PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by YCOT. @ ICOT, 1984

427

QUERY PROCESSING FLOW
ON RDBM DELTA’S FUNCTIONALLY-DISTRIBUTED ARCHITECTURE

Shigeki Shibayama, Takeo Kakuta, Nobuyoshi Miyazaki, Harue Yekota, and Kunio Muralami

ICOT Research Centar
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

This paper presents details on the implementation
of relational database machine Delta, being developed at
the Institute for New Generation Computer Technolopy
(ICOT). Using an example, we focus on how a transac-
tion consisting of Delta accass commands are received,
analyzed, managed and executed. This paper is mainly
concerned with the software conflguration and functional
capabilitiez distributed among the processors that con-
stitute Delta. A defailed description of the relational
database engine (RDBE) will be given in another paper
(Sakai B4). An approach to the use of Delta as a research
tool is also briefly described.

1 BACKGROUND AND INTRODUCTION

In Japan's Filth Generation Computet System (FGCS)
project, & relationzl database machine is being developed.
The relational database machine (Delta) will be finished at
the end of the project’s initial 3-year stage. It will then be
used as 3 back-end storage to sequential inference machineg
(5IM) users in the intermediate 4-year stage. An FGCS
prototype is shown in Figure 1. Delta receives concurrent
quaeries iasued from the SIM via a local area network. Delta
will be used not only as a back-end storage for the net-
wark, but also as a research tool for further investigations
of knowledge base machines. An sxperimental system in
which a SIM and Delta are tightly-coupled will be used
for this purpose.

SIH suas SIH Hetworl
f Controller
e 1

Logal Arez Hetwork

|

SIM

Delta

Flgure 1. An FGCS FPrototype

Delta is basically a relational database system featur-
ing a hardware relational-type database processor and a
large capacity semiconductor disk (Shibayama B4), It isa
funetionaliy-distributed multi-processor system provided
with most of the conventional database management
facilities, for example, multi-user support and recovery
Tunctions.

In this paper, the basic architectural concapt is
described in Chapter 2 and the bardware configuration is
described in Chapter 3. Chapter 4 describes in detail the
software configuration and how a transaction is decom-
posed, dispatched and executed acress the subsystems.
Research plans for developing = knowledge base machine
are briefly discussed in Chapter 5.

2 ARCHITECTURE

A conceptual diagram of Delta's architecture is shown
in Figure 2. Delta’s relational database machine design
uses a functionally-distributed architecture. By separat-
ing functions required for constituting a database manage-
meat syelem, efficient hardware and software can be
implemented for each of the functional subsystems. We
divided the database functions into five categories, Those
are: (1) bost interfacing, (2) query analysis and hardware

P Loegal Area Network :
= i Haintenance
Hul tibus Frogeasor

-—-—-J
Interface
Processor]
—

Control
Frooessop

Relational Higrarchiczl
Database

Engine

Hemory

Flgure 2. Delta Arehitecture

428

resource management in the subsystem level, (3) relational
database processing, (4) database storage management,
and {5) system supervizing. We provided an Interface
Processor (IP), a Control Processor (CP), Relational Data-
base Engines (RDBE), a Hierarchical Memory (HM) and
a Maintenance Processor (MP), respectively, to perform
the above distributed functions. The implementation of
each subsystem is described in the following chapter. The
summary of functions distributed to the subsystems are
as follows:

(1) Interface Processor (IP)
+ Loeal ares network Inmterface (physical and logieal)
This interface provides a loosely-coupled connection.
= A tightly-coupled Interface
This is an experimental interface witk a SIM.

+ Concurrent command-sequence management
Delta provides a multi-user environment. The IP acts
as a fromt-end for Delta and resolves command-sequence
eontentions from multiple SIMa,

* Tuple transfer

IP has a high-bandwidth transfer path to HM, which is
needed to perform this function.

{2} Control Processor (CP)

+ Transaction managememt
The transaction management function is responsible for
tracking the status of each transaction and for database
resource management,

s Command-tree mansgement
Delta command (command-tree) analysis, subcommand

generation, and subcommand execution control are per-
formed by thiz manager.
+ Dietlonary /directory mansgement

Delta’s dictionary is a set of meta-relations to which
users can refer. The directory is an internal data struc-
ture that the CP software refers to. Consistency muat
be maintained between them at transaction commit or
abort times.

+ Hecovery management

(3) Relational Database Engine (RDBE)

= Relational database processing
To execute relational algebra operations and set opera-
tions fast, this section requires special-purpeose hardware
and software. We observed that the hardware two-way
merge-sorting could be used to carry out Tast relational
database operations (Sakui 84). The simultaneous ex-
ecution of data transfer and relational database opera-
tion iz useful when the data amount i fairly large. To
enjoy the fast engine hardware, a bi-directional high-
bandwidth path to the storage portion is necessary.
This requirement led to the incorporation of a large
semiconductor memory with high-speed channels into
the Delta HM subsystem.

(4) Hierarehieal Memory (HM)
s Cathe and moving-head-disk management

Az Delts must accommeodate current technologies, the
omission of moving-head-disks for the storage device is

unthinkable. The HM is responsible for preparing and
receiving source and result relations (data) at a high
rate of transfer with RDBE, using a large semiconductor
Memory.
+ Data recovery
Another important role assigned to the HM is the
data recovery. This must be parformed, of course, in
cooperation with the CP and MP recovery management
sections.

(5} Maintenance Processor (MF)

* System supervising
The Maintenance Processor (MP) is responsible for sys-
tem supervision. As Delta is a large computer complex,

a global system maintenance section is needed. The
following lists show these tasks in a little more detail:

= Start-up and shut-down of each subsystem
s Subsystem status management -

+ Operator command executlon

* Delts system state management

Database loading and saving

Statistieal dats collection

i HARDWARE CONFIGURATION

The hardware configuration of the Delta system is
shown in Figure 3. We focused on the implementation
of RDBE in the hardware system development. RDBE's
hardware organization is shown in Figure 3. A two-way
merge-sorter and a merger are responsible for moet rela-
tional algebra operations and set operations. The merge-
sorter is a one-dimensional special-purpose processor array
for pipelined merge-sorting (Todd 78). The merge-sorter
can sort W items in (2 X N +logg N) time units, where a
time unit is the time required to transfer one item. A set
of four RDBE's are installed for parallel transaction ex-
ecution. Fach RDBE can work independently to exscute
separate queries or they can all work cooperatively to ex-
ecute a single relational database operation. The details of
RDBE's load distribution have mot yet been determined.
An RDBE has a general-purpose mini-computer GPU with
512KB of main storage for controlling the hardware sec-
tiom called the Engine Core and performing the RDBE
commands that the hardware section does not support,

The IF, CP and MP make use of the same general-
purpose mini-computers as RDBE. The sizes of IP, CP
and MP main storage are 1MB, 1MB and 512KB, respee-
tively. Each processor is provided with a local disk storage
for the operating system use. The CP disk i3 a zemicon-
ductor disk storage. The IP and MP are provided with
Winchester-type unremovable disk drives. CP's control
program temporarily stores the directory and other tables
in the semiconductor disk storage. This technmique has
been adopted for rapid access to information swapped out
in the secondary storage.

The HM is implemented using a larger general-purpose
CPU =as itz controller. The main storage of the CPU
is used for both program storage and as & disk cache.
The size of main storage is 128MB. Main storage will be

made non-volatile (at least from the software's point of
view) by an emergency power supply fo avoid disk ac-
cezses invoked by a write-through storage management
and to facilitate databage recovery. The moving-head-
digks have a capacity of about S00MB per volume. Each
pair of volumes is packaged in a housing alomg with its
own head assemblies and share a commen motor drive
(=pindle). Thirty-two such volumes are attached to the
10 channels; thus, a total storage capacity of about 20GB
is provided.

The CP, [P, RDBE and MP form a group of proces-
sors called the RDBM supervisory processing subsystem

429

(RSP for short). All the RSP constituents uae the same
CPU. The HM iz a different subsystem and has its own
CPU. Communication between the RSP constituents and
HM is performed via a standard channel interface. The
channel transfers data at speeds up to 3MB/second. An
RDBE iz provided with two independent channels to the
HM for dedicated I/O wuse. Each of the other RSP
constituents are provided with a zingle channel for bi-
directional communication. Internal communication in
RSP constituents are performed via IEEE488 buses. The
tranafer speed of the bus iz about 150KB/ second. As
ghown in Figure 3, the buses are independently installed
between the RSP constituents.

Lax _Ii—-—
IEEE4 B8
BUS LIAI— LIA
IP CRU
—{ & I/0
HIHA HY LEY
CHMIWNEL, @ rt=———
INTERFACE j DISKE CACHE
ICE
bt CPF CFU
L& I/0
1 HELR BHCTL
Iap
HMA J & —— SC0
RDBED . MHD
- GH
CRU DEC / 5
E-M IOF H
& I/0 \
— & HHD
HMA CH H
: 1 MTU
HMA MTC 1
ROBE3 .
CFu HTU
2-H
& IS0
LIA: LAN Adapter
LIAI: LIA Interface
HHA4 ICE: IC Bulk
{Semiconductor Disk)
HHA: HM Adapter
S-H: sorter and merger
CONSOLE| MTR MTRE: Monitor Panel
HMCTL; HM Controller
MPF CPU DEU: Disk Controllar
& L/O EMA MIU: HMT Contraoller

Figure 3. Delta Hardware Conflguration

430

Table 1. Dicticnary and Directory

name definar reference | external impl ementation | HM
updater interface interface
dietionary host® host relation permanent permanant
Delta relation relation
directopry Delta Delta nob defined| linked page
| data

®: Only qualified attributes can be updated by hests,

4 FUNCTION DISTRIBUTION OF DELTA

4.1 Software Configuration

Some pieces of software are common to IP, CP, and
MP. Principal among these is the operating system. The
operating system is a modified version of an existing one
and supports multi-tasking. The IEEE488 bus driver
iz used for inter-subsystem communications, except for
those with the HM. In the IP, the IEEE488 driver ia also
used as the LIA (LAN Adapter) physical level interface.
The RDBE has the same CPU board as the comtroller.
However, ita software does not have to perform coneurrent
operations, so an operating system is not used.

(1) IP

The IP is rezponsible for communicating with SIMs
in the LAN environment. The IP is physically connected
to the LIA by an IEEE488 bus. The physical level LIA
interface in IP is performed by the LIA communication
tagk. The logical level LIA interface is performed by
an IP control task. The IP has multiple command-tree
buffers for receiving multiple command-trees sent to it
concurrently. The IP eommand-tree management taak
queves the command-trees sent from a host in order of
their arrival in the command-tree buffer. The command-
tree management task then forwards the command-trees
in the buffer to the CP using a CP eommunleation task.
As the physical connection between the IP and the CP
iz also an JEEE4EE bus, this task uses an IEEE488 bus
driver, identical to the LIA physical level interface.

Usually, the Deita command-trees in a transaction
are taken out serially from the command-tree buffer.
However, asynchromous-type commands such as semse-
status and sbort-processing are processed as socon as pos-
gible when they arrive at IP and are recognized.

(2) CP

The CP is respensible for controlling transactions,
managing database and Delta resourees, command analysis,
issuing subcommands, dictionary/directory (D/D) manage-
ment, rollback and statistical data collecticn.

When the CP is triggered by the transfer of the start-
trangaction command from the IP command-tres manage-
ment task via the CP eommunleation task, 2 command-
tree processing task is created. A command-tree process-
Ing task corresponds to a transaction. The task is killed

upon termination of the transaction. An operating sys-
tem facility (transaction supervisor task) is notified of the
states of the command-Erea processing tasks.

The command-tree proceming iask gets command-
trees one after amother. It analyzes the command-tree,
and if necessary, locks permanent relationa at execution
time. It then generates a sequence of subcommands for
RDBE and HM by referring to the directory for schema
checking. After all the commands are translated into their
corresponding RDBE and HM subcommand sequences, a
command-tree processing task forwards these sequences
to the RDBE and the HM eommunieation task for dis-
tribution to the subsystems. At execution time, by check-
ing the responses from RDBE and HM, the command-tree
proeessing task determines the parameters to appear in
the generated subcommand sequence. For example, if the
resultant temporary relation of a command is found to
contain no tuples at all, the subsequent subcommand se-
quence is skipped.

The dietionary /directory (D/D) management task is
responsible for maintaining the directory for internal use
and the dictionary as a user reference. The differences
between the dictionary and the directory are summarized
in Table 1. Dictionary relations consist of two meta-
relations, “Relatlons™ and “Attributes”. Essentially, the
dietionary and directory held the same schema informa-
tion. Howewer, dictionary attributes unpecessary for the
schema checking are not included in the directory. The
reasons we separated the dictionary and directory are: (1)
the efficiency in look-up, and (2) the comeurrent access
control. Uenally, relations are locked to manage concur-
rency control. If the dictionary is alse locked during a
lock-up, locking conflicts will be frequent. Instead, we
use the directory for finer concurrency control. The HM
supports the directory storage (directory area) separate
from the disk cache or program ares., The CP semicon-
ductor disk cache stores the directory for repeated use, If
necessary, the CP obtains directory pages from the HM
by directory-access subcommands.

Az Delta is used in a network environment, there is a
problem with the consistency of dictionaries. Each Delta
contrel program in hosts will contain its own dictionary.
A Delta control program has no way of knowing when
another control program’s dictionary has been updated.
To resolve this problem, an attribute (Redefined-at) is
provided for the “Relatlons™ relation to keep the diction-

ary current. In the “Redefined-at® attribute, the time of
the last redefinition is recorded. Every permanent relation
access must be associated with this value. IT it does not
match the current valoe, Delta informs the host that the
dictionary is obsolete. The host must read the dictionary
relations in order to continue.

The concurrency contrel task iz a subtask of the
transaetlon supervisory task. This task manages concur-
rency among transactions. Concurrency is controlled by
locking the resources (relations). We selected the two-
phase locking method. Permanent relations to be locked
during a transaction ean be explicitly locked using a start-
transaction command, or they can be automatically locked
before command-tree execution. All the relations are uwn-
locked at the end of a transaction whether it iz a normal
or an abnormal termination.

{3) RDBE

The RDBE doe: not have an operating system. Iis
entire program works as a single task. The software strue-
ture of RDBE consista of three layers: the uppermost layer
controls subcommand execution; the middle layer controls
the I/O traffic; and the lowest layer controls interrupt han-
dling.

The subcommand executlon layer receives subcom-
mands from the CP and MF, analyzes and executes them
and returns responses to their senders. Basically, subeom-
mand exesution Ixyer repeats this cyele. It calls the I/O
iraffle control layer as libraries for handling I/O devices.
Thiz layer alse performs extended operations that the
hardware core section does not support. The operations
are listed below:

+ Filtering of result data by a complex criteria
The hardware core section can perform operations only
with a simple criterion such as & range search. The con-
junction of one-term criteria, for example, is performed
within the CPT.

» Arithmetic operations on atiribute flelds and result
valne assignment

+ Apgregate operations on grouped streams

These operations are specified as parameters of RDBE
subcommands.

The If O traffle control layer provides library routines
for the subcommand exeeutlon layer and interrupt han-
dling routines for the interrapt handling tayer. Recoverable
I/O errors are for the meat part corrected hera.

The interrupt handling layer performs the following
tasks:

» It astablishes an environment in which RDBE control
program rums at start-up time.

[t calls an ioterrupt handling routine provided by the
/O traffic control layer by checking the If/O device
status when an interrupt occurs.

It handles other interrapts such as CPU internal inter-
rupts.

« It provides libraries for manipulating special machine-
dependent instructions, such as PSW modifications.

431

{4 BM
The HM software configuration is as follows:

» Operating system
= HM contral program
«= Control module

This module consists of an HM task control submodule,
which manages HM maulti-tasking, and an RSP inter-
face submodule responsible for REP interfacing.

»s Subcommand processing module

This module processes various HM subcommands is-
sued from other subsystems. The subcommands are
classified by processing type.

#+ Common function module

This module iz a collection of functions wsed among
other sections. Cluster management, log management,
recovery management, memory management and disk
space management are its principal tasks.

== Initialization and termioation module

+ Support programs
& Test programs

The HM control program performs the main databass
operations spacified in the form of subcommands. Each
module in the program is further divided into submodules
corresponding to logical umits of HM internal opera-
tions. These submodules run under the HM task eon-
trol submodule. Subcommands from RSF are collectively
managed by the RSP Interfaee submodule., A subcom-
mand process submodule is organized to correspond to a
set of RSF subcommands. For example, the attribute
definition foperation submaodule is activated to a set of at-
tribute definition-type subcommand sequences. The HM
iz ugually a pessive subzyatem. It is activated upon recetpt
of a subcommand.

4.2 A Sample Transaction Frocessing Flow

A3 described in the architecture chapter, Delta satis-
fies a set of database machine requirements by adopting
a funetionally-distributed configuration. By showing how
a sample transaction is received, analyzed and executed,
we will illustrate the functional capabilities distributed

among Delta subsystemas.

A transaction ia a group of command-trees begin-
ning with a start-transaction command and ending with
an end-transaetion command. When the database up-
date is specified, a transaction iz the unit of update:
any unsuccessful transaction iz rolled back to its state
previous to the stari-transaction command; a success-
ful transaction is Tully updated. In a read-only se-
quence of Delta commands, a transaction defines a scope
in which intermediate relations (typically a result of a
command-tree) are stored and vsed across command-trees.
Once a commit-transaetlon command is received, only
tnput/output type commands are accepted until the end-
transaction command is received.

We will consider the following sample transactiom.
The permanent relations used are company(compamy.

432

name, loeation) and leot(name, age, company, laboratory,
group). The following query selects the names, [aboratory
affiliation and group name of the persons within ICOT
who were formerly employed by a company in Yokohama.
This query is written as follows in & SQL-like notation:

start-transaction
select name, laboratory, group
frem jeot

This query is translated into the Delta command se-

quence by a translator {in SIM software) as follows (the
parameters are modified or abbreviated for readability):

(1.1} Stari-transaetion

define the beginning of 2 transaction scope

(2.1) Selection(company,[2]=[yokohama],temp1)

select from company relation in which the second

([2]) attribute equals yokohama, place resultant
relation inte a temporary relation templ

where company = next
select company name

from company

where location = [yokehama|
end-transaction. .

[subeommand group 1 |
/* generation of tidl:company-location pair *f

CP—HM: prepare-qualified-buffer{bufl);lecation=yokahama

CP—HM: prepare-buffer(buf2);output bulfer
CP—RDBE: restrict;company-lecatlon=yokohama
RDBE—HM: start-stream-in(bufl);04 Lst s abtained
ROEE—HM: start-stream-out{buf2);bof2=tid1

[subeommand group 2 |

/* sorting of tidl */

CP—HM: prepare-buffer(buf3);baffer for sorted tid
CP—RDBE: zort;sorting RDBE command

RDBE--HM: stari-stream-in(buf2)

HDBE—HM: start-stream-out{buf3);bufi=tidl (sorted)
[subcommand group 3 |

/* making tidl:company-name pair from tidi */
CP=+HM: prepare-qualifled-tid-buffer(buf4)
CP—HM: prepare-buffer(buf5);eutput buffer
CP—RDEE: reatrict;tld1 selection

RDBE—HM: start-atream-in(buf4);tid1:company-name
RDBE—-HM: start-stream-in(buf3);iid1 (sorted)
RDBE—HM: start-stream-out({buf5):141:.company-name
[subsommand group 4 |

f* semi-join of icot-company and company-name */
CP—HM: prepare-gqualifled-buffer(buf8);lcot-company
CP—HM: prepare-buffer(bufT);tid triplets output buffer
CP~RDBE: join;company-name=Iicot-company
RDEE—HM: start-stream-in{buf5);company-nama
RODBE—HM: start-stream-in{buf8);icot-company
RDBE--HM: start-stream-out(bufT);ud triplets

[subcommand group 5§ |

[t icot tid sort */

CP—+HM: prapare-buffar(buf®);cutput baffer
CP—+ROBE: unigue;lcot ¢4 extract and sart
RDBE—HM: start-stream-in{bufT);ud triplets btz
ROBE—-HM: start-stream-out{buf8);H42 (serted)

| subzommand group 8 |

[* icot-name attribute selection *f

CP-H: prepare-qualified-tid- buffar(bafd);icot-name
CP—HM: prepare-buffar(buf10)

CP—RDBE: restrict

RDBE—HM: start-stream-in{bufd);icot-name
RDBE--HM: start-stream-in(buf7);4d triplets
RDBE—HM: start-stream-out{buf10)

(2.2) Projection(temp1,[1),temp3)

project the templ relation against the frst ([1])

attribute into temp2 relation

[subcommand group T |

/* icot-lab attribute selection */
CP—HM: prepare-qualified-tid-buffar{bufl1)
CP—+HM: prepare-buffer(bufl2)
CP—+RDEE: restrict

RDBE—§M: start-stream-in{bufll)
RDBE—HM: start-stream-in{bufT)
RUBE—~HM: start-stream-out{buf12)

[subeommand group & |

/* icot-group attribute selection */
CP=HM: prepare-qualified-tid-buffer{buf13)
CP—~HM: prepare- buffer{buf14)
CP—RDBE: restrict

RDEE-HM: start-stream-in{buf13)
RDBE-+HM: start-stream-in{bufT)
RDBE—HM: start-stream-out{buf14)

[subeommand group @ |

f* icot-name attribute sort by tid */
CP—HM: prepare-buffer{bufl5)
CP—RDBE: sort

RDBE—HM: start-stream-in{bufi0)
RDBE—~HM: start-stream-out(bufl5)
[subeommand group 10 |

/* icot-lab attribute sort by tid */
CP—HM: prepare-buffer{bof16)
CP—RDBE: sort

ROBE—HM: start-stream-in(bufl2)
RODBE—HM: start-stream-out(buf16)

[subeommand group i1 |

/* icot-group attribute sort by tid */-
CP=HM: prepare-bulfer{bufl7)
CP--ROBE; sork

ROBE—HM: start-stream-in{bufl4)
RDBE-HM: start-stream-out{buf17)

[subeommand group 12 |

[* tuple reconstroction *f

CP=+HM: transpose-to-tuples

J* result tuple transfer *f

IP—HM: start-packet-infor got

1P —HM: start-packet-infor get-next

The 30{—YY: preflx denotes subcommand issuance from
XX to ¥Y. The instruetions next to the prefix are subcom-

mands. Semicolon begins a comment.

Figure 4. HM and RDBE subtommand sequence

{2.3) Projection(icot,[1,3,4,5);temp3)
project icot relation against the first, third, fourth
and fifth attributes into temp3d

(2.4) Natural-join(temp3,temp3,[2]=]|1];temp4)
natural-join tempd and temp2 with the second and
the first attributes, respectively, put into temp4

(2.5) Projection(tempd,[1,3,4],int1)
project tempd against the first, third and fourth
attributes into an intermediate relation intl

{3.1) Commit-transsetion

freege the transaction; freezing means to inhibit
further modification of the resultant intermediate
relation in the case of read-only transactions

{4.1) Get{int1)

fetch the intermediate relation (intl) from the fop
tuple

[5.1) Get-next{imtl])

fetch the intermediate relation subsequently
(6.1) End-transaction

conclude the tranzaction

This command-sequence consists of six command-
trees; the first command nomber (before the decimal
point) denctes a command-tree number, the second oum-
ber (after the decimal peint) denotes a command nomber
within 3 command-trea. Each transaction-contrel com-
mand and input/output-type command forme their own
command-tree. The six command-trees are packed with
a chain identifler, command-tree identifiers and physical
delimiters by SIM's translator software. This packing is
called a command-tree ehain. The command-tree chain
is transferred as a unit in a seqouence of LIA commands
(LAN packets). The LAN interface adapter (LIA) is a
LAN subsystem responsible for interfacing between SIM
and Delta. The command-tree chain are then forwarded
to the 8TM network subsystem (N8), which deals with the
Iozal area network interfacing task.

NS uses predetermined network protocols to send the
command-trees to Delta. The firat thing that NS must
do iz to form a eommuniestlon-group with Delta for each
user database job. A user job consists of a set of serialized
transactions.

The sample command sequence is translated into the
RDEE and HM subcommand sequence shown in Figure 4.

Delta’s internal storage schema is stiribute-based.
Evary attribute is stored separately with a tuple-identifier
{tid) and tag fields. Therefore, the subcommand sequence
does not directly correspond to the Delta command se-
quence. With a tuple-based schema, the arder of the rela-
tional database operations affects performance. For ex-
ample, projections are performed where appropriate, to
reduce unnecessary attribute handling. With an attribute-
bazed aschema, as the subcommands only work on at-
tributes that appear explicitly in the operations, the order
of projection commands is of less importance. Other op-
timizations, for example, selections before a join, are still
effective using the attribute-based schema.

433

Subcommand group 1 (3G1 for short) in Figure 4
filters the tid fields of the company-loeation attribute, the
valoe of which is “yokohama® in bef2. 5G2 sort the tid
fields in bufl into buf3. 5G3 joins the tid fields with
the eompany-name attribute’s tid flald. The company-
name zttribute values are obtained in buf5. 5G4 joins the
company-name attribute values in bufs with leot-company
attribute walues. Thiz corresponds to the natural-join
command. The content of buf5 iz a set of triplets of tid's,
that is, the tid of the company relation, the tid of the leot
relation and a new tid for the relation generated by the
join. Bufs is a form of intermediate relation and is the
result of the second command-tree, specified as “int1”. If
“intl™ is used by ancther command, the following sub-
command sequence is changed. In this example, the next
command-tres is a eommit-teansaction, go the reconstroe-
tion process of tuples into cutput form (usual tuple-based
form) takes place. 5G5 extracts and sorts the tids of the
ieot relation from the triplet buffer for later tid-restriction,
that is, selection of other attributes needed for the out-
put relation. 5Gs 6, T and 8 select the corresponding at-
tributes, leot-name, icot-lab, lcot-group, respectively, for
the selected leot tids. The output attributes are then
gorted and reconstructed into tuple form by 8Gs through
12. The buffers used in the transaction are dynamically
released within the transaction. The buffers for the out-
put form relation are released when the end-transaction
command is received.

5 DELTA IN A LOGIC PROGRAMMING
RESEARCH ENVIRONMENT

Delta is used as a back-end database storage in the
intermediate stage of the Fifth Generation Cemputer
Gystems project. A number of S5IM machines are com-
nected via the ICOT's local area network (Taguchi B4).
Delta iz accessed from a Delta interface program (called
RDBMS for relational database machine management sys-
tem) and from the SIM operating system.

There arc several software layers through which user
access Delta (Figure 5). The lowest layer is responsible
for handling the physical network protocols. This layer
corresponds to the IP LIA eommuniestion task. The next
layer handles logical network protocol. Most of the net-
work layer is supported by the SIM operating system’s
network subsystem (NS).

The translator layer will be supported by the RDBMS.
During the translation process, RDBMS refers to the
prefetched dictionary relations, generates and manages
transactions, controls access rights for security and per-
forms related operations.

‘We anticipate the following uses:

(1) Users handle logical Delta commands directly. This
uses the physical Delia command translation layer,

(2) Users define (in programs) special predicates and write
programs in the uwsual way. The RDBMS relntional
algebra translation Iayer is responsible for both the io-
terpretation of uzer programs and the transformation
of relational database queries into Delta-command
form. This method is presented in (Yokota 84).

434

Metwork layer —E Physical network layer
(148) Logical metwork layer

Translator layer Fhysical Delta-command translation layer
(RDEMS) -E Legical Delta-command transiation layer

Delta command generation layer

Transaction management
{RDEMS)

Dictionary management

Aceesa right (security) control
Resource management
Transaction generation/deletion
Command execution contrsl

Figure 5. RDBMS Software Layers

(3) Users will have to write their own translation layer
programs for special-purpose software application sys-
tems. The output of the program is passed to the
logieal Delta interfacing layer.

(4) Usera need only use a high-level database query lan-
guage, for example, SQL or QBE, which make use of
the RDBME functions.

In the local area network environment, however, the
LAN communication overhead is too large for interactive
database access. We proposed a method of combining a
legle programming language with the relational database.
Thiz corresponds to the second usage in the list. In this
method, Delta accesses are collected and jssved in a batch,
becawse of the access characteristics of the LAN.

‘We will alse provide a more tightly-coupled SIM-to-
Delta interface. We think that it is necessary to tight-
couple the inference mechaniam with the database access
mechanism to make & knowledge base machine dealing
with vast ameounts of knowledge for performing inference.

The following are a few of the approaches for devel-
oping a knowledge base machine based on logic program-
ming.

(1) Addition of a virtual memory system to the SIM ar-
chitecture to store the. entire knowledge base along
with inference procedures

(2) Establishment of a tightly-coupled interface betwesn
the logic programming language and knowledge baze

(8) Investigation of totally new architectures for manipulat-
ing knowledge and inference procedures

The first approach does not seem promising, because
the internal data structure required to perform inference
and that required to access a large amount of data are very
different. However, for programmers this one-level storage
treatment would be optimal. A similar method must be
found to facilitate programimers’ access to the knowledge
basa system. Hewever, we do not consider this a good

S5IM software layers

inference layer

knowledge base
interface layer

Delta interface layer
(translator layer and
communication layer)

tightly=-coupled
connection

Delta
(Relational Database layer)

Figure 8. Software layers
for a Knowledge Base Experimentation

approach for implementation.

The third approach seems to be premature in view of
the current state of knowledge base research. To develop
& new architecture, a clear direction and sound principle
are required. Not until the research stages have been com-
pleted will such principles be subject to effective investiga-
tion.

We think that the second approach is most practical
given the resources currently available. An interface be-
tween the logic programming language and the knowledge
base zection must be thoroughly investigated. The rela-
tional database concept is not fully appropriate for the
basis for such an interface. We consider the unit-clause
interface to be better suited for the knowledge base modal
in conjunction with a logic programming language (Yokota
83). This implies that a simple uniflention capability s a
natural extension of the relational model and provides a
basis for a knowledge base model.

To develop an experimental knowledge base system
in keeping with these assumptions, a tightly-coupled con-
nection between SIM and Delta is needed. As LANs typi-
cally cause some amount of transfer overhead, a faster and
more responsive interface is mecessary for the knowledge
base machine. We decided to use the buffer memory
in the SIM system as a eommuniestion memory. The
I/O buffer memory is connected to the IEEETS96 bus
(Multibus) under an IfO contreller. The path between
Delta and SIM is established by adding an interface board
to the SIM system for accessing the bus and connecting
it to the IP. We will create a software system for SIM
that clesely-couples the logic programming language to
the relational database. By providing a software layer
hierarchically superior to RDBMS, we can simulate an ex-
perimental interface between the knowledge base and in-
ference mechanism. Thus, we can vary the interface levals.
'We also plan to investigate the nature of appropriate in-
terfaces for future knowledge base machines (Figure 8).

& CONCLUSION

We have described the Tunctionally-distributed ar-
chitecture of Delts, its hardware and software configura-
tion. Wi have presented a detailed processing flow by ex-
amining a sample transaction. The relationzhip of Delta
to a logic programming environment and future research
plane for & knowledge base machine are described. More
accurate performance estimates based on measurements
made on the astval machine, represent the next step in
evaluation. Research on knowledge base mechanizms will
be the focus of the last past of the project’s initial stage.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to the
Toshiba and Hitachi researchets and engineers who as-
sisted with the implementation and design for their efforts
in this critical undertaking.

REFERENCES

Sakai, H., Iwata, K., Kamiya, 5., Abe, M., Tanaka A,
Shibayama, 5., Murakami, K. Design and Implementation
of the Relational Database Engine. Prec. 2nd FGGS
Conference, Nov., 1984,

Shibayama, 5., Kakuta, T., Miyazaki, N., Yokota, H,,
Murakami, K. A Relational Database Machine with Large
Semiconductor Disk and Hardware Relatiomal Algebra
Processor. JCOT Techaical Report TR-055 and also in
New Generation Computing, Vol.2, No.2, May, 1984.

Taguchi, A., Miyazaki, M., Yamamoto, A., Kitakami, H.,
Kaneke, K., Murakami, K. INI: Internal Network in ICOT
and its Future. Proe. 7th ICCC, Oct., 1984.

Todd, 5. Algorithm and Hardware for a Merge Sort Using
Multiple Processors. IBM Journal of Res. and Develop.,
22, 1978,

Yokota, H., Kakuta, T., Miyazaki, N., Shibayama, 8.,
Murakami, K. An Investigation for Building Knowledge
Base Machines. ICOT Technical Memorandum TM-0019,
19383,

Yokota, H., Kunifuji, 5., Kakuta, T, Miyazaki, N.,
Shibayama, 5., Murakami, K. An Enhanced Inference
Mechanism for Generating Relational Algebra Queries.
Proc. 3rd ACM SIGACT-SIGMOD symposium on Priaci-
ples of Datebase Systems, pp. 229 - 238, April, 1984,

435

