goal
Fist, which we call asynehronous and synchronous unification,

5.1 Asynchronous Unification

In the asynchronous case, & goal list is broadeast as a single unit
to the PE network, and the PE's are instructed to go to work
unifying the entire Hst of goals. The CP waite until all PE's have
complated this task, at which point all pessible unifications of
the goals have taken place, and the resulting binding setz are
resident in the PE network. This strategy allows overlapping
af gonl upification ameng the individual PE'S. That is, each
PE moves en b0 the next geal a9 soon as it has exhausted its
own local supply of hterals with which to attempt unifieation of
the current goal, regardlesa of the state of progress in the other
PE'.

As an example, consider the [ollowing somewhat idealized sce-
nario:

Goals to be unified: a, b.
Literals resident in PE 1: a, .
Literals resident in PE 2: b, .

The fallowing sequence of events resulis:

1, The CP broadcasts the goal list *{a, b}’ to the
PE network.

2. PE 1 begins unifying <a, a, >.
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3. At the same time PE 2 begins unifying <a, b, >,
fails guickly and progresses to unify <b, b >

4. PE 1 completes unifying <z, a, », attempts to
unify <b, a, > and fails quickly.

5. PE 2 completes unifying <b, b, >.

6. PE 1 and PE 2 hwre completed the unification
phase.

As we gee, unification of goal a in PE 1 is overlapped in time
with unification of goal b in PE 2. Beneficial overlapping occors

for two reasons:

# A successful unification generally requires more
time than an unsuccessful attempt. Failure s
usually detected long before the two literals
have been completely scanned (indeed, failore
is bmmediate in the case of different predicate
symbola), whereas saccess is not recognized un-
til the scan is complete, PFurthermore, addi-
tional work iz required after a successful unifi-
cation, for the constraction of a binding set.

» One PE may need to attempt unification of a
particular goal with more literals than another
FE. II we assume a very siall number of lit-
erals resident in each PE (due to & large PE
network), we can expoct that most PE's will
be unable to unify most goals, so this will be
a high source of overlap. Ewven without Lhis
assumption, various strategies for distriboting
the literals and indexing each PE' local literal

pool by predicate eymbeol can inerease the like.
lihood of this type of overlap.

Again assaming & very small number of literals resident in each
PE, wa sea that the entire unification phase takes time that i
limear in the size of the broadeast goal list, Furthermore, we
expect the éntire process to be exceptionally fasl due to a small
constant factor in our linear complexity. Contributing compo-
nents are: (1) the time required to transmil the goal list, and
(2) the time required for the PE's to individoally scan the goal
list and ereate binding =ets for successful unifiers. The second
component is linear because the basie unification algorithm is
linear in the size of the terms being matched, and the sum of
those siges is no larger than the size of the entive goal liat,

Generally, we would expect a gingle literal to unify with at most
one goal in a goal list, o that the constant factor in our lin-
ear time complexity will be heavily dominated by the time for
tailare, rather than the time for successful unification. This ac-
couwnts for the high performance we expect from asynchronous
unification, sinee failure time i quite small.

5.2 Synchronous Unification

In the synchronous unificasion strategy the goals in a goal list
are broadcast one at a timas rather than as a single unit. Unif-
cation of each goal is performed in the PE's before the nexk goal
is broadcast, so that none of the overlapping that we witness in
the asynchronous strategy can occur,

The synchronous strategy offers a potential benefit only in the
case of the failure of a single goal throughout the entire PE
network. In this ease, the entire goal list can be thrown out
immediately without attempting unification of the remaining
goals,

Whether or not such opportunities arise with a frequency that
merita adoption of & synchronous wnifieation strategy = a gues-
tion that will be investigated t—]n'?l.gl statistical analyses of logic
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programs (13: Taylor et al. 1984). We hope also to develop
methods for identifying local characteristics of a search space
that may indicate an ineressed likelihood for global failure of
a single goal. If this can be done, a dynamic selection mecha-
nizm may be implemented that i capable of using asynchronous
or synchronous unification depending on the prosf history and
current slate,

A hybrid strategy may also be envisioned, in which the goal Hat
is partitioned aceording to some suitable heuristic, and each por-
tion is broadeast as & unit for asynchronons unification, while
unification of the overall goal List is synchronous among the por-
tions.

¢ Alternative Join Phase Strategies

We note that our parallel execution of a pair-wize relational join
results in a log(n) improvement in the time required for this op-
eration by a sequential alporithm {14: Taplor et al, 1984). Our
alternative join strategies investigate methods for minimizing
the number of pair-wise joins required in a single join phase,
avoiding redundant computations, and controlling depletion of
PE starage.

The reconciliation operation itself is performed as a series of re-
finements on a collection of bindings. The collection begins with
the union of the bindings found in the two component substitu-
tions. A refinement consists of identifying two bindings for the
same variable and replacing one of them with the unifier of the
twe terms, When no such pair of bindings is left, reconciliation
is complete.

Although pathological caszes can be comstructed, we belisve that
in practice the unification that takes place during reconcilistion

seldom produces new bindinas for variables already bound, so
that {again recalling that unification iteelf is linear in the sise of

the terms being combined) we will expect a performanes Lhat
is roughly linear in the size of the component substitutions,
We intend to investigate the validity of our assumption through
statistical analysis,

6.1 Retaining Goals

‘Tt has been pointed out that our LPS implementation never
retaing a goal from one goal lisk to its successor. Instead, sach
goal is either removed or expanded. Wa expect this stratagy to
be quite beneficial in many applications, however there are at
least two posential pitfalls, which we call the Big-small problem
and the carfesian prodect problem,

6.1.1 The Big - Small Problem

Coneider the goal set {big (X}, small{¥}} where, as its name
suggests, big(X) ie a goal that represents an extremely lengthy
computation involving long chains of inference. Likewise,
emall{¥) is a goal that is very quickly satisfied, with mauliiple
solutions. It turns out that a strict policy of non-retention of
goals will perform substantially mere work in locating multiple
sohutions of this directive than would a more Soxible approach.

To see this, consider the very first step in the solubion of
our goal, amd suppose that our database containe the two
facts small{fiea) and small{pebble]. These twe facts will
unify immediately and produce simple bindings [Y /flea] and
[Y /pebble], respectivaly, Meanwhile, big(X) unifies with a
ruls head somewhere in the database, producing a complex bind-
ing that represents a long computation in ite infancy.

With these binding sets in place, our join phase will produce
twe camplex bindings, both containing the status of the just-
started big computation, and each containing cne of the small

‘-NliIJng\aHrﬂ} {hig{X) small{ Y}
W..i.:i/lul/ [X(1,Y pebibte el
{big1(_1)3 {biga(_1)3 {bigh{_1} small{¥})
Big
Compatatiog
i 1 "
| I ]
W {;.mm‘l\f‘:'}}
P ] [¥ fetible]
& B
NIL NIL NIL NIL
Non-Retention Policy Retained Goal
tesulis in early branching causes deferred branching

Figure €-1: Goal retention postpones branching and
may result in considerable savings of effort in the big -
amall problem

solutions. Omne of these complex bindings will be selected during
the mext cycle, and that selection will begin the lemg computa-
tion of big(X).

Meanwhile, the second complex binding will lie dormant in the
PE network awaiting seloction but not benefiting from the on-
going computation. When it is fnally selected, the big com-
putation will be repeated almost in ita entirety. This is the
duplication of effort that we would like to aveid.

To see a possible way out, consider the bohavior of this goal
in the standard sequential algorithm. Here the big(X) compu-
tation is carried out until a solution for it is achieved, all the
while retaining the orlginal small(Y) goal in the goal list, Tt is
nob until the big compatation has terminated in a solution that
the small goal is finally unified, resulting in its remeval by the
fact small{flea). Next the algorithm backs up its computation
to its lost choice point, which was its choice of 2 unifying fact

for amall(Y), and makes a new clioice. This time the small

goal is removed by the fact small{pebble) withont having to
-ecomputae the current solution for big(X).

Thus we eee that by recaining the amall goal we have avoided o
large redondant computation.

It i imstructive heore to consider the tree of goal lists generated
by our proof procedure, in which the decision to retain a goal at
a certain point has the effect of postponing whatever branching
might be eaused by the choice of clauses with which the goal
muy unify, If each of the resulting branches gives rise to a deep
subtree, the postponement may turn out to be quite beneficial
The case of sur example is diagrammed In figore 6-1.

8.1.2 Cartesian Produets

One other possible benefit of goal retention is containment of
the potentially explosive growth in the number of binding sets
resident in the PE network. As an example, suppose our goal
list is {plentiful1{X), plentifal2(¥)}}, where each goal unifies
with & very large fuct base (eay M facts for plentifull and M
facts for plentiful2), Thus in ene proofl step we achieve two

* Mate that the Prolog algorithm weuld encounter the big-atmall prabbean
il the gool list were reversed, =& in {omall{¥),big[ )3,



large, independent relations, whose join is their complete cross
product consisting of M x N binding sets. In such & situation it
might be desirable (or even necessary) to limit the accumulation
of binding sete by generating only one “slice” of the cartesian
product at & time,

This might be accomplished by retaining plentiful2{Y) during
the first cycle. The result will be M binding sets containing the
golutions for plentifull (), and each containing our retained
goal as well. These binding sets are sclected one by one for
further elaboration, and each ome gives rise to N bindings sets
that are reported and discarded in turn. The maximum nember
of binding sets resident in the network is thus M 4+ N - 1, pather
than M x N.

6.1.3 Implementation OF GGoal Retention

Twao problems need to be addressed if goal retention is to be
accommedated in our algorithma:

1. The actual mechanisms for retaining goals must
be worked into the implementation. This re-
quires a slight modification of the binding set
ropresentation =0 that actual goals can be rep-
resented, as well as mechanisms that allow the
CF to identify to the PE's which of the broad-
cast goals are te be retained.

2, The means by which goals are selected for re-
tention must be decided. Posmsibilities include
automatic salection based on static andfor dy-
namic program analysis; marking of proce-
diites, riles, or even individual condition ele-
menta by the programmer; and combinations
of these bwo strategtes. We prefer a completely
automatic mechanism, consistent witl the phi.
losophy that logle programming offers oppor-
tunities for parallelism without burdening the
programmer with this goal

8.1.4 Benefits Of A Non-Retention Policy

It should be moted here that & policy of non-retention of goals
provides at least two pokential benefits.

Firet, the total path length for any successful proof is minimized
by such a policy, generally translating into reduced effort for
a gingle procf. As the big-small problem illustrates, however,
situations may easily arise in which much greater benefits due
to commonality of proof pathe are missed by this eager atrategy.

Second, a retained goal does not constrain the search space un-
der consideration, COne benefit of the reconciliation model over
the depth-first search strategy of the Prolog algerithms i that
a much larger range of interactions are possible among the goals
in a gingle goal list. In the Prolog sirategy, the effects of com-
putations on a goeal may cnly propagate forward in the goal
list, whereas if several goals are unified in one step, constrain-
ing interactionz are carried in both directions. The program
presented below is an example where the Prolog algorithma will
mever terminate, whereas a non-retention strategy terminates
guite quickly. Here the second goal in the goal list constrains
the Grat goal so as bo avoid the inBnite search that the firt goal
produces on ite own. Since this “backward® comstraint iz not
possible in the Prolog algorithm, we find the unconstrained first
goal generating an infinite sequence of results, all but the frst
af which are disallowed by the second goal.

Rule 1: append(cons[A,T1),Leons(A,T2)) -

append(T1,L.T2).
Fact 1: append({NIL,L,L}.

Directive; append (X1,X2,¥1), append(¥1,Y2,NIL).
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8.2 Single Feed Joins

The cartesian product problem mentioned in the last section i
juet one porticalarly severe case of the general problam that cur
paralle]l execution model may tend to accumulate binding sets
that are waiting for selection. Goal retention was seen as one
gtrategy for alleviating this problem by expanding the search
space one “slice” 2t & time.

Another strategy is to perform our join operations in emall staps
by broadcasting only one feeder velation member to the con-
‘sumer relation at a time. ‘The binding sets produced by that
gingle feeder are processed one by one until they run out, at
which point the next feeder from the suspended join is broad-
cask.

This single-feed strategy offers a second possible benefit aside
from containment of the binding set population. In many cases,
a query will be presented with the intention of producing enly
a single solution, rather than pursuing all possible solutions. Tn
this case, much of the effort that gees into our join operations
will be wasted since if & solution i= encountered sarly in the
search space, o large percentage of the binding sets generated
from joins will be discarded. The single-feed strategy defers this-
effort until it is requived in erder to continue the search.

It is expected that the implementation of a single feed strategy
will require considerably more complicated control mechanisms
than are needed for the eager join sirategy. At this point in time
no puch implementation has been attempbed, nor has careful
thought besn given as to the exact conirel mechonizms that
would be required.

8.2 Redistribution of Binding Sets

Omne final approach to the problem of explosive growth in the
binding set population takes o more local wiew. Bpecifically,
what can be done about the case where binding sets begin ac-
cumulating at a few “hot epots® in the PE netwark?

In sach a situation it would be beneficial to have a mechanism
wvailable whereby heavily loaded PE's could expori some of their
binding sets to other PE's. Such a mechaniom is difficult to
imagine in our computing model since all communication must
be funneled through the CF. If, however, some direct PE-FE
communication mechanism iz provided'® efficient redistribution
might be realisable. We may even envision redistribution within
the PE network overlapping computational tashs within the CP,
such as the construction of a new goal list from a reported bind-
ing set.

6.4 Multiple Independent Joins

A particularly intriguing prospect for optimization of the join
phasze ia the ides of performing two or more pair-wise joding in
unison in the PE network. Char standard join algorithms may be
adapted for this purpose by extending our model of computation
to include o facility for temporarily partitioning the PE netwaork
into independently functioning sabnetworks. One PE in each
submstwork would act as CP for the subnetwork. 't With such a
facility, our pair-wise join may be migrated te the subnetworks,
so that several pairs of relations may be joined simultanesously.
This strategy requires that the each sabietwork contain each
relation to be joined, in its totality.

18 gyeh % rmechaniam is available, for example, in the DADO binary tres ar-
chitecture, in which tree neighlbors msy communicate witheut burdening
the CF [Stolfo and Shaw 198%; Stokfo et al. 1985),

11 The DADO architecturs [Stolfo and Show 1082; Stelfo ot al. 1083), for
axamngle, allows for such s “multiple SIMD” execution mode.
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Az an example of how o multiple join strategy might be real-
ized, and to ilustrate the potentiol savings, we consider o rather
“briite force® approach. The PE network is divided into two
subnetworks, and each fact and role head s stored once in each
subnetwork.

The anification phase will produce twice as many binding sets
ag in our standard model, each binding set appearing in both
subunetworks. We note that the effort expended during the uni-
fication will be doubled in worst case, since the concentration of
literals in the PE"s has doubled g0 that each PE's scan of literals
will take twice as long.

The jein phase proceeds in two stages. During the first stage,
one of the PE subnetworks joins half of the relations resulting
from the unification phase while the other subnetwork simulta-
necusly joins the other relations. The second phass is & single
pair-wise join performed by the OP in the standard fashion,
combining the results of the subnetwork joins. The total efort
required by the join phase starting with n relations is that re-
quired for n/2 pair-wise joins, as compared with n-1 pair-wise
joins if multiple independent joins are not utilised,

If we consider the overall savings realized by multiple joins in
the above scenario we see that while the time for unification has
been doubled in worst case, we have halved the time required
in the join phase. In the case of communication costs, we see
that thers has been no increaze during unification, whereas costs
have been halved during the join phase. Further analysis may
be shle to identify more intelligent partitioning strategies, pos-
sibly based on data dependency analyses similar to those under

- investigakion by Ishida (Ishida 1984) in his work on parallel ex-
ecution of production systems.

6.5 Rule Layer Caching

We discuss one other join phase variant in which rule layers are
gtripped [rom binding sets whenever they pass through the P
and are replaced by unigue tags. The rule layers are stored in
the OF and are retrievable via their tags. The advantage of this
scheme is reduced communization of feeder binding ssts doring
the pair-wise join operation. The strategy is justifisble cn the
basis that o use is made of rule layers except in the CF, 50 that
they are Little more than “excess baggage” in the binding sets
during the join phass.

One major drawback of this scheme, however, is that it preclodes
the removal of conunon layer bindings from binding sets during
the jein. This i impossible because any commen layer binding
might be needed in order to update the instantiators in the
binding set, and inatantiators that are start out identical may
in this way end up differing in their final form. In order to ensure
correch updating of instantisbors before instantiation, then, the

commen layer bindings must be fully maintained and reported

to the OF along with the binding set.

In sddition, such a scheme would probably require some method
for determining when a rule layer may be discarded by the CP
owing to all referencing binding sets having been reported and
elaborated. Such a mechaniam seems feasible given the current
soquanee Bumber scheme.

The trade-offs imvelved have not yet been studied, although
there seems to be reason to suspect that overall communica-
bion costs will not be greatly afected, the twe efccts largely
cancelling each other,

7 Alternative Substitution Phase Strategies

The only majer alternative under consideration for the substitu.
tion phase is the postponement of the composition of individual
I‘Ecm}:ﬂ.'iitllm!- in the proof patlk. Rather than keeping a com-

pletely updated reconciliation in each binding set, commeon lay-
ers would represent only the sebatitution required to complete
the last proaf step. The overall substitution would be computed
by the CP whenever a solution was encountered.

The only substantial benefit that may be obtzined from this
etrategy is that the entire substitution history, along with a
history of goal sets that could also be maintained by the CP,
would allow the reconstruction of the entire proof for reporting
purpeses. The drawbacks are several:

o The history mechanism required in the CP
appears substantially more complicated than
what i presently required. Binding sots would
need additional tagging information to identify
depth in the search space, and the CP's history
mechanism would have to monitor this informa-
tion in order to know whether to stack a new
component, replace the top component, or pop
the stack. )

# The history mechanism would seem to pre-
vent much Hexibility in the order of selection of
binding sets, A predictable order of traversal
through the search space is potentially benefi-
cial to programmers. The history mechanism
would fit well into the ordering imposed by cur
eurrent sequence number scheme, but a5 indi-
cated carlier, it is questionable whether this or-
dering ls veefl. We hope to be able to identify
a different ordering that fits well into the algo-
rithms, but a history mechanism would severely
congtrain our options.

# We would no langer be able to remove common
layer bindings prior to reporting the binding set
to the CP.

7.1 A Previous Implementation

Earlier published work om LPS described a substitution phase
that is substantially different frem these currently under consid-
eration. In fact, in early implementations the substitution phase
was probably the most complex phase of the algorithm. The cur-
rent approach is a direct result of investigations prompted by
discontent with the carlier technigues. For histerical complate-
ness we briefly discuss this approach and relate it to current
wark.

The task of the substitution phase can be regarded as push-
ing forward a frontier set of bindings. Prior to & proof eycle,
we are equipped with a collection of bindings that relate our
top-level variables to variables in the rules about to be fired,
as well a= various created variables. We call these variables
middle-level variables. As a result of unification and recon-
ciliation, we are loft with another collection of bindings, this
time between middle-level variables and bottom-Jevel variables,
which are variables from the facts and rule heads with which our
goals unified. The substitution phase must ressbve these two col-
lections into a new collection of bindings relating the top-level
variables to the bottem-level variables. During the next proof
step, of course, those bottom-level variables play the role of the
middle-level variables, and the frontier set is advanced one more
lewel.

The innovation that has allowed us to discard our old substisu-
tion algarithm is the filling out of instantisters with "dummy
bindinge® for unbound rule variables. As a result of this op-
eration, our new frontier set and instantiator fall directly out
of the compesition procedure. Previously our approach was as
follows:



1. Classify bindings into five different cabegories,
az follows:

» Upper level variable bound to
lower tewel variable

« Upper level variable bound to
Jower level ground term

« Upper level variable bound to
lower level non-greund term

& Lower level variable bound to
upper level ground term

s Lower level variable bound to
upper level non-ground Lerm

2. List all possible combinatisns of a top-te-
middle binding of one type and a middle-to-
bottom binding of another type. The resulting
set of twenty-five binding scenarios, along with
the five cnzes where a top-toe-middle binding is
left by tsell [anpaired with & middle-to-bottom

binding) comprise all possible binding interac-
ftikoms.

3. Congider gach binding interaction in turs and
decide how it can be recognised and what con-
tributions it can make to the resulting binding
sek.

4. Develop an algorithm to handle interactions ac-
cording to the _ana.hraia just performed.

We do not intend to consider this approach further,
8 Conclusions and Future Work

It has not yet been established that the pilot algerithms pre-
sented in this paper cam result in efficient interpreters for the
execution of logic programs under the parallel computing modei
that we propese. A limited form of OR parallelism is achieved
through simultaneous unification of imdividusl goals with Lber-
als that are distributed over a large multiprocesszor network, and
a limited form of AND parallelism is achieved by satisfying an
entire list of goals in a single algorithm cycle.

Qur abstract proof procedare has provided a coivernient basis
for the spacification and analysis of several alternative execution
stratogies. Although we have been able to ideniify some brade-
offs, it ia apparent that no single choice of strategies will be
optimal in all eireurstances. Future research aims to further
our understanding of these and other algorithims and to identify
characteristics of logic programs that may be used as o eriterion
for strategy selection.

Wa are carrently plamning an implementation of o LPS inter-
preter on & prototype machine based om the DADO parallel
architecture. One such prototype comprizsing fifieen PE's fs cur-
rently functioning; a 1023-node prototype is under construction.
Weisberg and Lerner are working on an implementation of 2 par-
lle]l version of Portoble Standard Lisp for the DADO machine
(Weisberg et al. i984). As our simulation software was writ-
ten in P3L, we expect that this effort will substantially simplify
cur implenventation task by allowing a simple recompilation of
large portions of the existing code for execution an the actwal
maching.

Taylor (13: Taylor et al. 1984) describes varicus methods car-

rently under development for statistical analysie of logic pro-
grams. These inclode static, dynamic, and data-flow annlyses
intended to guide algorithmis decisions in the implementation of
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LPS. It is hoped that these analysss will quantify the potential
for parallel execution, allow accurate performance estimates ko
be made, and isolate various gualities of logic programs which
can be used in building intelligent compilers and interpreters.

Many features must be added to the LFS language in order to
make it suitable for a wide range of applications. We intend
to investigate such featurez as negated condition elements in
:uhl, evaluable Pr\ellic:.tﬂ, and coundition elemeants with side
effects. Khabaza's work {Khabazo 1984) appears promising as
a basis for the implementation of negation as failure in the LPS
framework. In addition, we will explore issues relating to control
of program execution, incloding a more useful ordering of the
solution set.
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