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ABSTRACT

The Personal Sequential Inference Machine (P5I) is
a personal computer designed as a tool for software
and hardware development in Japan's Filth Generation
Computer Systems (FGCS) project. This paper deseribes
P5I's hardware systems and the unigue features of its data

processing and sequence eontrol units,

The PSI system adopts e logic programing language
ag its primary language. It consists of a large main
memory (16 mega words), interactive 1/0 devices, and
operating system support and language support hardware,
PSI's machine language ia a high-level language based on
logic programming, and its deseription level ls very similar
to that of Prolog. It is called Kernel Language Version 0
(KL0}. Unification and backtracking, the principal opera-
tions of KL.0, are performed by the KLO firmware in-
terpreter in cooperation with several dedicated hardware
components. These include branch and dispatch facility
testing tags, a cache memory designed for stack ac-
cess, and a high-speed local memory (called a work flla)
designed for use in tail recursive optimization.

Commercially available high-speed Schottkey TTL
ICs are used in the CPU. Printed circuit boards for the
CPU, main memory, and I/O controllers are mounted
in a single cabinet along with secondary storage devices.
A prototype machine has been manufactured and micre-
program development is nearly complete.

1 INTRODUCTION

Japan’s Fifth Generation Computer Project has start-
ed using & new logic-based programming language as its
primary language for both software and bardware research
and development. However, programmieg environments
far such languages have not heen sufficiently developed in
conventional computer systems in terms of their process-
ing speed, memory space, language support, ard flexibility
for experimentation. In order to build a research and de-
velopment tool fulfilling these requirements, & high-level
language machine specialized for logic programming is
under development at ICOT and supporting companies
[Ur:lnda 83], [Yokota B3], [MNishikawa 23], The machine
is called the Personal Sequential Inference Machine (PSI),
reflecting its machine features and functions.

To develop a viable programming environment for
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logic programming, several targets have been established
for P8I, as follows:

(a) Efficient execution of logic programming language
KL0 (Kernel Language version 0), which is the machine
language of PSI [Chilayama 84-1)

(6} A machine architecture that supports the SIMPOS
operating system developed for PSI [Hattori 83

(e) Memory size and execution speed sufficient for ex-
ecuting large application programs. Specifically, as
compared with the compiler version of Dec-10 Prolog
[Bowen 81] on the Dee-2080, PSI will have a maximum
of 16M words of memory, w]m:h is 84 times larger than
that of Dec-10 Prolog, and will attain approximataly
30K LIPS (logical inferances per second) in processing
apeed, which is almost equivelent to the Dec-10 Prolog
on the Dec-2060.

{d) Highly interactive 1/Q devices, such as a bit-mapped
dizplay, mouse, ete.

(2} A local area network (LAN) system for inter-PSI com-
munication and resource sharing

() Reasonable physical size for personal use and practical
cost-effectiveness

(g) Reliability as a research and development tool
{b) Early svailability
Other target specifications are listed below. These involve

the plan to use PSI as a tool for architectural research into
efficient execution mechanisms for logie programming.

(a) The adoption of hardware mechanisms resulting from
ICOT research that increase unification speed

{b) A fexible microprogrammed sequence controller with
large writable control storage

(<) Hardware and firmware evaluation facilities for measur-
ing dynamic characteristics and collecting statistical
data

To satisfy these specifications, we have proceeded
with the designs for the architecture and the hardware.
In this paper, PSI's hardware system and its unique fea-
tures will mainly be described. The PSI architecture 1a
prezented firat, then the hardware conflguration and the
detailed specifications for the specially designed part of
the PSI CPU are described. The action and usage of each
bardware component of the CPU at the time of program
execution are also mentioned,



2 PSI ARCHITECTURE

In this chapter, we summarize the hardware architec-
ture of P8I mainly from the machine-language level, i.e.,
from the system programmer’s poiot of view.

2.1 Word format

A word consists of 40 bits, as shown in Fig.1. Eight
bits are used for a tag and 32 bits for data. The tag
contains two mark bits for garbage collection (GC tag) and
six bits for a data tag that represents one of the following
data types:

undefined, symbelic atom,

integer, foating peint number,

stack /heap vector, string, code, built~in code,
local/glebal variable, local/global reference,
hooked variable, control marks, etc.

2.2 Machine Instructions

KLO, a logic progremming language whose specifica-
tions are almost equivalent to those of Dee-10 Prolog, is
designed to define the functione of the PSI machine in-
structions. The representation of the machine instroction,
shown in Fig.2, is a simple converted form of the KLO
source program. Each instruction code can correspond
to each component of the source pregram. The machine
instruction is executed by the Srmware interpreter, by
which unification and backtracking are also performed.
The reason for the adoption of high-level machine instruc-
tions is discussed in section 4.1.

The representation of the machine instruetion of a
KLO clause containe a clause header, head arguments and
some body goals (ef. Fig.2). These body goals include
usar-defined predicates (which are actually pointers to the
instrection representation of the clause and arguments)
and built-in predicates. Most built-in predicates have a
compact format that contains one operation code and at
most three arguments In one word. Each of the argu-
ments has a 3-bit tag and 5-bit data. When the built-
in predicate is executed, & corresponding frmware sub-

routine is called directly according to the operation code. -

If integers or variable numbers appearing as arguments are
small enough to represent in five bits, most built-in predi-
cates can be packed in one word. This representation is
quite affective in saving memory apace and shortening the
execution time.

2.3 KL

The specification af KLO is summarized as follows:

39 ~GC Tag ]
T
Data Tag Data
@ 8 2

Fig.l Word Format
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{a) It is based on a subset of Dec-10 Prolog.
(b) It has extended control structures.
() It has hardware contrel functions.

“Subset of Dec-10 Prolog® means that KLO does not in-
clude built-in pradieates compatible with those af Dee-10
Prolog for internal data base management, such as Assert
or Retract, and IfQ predicates, such as Read or Write.
Thesze predicates are replaced by user-defined predicates
using primitive built-in predicates of the hardware control
functions.

The hardware control functions correspond to direct
hardware operations to handle hardware registers, memory,
and the I/O bus.

The extended control structures [Takagi 83) contain
such functicms as Bind-hook, On-backtrack, Extended-
cut, ete. Bind-hook is a special function for proce-
dure invocation, which calls a previously registered pro-
cedure when a specifled wariable is unified to a walue,
On-backirack is a funetion that invokes a previously
registered procedurs only whan backiracking oceurs and
control returns to the registration point of the procedure.
Extended-cut specifies the level of a predicate’s call to cut
the or nodes of that level. These extended control struc-
tures enhance the descriptive power of the language, but
require many run-time supports (operations that can not
be datermined during compilation).

pI(E, Y, tast) = p2(X,Z2), add(Z,5,4), P3(A,256,Y)
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All the system programs and the user programs are
written in logie programming language ESP (Extended
Self-contained Prolog) [Chikayama 83-2] [Chikayama 84-
2], which iz the system description language and user lan-
guage of PSL. These programs are compiled into KLO for
execution.

2.4 Execution environment for K10

To execute KLO programs, the interpreter uses four
stacks, namely, loeal, global, control, and trail stacks, and
one heap area. The heap area is used to store machine
instructions and vectors (vectors include usual structured
data such as liste and arrays). For representing strue-
tured data, the structure-sharing method [Warren T7] is
uzed. The utilization of the stacks and execution control
mechanisms are basically the same as in Dec-10 Prolog
[Bowen &1)[warren 77]. However, Dec-10 Prolog's local
stack is separated into contrel and local stacks in P31, be-
cause an independent control frame is needed for extended
control structures.

Fig.3 shows the execution environment of KLO during
unification. There are machine instructions for the clavses
of ‘caller’ and ‘callee” in the heap arca, and instruction
pointers for each. As in Dec-10 FProlog, a group of vari-
able cells, called a frame, is made corresponding to caller
or callee. These frames are placed on the local stack for
variables and on the global stack for variables In the strue-
tured data. To sccess a variable cell, the relative distance
from the frame base that is pointed to by a frame-base
pointer iz uzed. The control stack is used to stare frames
containing information of the return chain and the back-
track chain, as well as pointers to the environment for
continuing execution at the return peint. The trail stack
is used for storing cell addresses that must be recovered
to the initial state on backiracking and is accessed using
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its stack-top pointer. Thesze pointers, namely, instruction
pointers, frame-base pointers, and stack-top pointers, con-
stitute the execution environment of KLO.

1.5 Address representation

To execute KL.O programs, four stacks and a heap
area are reguired. Concurrent execution of multiple
processes js necessary for PSl, and sharing of instruction
codes and variable spaces among the processes are also
required. To satisfly these requirements, the address space
is divided into independent logical spaces, called 'areas’,
and each iz identifled by an area number. An area can be
asgigned to one of four stacks of a process, or to a heap
area shared among processes for code storage and commeon
variable spaces. Thus, the address representation of P3I,
shown in Fig.4, contains an 8-bit area gumber and a 24-bit
inmer ares address, This means that there can be up to
256 areas, each of which can be assigned physical memory
up to 16M worda. .

1.8 Address translation

PSI can have up to 16M words of physical memory.
To allocate and relocate physical memory more efficiently
to each area, an address translation mechanism is intro-
duced. Physical memory is managed in 1K-word pages.
Pages are allocated to each area on demand, and dealloca-
tiom is performed by a garbage collector. Fig.5 illustrates
the address translation mechanism, which is performed
using two tables, one for the page map base and ancther
for the page map.

Object Code

» [nslruction
Counter
of Callee

Trail
Contral

Global Using 4 Stacks

Local

Fig.3 Execution Environment for KLO
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0 % SYSTEM CONFIGURATION

Mrea FMumber Inner Area Address

3.1 Configuration of the total system
Fig.6 shows the system conflguration of PSI. The PSI

&

23 i0_9

CPU contains a sequence control unit, & data processing
unit, a memory module, which includes a cache and an
address trapslation ueit, and an I/O bus interface unit.

=

Logical Page Mumber Offset

These are connectad to each other by internal buses. The
P31 1/O system contains a [EEE-T86 standard bus and
geveral 1/0 devices. A console processor is connected to
the CPU for maintenance, initialization, and debugging

An Area: A Logical Address Space of

Maximum 16 M Words
Whole Address Space (32 Bits):

Consisting of Independent 256 Areas

Fig4 Address Representation

2.7 Multiple proceases

Many programs, such as the editor, compiler, device
handlers, aed user programs, are executed aa different
processes in PSL. Each of these processes has & process
gtatus that includes KLO execution environment and
hardware control information, such as processor priority
for interrupt procassing. This environment and informa-
ticn is collected in a table, called a process control bleck

(PCB).

The PCB of an inactive process is stored in a local
memory in the CPU, whereas the PCB of an active process
(current PCB) is distributed in CPU registers. The con-
tents of the current PCB are swapped by the firmware
when process switching occurs. Process switching is in-
itiated by an interrupt or various buill-in predicates. The
maximum number of processes is 63 due to the limitation
on the number of areas. However, this is sufficient for the

operating system and most User programs.

1.8 Interruption

A vectored interrupt system is adepted in P51 An in-
terrupt vector is prepared for each interrupt source (e.g.,

an IJO device) and a registered process identifier is as-

gigned to each vector. When an interrupt occurs, a process
is switched to the corresponding registered process by the
firmware. Thers are eight interrupt levels, two for exter-
nal and six for internal interrupis. PS5l alao has a non-
maskable trap system to deal with errors that cccur during
program execution.

Garbage eollection {GC) ie performed as an independ-
ent process in PSI and is invoked by a GC trap. However,
gome interrupts, such as hardware errors and urgent in-
terrupts from 10 devices, may take priority over garbage
collection. These urgent interrupts are handled by spe-
cial processes, called supra-GC processes, that use some
gpecial areas for stacks and & heap. These areas, called
GC-less areas, are not subject to garbage collection.

suppert. A mini-computer (PDP11/23plus) can also be
connected to the CPU instead of the console processor as
a more powerlul debugging aid.

3.2 1O devices
PSI has the foliowing IO devices:
a bit-mapped display (1200 x 900 pixels),
an optical mouse, a keyboard,
kard disk drives (3TM bytes x 2),
floppy disk drives (1M bytes x 2),
a local area network (LAN),
and a serial printer

Some commercially available devices that have IEEE-TS6
standard interfaces can also be conpected. There is a
512K-byte buffer memory on the [/O bus, which is wsed for
data transfer to secondary storage deviees and the LAN.
The buffer memery iz also managed as a disk cache by
the software. The bit-mapped display controller has raster
operation functions and independent image memory. The
image memory can store more than ten full sereen images
and character fonts. Window images are normally stored
here to decrease the load on the I/0 bus.

a1 24 23 108 0
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Area Table Page Map

23 ! w9 4 0

Physical Page Address Difset

Fig.5 Address Translation Mechanizm
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4 HARDWARE DESIGN

4.1 Basle design coneepts

In the PSI hardware design, pricrity was given to
sufficient execution speed and large memory space, while
keeping reasonable physical size and early availability, To
eatisly thege requirements, the design philosophy called for
avoiding hardware complexity and for utilising micropro-
gram techniques. However, the PSI CPU has adopted
some specialized hardware mechanisms concentrating on
speedup of the KLO fSrmware interpreter, especially of
unification and execution controls. To satisfy the re-
quirement for fast development, it was decided to utilize
commercially-available L5Is and time-tested implementa-
tion techniques. In this section, the basic design concepts
that determine PSI hardware architecture are discussed,

(1) Machine instruction level and CPU architecturs

Two different design methods were conzidered com-
cerning the machine instruction and CPU architecture
designs. The first method takes high-level machine in-
structions, whose level is nearly the same as the source
language level, like those of PSL The representation of
the machine instructions can closely correspond to the
spurce program; thus, the size of the instruction code iz
keld down. In this method, machine instructions are ex-
ecuted by the firmware interpreter. For interpretive ex-
ecution, it is useless to adopt sueh heavy hardware as an
imstruction pre-fetch unit or a pipelined execotion unit
because microprogram branch occurs very frequently and
it breakes the execution pipes. The second meihod is to
choose low-level machine instructions, In this methed,
source programs are compiled ioto machine instructions,
fetched by an instruction pre-feteh wnit and executed
less interpretively (determinately) by & pipelined execu-
tion unit (for example, |Tick 84]). In this method, the

| Figf System Configuration
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determinate instruction exesution mechanlsm makes the
hardware easy to optimize; thus, it is more suitable for
high-speed execution. However, the complexity and the
ameount of the hardware will increase.

The extended control stractures of KLO [Takagi 83
require several run-time supports (operstions that ean
not be determined during compilation). These ron-time
supports are easily realized by the interpretive execution
method which doesn’t require complex hardware. And
translation cost between source programs and machine in-
structions is very low for the method. For these reason,
PSI has chosen the interpretive execution method. Since
the method doesn't require frequent memory access to the
instruction codes, because of the small instrection code
size, the instruction pre-Tetch unit or the instruction cache
memory ¢an be omitted. The interface between the CPU
and the main memory 1s then simplified to a single connec-
tion batween the CPU and one cache memory. As a result,
P51 has adopted a simple hardware architecture. However,
several hardware components are specially designed to en-
hance the performance of the KLD firmware interpreter,

(b} Speeding up stack access

In executing a language like Dec-10 Prolog, informa-
tion for backtracking is often pushed and left on the stack,
and thus the frame of the ealler clause iz often buried
deep im the stack., Because of this, the stack accesses
scatter both to the top and to the inner part of the stack.
Hence, a stack cache that has only a copy of the stack-top
data in high-speed memory doesn't work efficiently. An
independent hardware stack is also unsuitable because it
is not large enough to be used for the global stack KLO
requires. Accordingly, a cache memory that iz a more
general hardware facility has been chosen to speed up
PSI and a few functions suited to stack access have been
adopted for the cache memory.



(e} Specialized hardware

Data paths and the basic CPU control timing have
been kept as simple as possible. However, branch mecha-
nisms for micro instructions, such as conditional branch
and dispatch, which are often used in the firmware in-
terpreter, and a register file used for the tail recursion
optimization [Warren 80] are specially desigmed for the
efficient execution of KLD. These are described in detail
in following sections.

4.3 Miero Instructions

4.2.1 Comntrol features

A very simple pipelined contrel iz used to fetch the
pext micro instroction in parallel with execution of the
current micro jnstruction. The branch comtrol circuit is
designed so that the execution result of 3 micro instroc-
tion, such as an ALU flag or a register valve, can be
used in the immediately subzequent miero instruction as a
jump condition or as dispatch source data. These simplify
microprogram coding and increase the execution speed of
unification, which uses many branches and dispatch opara-
tioms.

4.2.2 Miero instruction format

Az shown in Fig.T, a micro instruction has a 64-
bit word length and has a fleld assignment that enables
effective parallel control of hardware resources. There are
three miero instruction types. They have common fields
between bit 63 to 22, These felds mainly specify data
operations. Bits 21 to O have different meanings in each
instruction type and mainly specify branoch controls and
ALU gperations.

Type 1 instructions specify various conditional branch-
es and dispateh operations. Relative addresses (ep to -
256) are used for conditional branches. Arithmetic opera-
tions are available in type 1. Type 2 instructions specify
absolute jump, logical operations, and bit rotation of the
barrel shifter. Type 3 instructions specifly various opera-
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tions, such as arithmetic and logical operations, bit rota-
tion, tag replacement with immediate data, I/ O bus con-
trols, etc. However, jump operations are limited to in-
direct jumps using the jump register.

The three-operand operation is specified by the data
operation flelds. Mamely, two operands specified by the
SCIF and SC2F flelds are processed by the ALU and
stored in a register speciflied by DSTF field in one micra
instruction cycle. One of frequently used registers can
also be specified as an destination register by the multi-
‘destination fleld. Data specified by the SC2F fleld can
be shifted and masked by the barrel shifter and field ex-
tractor before the ALU operation. Memory access control
is specified by the cache control field (CCF) independ-
ent of the data operations mentioned above. DRI and
LARF fields specify the selections of the data register and
the logical address register used in memory access from
PDR and CDR, and PLAR and CLAR. LAIF specifies
the automatic increment of the logica! address register.

4.3 Data processing unit

4.3.1 Configuration of the data processing unit

Fig% shows the configuration of the data processing
unit. A register file, called a work file, the ALU for 32-
bit aperation with barrel shifter and field extractor at its
entrance, address and data registers for memory interface,
and tag circuits are connected to each other by internal
busas. There are three such buses; two are gource data
buzses and cne i a destination bus. Each is 40-bits wide;
8 bits are for tag transfer and 32 bits are for data trans-
fer. Theze internal buses also connect other units that are
shown in Fig6. The work file (which has many address-
ing modes), pairs of memory imterface registers, and tag
operation circuits are special hardware for KLD execution.

4.3.2 Treatment of tags

Tag processing (which doesn’t contain branch and dis-

patch using tags) rarely sppears in usual microprogramas
with the exception of tag replacement and tag comparison.
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Fig.T Micro Instruction Format
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When data processing or data transfer is performed, tag -

data from cne source bus is transferred directly to the des-
tination bus or completely replaced by immediate tag data
and transferred. Tags on two source buses are compared
in parallel with the data processing and an equality flag
iz sot. This can be tested in a conditional branch instrue-
tion. Ounly the garbage collection microprogram requires
tag processing. Bit operation of the GC tag is performed
by the same ALU for the data processing, The tag usage
in the microprogram sequence control is described in sec-
tion 4.4. Ounly the dats registers of the memory interface
and the work file have tags.

4.3.3 Barrel shifter and fleld extractor

The barrel ghifter ean perform up to 32 bits of rotat-
ing shift. It can also perform left/right shift of 1 bit com-
bimed with the @ register, which is used for multiplication
and division as specified by the ALU control feld.

The field extractor is & masking circuit that has
three different types of masking operations, namely, the
low meat 5 bit through, the lowest byte through and
the lower double byte through operations. These mask-
ing operations are often used for extracting operands of
built-in predicates, string data, and packed information
of machine instroctions in combination with the barrel
shifter.

4.3.4 ALU and a swap clrcult

The AL is constructed from commercially available
ALT LSls. The ALU control feld of the micro instrue-
tion has an encoded format that controls cnly the re-
quired functions of the ALU. Arithmetic opsrations in-
clude addition, subtraction, these with carry or borrow,
multiplication and division combined with the shift and
Q-register operations, and the 24-bit operations for in-
ner area address caleulation mentioped in section 2.5.
Some flags, such as carry, overflow, and zero, are set for
use in conditional branches when flag setting is enabled
by micro instruction FF1F fleld. Logical operations in-
clude THROUGH, AND, OR, EXCLUSIVE-OR, AND
with SWAP, and OR with SWAP. "With SWAP' means

that bytes are exchanged between byte D and 3, and be-
tween 1 and 2. The swap circuit iz positioned at the exit
of the ALU. It is used for re-directing numerical byte data
and byte string data; these have the opposite byte order.
This circuit is alzo used to re-direct bytes in the I/O bus
accens.

4.3.5 Address reglsters and dais registers

There are pairs of memory interface address registers
and data registers called PLAR, CLAR, PDR and CDR.
LAR means logical address register; P and © mean
parent and current of predicate call respectively. When
unification is performed, machine instructions and data
of both the parent clause (caller) and the current elause
(callee) must be fetched from memory. Registers prefized
P and C are uzed for memery access for the parent clausa
and the current clause respectively. Tags of PDR and
CDR are used for tag dispatch and the least-significant 5
bitz of PDR and CDR are used for addressing the work
file, as described in later sections. PLAR and CLAR are
automatically incremented when contiguous data is being
read or written.

4.3.6 Work File

The work file {WF) iz & multi-purpose register fila
maost frequently used in the data processing unit. The
work file has a 40-bit x 1K-word capacity and has many
addressing modes. The WF can be read from and written
to different arbitrary addresses in a single micro cycle.
That is, data read from the WF is sent to the ALU and
the result is rewritten to different WF addresses in one
micro cycle. The first 16 words of the WF are designed
as dual-port registers for use as general registers. Fig.9
shows the following WF addressing modes.

{a) Direct addressing

The first and last 64 words of the WF comstitute an
area directly addressable by micro instructions. The firat
16 words are used as general registers and the subsequent
42 words are mainly used as logical registers containing
information of the current KLO execution environment.
The last 64 words are called the constant area because



the mask patterns and constants used by the Srmware
interprater are stored thera.

{b) Indirect addressing

WFARL and WEFAR2 are address registers of WF.
The WF can be indirectly accessed by any address using
these registers. These registers have auto-increment and
auto-decrement, and boundary detection functions. The
latter means that flags are set when the contents of the
register points to the 32-word or 256-word boundary of
WF. These functions enable a part of the WT to be wzed
as a stack area. In practice, they are used to access the
local frame buffer and trail buffer, described later.

() Indirect addressing using PDR and CDR

In this addressing mode, 3 WF address is generated
by concatenating the comtent of WFBR and the least-
significant 5 bits of PDR or CDR (whichever is specified
by the DRF fleld). This is used to access a local variable
cell on the local frame buller (LFB). WFBR points to the
base of LFB, and PDR or CDR holds the cell number of
a local variable that is a part of the machine instruction
code fetehed from memory,

{d) Direct addressing using a base register

In thizs addressing mode, a WF address is generated
by concatenating the contents of WFCBR and a 5-bit
direct address specified by the micro instruction. WFCER
is waed to point to the base of the extended constant area
or work area,
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{e) Loeal frame buffer

The local frame bufler (LFB) is a temporary local
frame for a current clause (corresponds to a current frame
on a local stack, as shown in Fig.3) ereated in the WF,
not on the local stack in mein memory. In the unification
wsing LFB, the local variables of the paremt clause that
are required for unification are first copied to LFB, then
unified with the arguments of the clause head of the cur-
rent clause. The LFB then temporarily becomes a current
local frame, When the axecution proceeds to the first body
goal of the current clause, if it is & uger-defined clauge,
LFB is pushed onto the local stack and a new temporary
local frame for the new current clause is created in the
WTF. However, if the first body goal is a built-in predicate
and the following body goals are also built-in predicates,
L¥E continues to be used as the current local frame, and
is not pushed onto the stack until a user-defined predicate
appears. When a user-defined predicate is called, if it iz
the last body goal and it has no alternative clause, LFB is
over-written to new local variables used in the new current
clause instead of being pushed onto the stack. This means
that the last body goal that has no alternative clanse is not
called, but invoked through jumping. This corresponds to
tail recursive optimization [Warren 80]. This methed of
using the LFB often leaves local variable cellz in the WF
and decreages stack access in the main memoery.

LFB has fixed size of 32 words. Physically, two LFBs
are used alternately by firmware control. In unification,
the information to be pushed onto the trail stack is also
temporarily stored in a WF area, called the trail bufer.
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4.3.T WCS as a register file

The writable control storage (WCS) is used for fetch-
ing miero instroction in the latter half of the miere in-
struction cycle. WS is designed to be accessible from
the internal bus in the first half of the micro cycle. This
enables read and write access to WCS under micro pro-
gram control. Using this fonction, the last 1K-word area
of WC5 is assigned as a save area for the process control
bleck. This increases the speed of process switching,

4.4 Sequence control unit

4.4.1 Conflguration of the sequence control unit

Fig.10 shows the configuration of the sequence contrel
unit. A micro program control system is used in PSI. A 64-
bit x 16K-word WCS is implemented. The first half of the
micro instruction cycle generates the address of the next
micro instruction, and the second half fetches it. There
are several address generation methods, such as absolute
branch, relative branch, continuation, OPF code dispatch,
tag dizpatch, multi-way branch using operand tags, con-
ditional branch weing a relative address, micro subroutine
call, subroutine return, and indirect branch through a
jump register. The specialized features of this machine
are tag dispatch, multi-way branch and variations on the
branch conditions.

4.4.2 OF eode dispaich

The instruction code for a built-in predicate contains
an operation code (OP code), as shown in Fig.2. This
instruction code is transferred to the instruction register
(IR) and the OF code is extracted and fed to the dis-

patch memory. The dispateh memory translates the OP
code inte the start address of the firmware subroutine cor-
responding to the operation in a half micro cycle, and this
is used for fetching the next micro instraction. The dis-
patch memory has 258 x 14-bit entries that can be nsed
for up to 258 built-in predicates.

4.4.3 Tag dispatch

The operation for testing the tag is frequently re-
quired in the firmware interpreter. The tag dispatch eir-
cuit is introduced to increase the speed of tag testing and
branch address generation. Address gemeration is per-
formed in a half micro eycle using the tag of the data
read into PDR or CDR from memory. In contrast to OF
eode dispatch, tag dispatch is a multi-way branch using a
base address specified by a micro instruction and an offsst
generated by the dispateh memory.

There are 64 types of tags in PSI However, only
up to 16 branch targets for multi-way branches are re-
quired in practical frmware coding. One of the firmware
rottine needs a five-way branch, an other nesds an eight-
way branch, etc. A PDFR or CDR tag is translated into a
cade of three or four bits by the dispatch memory. The
code is then concatenated with the base address and wsed
for the pext micro instruction address. Twelve tramsia-
tion patterns, from the tag to the code, can be stored
in the dispatch memory. Nine are used. The pattern to
be used is specified by the micre instruction. As ome to
several steps of the operation must be executed at the
branch destination, the translation pattern is designed to
generate multi-way branch addresses in one- , two-, four-
or eight-word intervals, according to the request.

Fig.10 Configuration of the Sequence Control Unit
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The dispatch memory conzistes of 14 bits x 1K words
of RAM and is shared for OF code dispatch and tag
dispatch,

4.4.4 Multi-way branch using oparand tag

The built-in predicate takes up to three compact
operands, as shown in Fig.2. Each operand has three bits
of compact tag. The instruction register extracts these
tags. They are then shifted to the lefi by cne bit and con-
catenated with the base address of the multi-way jump.
Thus an 8-way branch with a two-word address interval is
achieved.

4.4.5 Conditional braneh

The wide variety of branch conditions is one of the
special features of the system. True and the false branches
can be specified for each of 64 branch conditions. A con-
ditional branch testing the equality between a register tag
(in FDR, CDR, or WF) and an immediate tag data is also
available. The major flags used for branch conditions are
listed below.

{a) 10 types of ALU flags
{b) Universal flags that can be set and reset independently
through FF1F of micre instructions.
{c} Each bit of a register tag of PDR, CDR, or WF
(d) Interrupt request flags
(e} A flag indicating that jump register is equal to tero
(f} I/ bus condition flags
Ameng these conditions, (b) iz frequently used for
the interface between firmware modules. These *switches’,

which can be easily set and reset, are a valuable asset for
a system with so many firmware modules.

4.4.6 Subroutine eall and return

Microprogram subroutine call and return are avail-
able. The return address is automatically pushed onto and
popped from the micro address stack (MSTK). METK can
be alzo read from, and written to by the internal bus, 30 it
can be saved and restored when process awitching occurs,
The MSTK is 1K-word desp but it uses less than 16 words
in ewrrent coding.

4.4.7 Indireet branch using Jump register

The branch address can be zet to the jump register
(JR) in two ways: from the destination bus, and from
the calculated result of the relative address specified by
RAF of the micro instruction. An indirect JR branch is
available in type 1 and type 3 micro instructions.

JR is also used as a loop counter. Decrementing is
specified by the MDF fleld and zero testing is performed
by the function of (e) described in section 4.4.5.
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4.5 Memory module

4.5.1 Configuration of the memory module

Fig.11 shows the configuration of the memory module.
It containg the cache umit, address translation unit, main
memory, and cache contrel-unit. All memory access is
performed using the cache order given in the miero in-
struction. Only when the cache misses an actual memory
sccess is initiated by the cache contrel unit. The cache
memory is accessed through a logical addreas. The logical-
to-physical address translation iz performed im paralle]l
with the cache access and the result of the translation
is used only when the cache misses. The cache control
unit has an independent sequence controller and controls
the address translation unit, memory access timing, and
memory refresh. Once the cache order is executed, the
cache unit works independently from the main sequence
control unit, The CPU works in parallel with the cache
until completion of the cache order.

4.5.2 Cache unit

The cache memory has a 40-bit x 8K-word capacity,
it is constructed from two sets of 4K words. The access
time is equivalent to one micro eycle for hit and four micro
cycles for miss-hit. The set-associative method is wsed for
cache management and the LRU method is used for the
replacement algorithm. The block size is four words and
the contents of a block are replaced when the cache misses.

The write-swap method is used in write operations in
which write data is only written to the cache instead of
to main memeory when a write order i3 executed. When
the cache misses, the old data in a cache block is actually
written back to main memery. Although the method
necessitates writing back old data and reading in required
data when the cache misses, it enhances performance when
data must be frequently pushed onte and popped from
stacks, because there is leas overhead for write access to
the cache. The write-swap cache iz easier to design if the
memory has ze DMA paths with the [/O devices, as in
PBIL

4.5.3 Address tranalation unit

The address translation mechanism ia shown in Fig.5.
The page map uses a valid bit that is set during page
allocation and tested during address translation. This unit
has another memory, called page mep size memory, which
holds the page size allocated to each area.

4.5.4 Maln memory

The weord length of the mein memory iz 40 bits. Up
to 18M words of main memory can be installed in PSI.
There is an error detection and correction circuit im the
cache unit, that can correct single-bit errors and detact
double-bit errors. A four-word block transfer is used to
transfer data between the main memory and the cache
memory. This is performed using the nibble-mode of a
dynamic RAM to increase the transfer speed.
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Fig.1l Conflguraticn of the Memory Module

4.6 Hardware implementation

High-speed Schottkey TTL IC: and highly-integrated
MOS RAM chips are mainly used in the hardware im-
plementation, becanse of their commercial availability and
gmall size. The machine cyele time iz 200 nano seconds.
The CPU is constructed from 12 printed circuit boards,
each of which contains about 160 ICs; the main memory
is constructed from 18 boards of the zame size when 16M
words are installed. The CPU boards, the memory boards,
10 or more controller boards for 1/O devices, Winchester
bard disk drives, and fSoppy disk drives are all installed in
one cablinet.

§ FIRMWARE DEVELOPEMENT

The firmware contains three groups of micro pro-
grams, such as the interpreter kernel, built-in predicates,
and OF supports such as interrupt handling. Total code
size of the firmware is approximately 12K steps.

The interpreter kernel contains routines for basic ex-
ecution control and unification; both have about same
code size, that Is, 16K steps in total, There are ap-
proximately 160 built-in predicates, each of which have
from 50 to 100 steps of code; the total code for the built-
in predicates is 9K steps. The OS support micro program
contains routines for interrupt handling, process switching
and memory management, for which the total code size is
1.5K steps.

& CONCLUSION

In this paper, we presented the machine architecture
and hardware design of the personal sequential inference
machine, PSI. We also degeribed the system configuration
and the basic hardware design philosophy: to design
basically simple but partially epecialized hardware using
microprogram tachniques to enhanee the eficioney of in-
terpretive execution of high-level machine inatructions.
We also described the detailed specifications of the hard-
ware components, particularly the register file, which
has special functions for tail recursive optimization, and
microprogram dispatch facilities wsing tags.

The experimental hardware development of PSI is
already complete, as iz testing of the basic firmware
modules. An operating system and a programming sys-
tem for PSI are being developed; tests and debugging are
underway on a real machine.

We plan to precisely measure PSI's processing speed
using some bench mark programs, and to evaluate the
design of hardware components and the firmware inter-
preter by measuring the dynamic action of the hardware
system during program axecuiion. We also plan to com-
pare the architacture of PSI with a machine having
determinate instruction execution (not imterpretive) and
pipelined execution mechanisms (for example, [Tick 84]),
and to analyze the strengths and weaknesses of the ar-
chitecture,
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