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ABSTRACT

Sword3d2 iz a large, 32-bil microprocessor
with an inlernal, 4K-weord microslore, a large
slack, and an instruction dispateh mechanism te
efficiently emulate bytecode instruction sets. The
micrearchitecture is optimized for Smalllalk-80 se
thal Lhe emulater for the Smalltalk-80 bytecodes
can execute 1.4 million bylecodes per second in
gur preliminery performance evalualion.

1. Introduction and Motivation

Since the spring of 1982 we have been
studying whether a late-bound, object-ariented
language like Smalllalk-80 should be used as a
principal programming language for our research
in computer system soltware, VL3I design, and
computer-assisted instruclion. We concluded Lhat
Smalltalk-B0 system has a number of aliraclive
[eatures ineluding the facl thal a large collection of
useful sofiware lo suppert programming enviren-
ments can be oblaimed for free. bul the current
implementalion is inefficient and furthermore runs
on very limited kinds of computers. Alternatives
are UNIX and LISP, but the versions of soltware
Lhat are available Lo universities lack the sophisti-
caled display-oriented programming syslems.

Therefore, we decided to invesl our
research eforls in impreving the performance of
Smalltalk syslem, and devized new techniques [or
complling and creating run-time sysiems for such
a late-bound, object-oriented language [(Suzuki
and Terada 1984). We came up with a number of
new techniques thal make Smalltalk-80 much [fas-
Ler, and crealed two Smalltalk systems to try oul
our ideas on a slandard micreprocessor MCBB00D
(Suzuki el al. 1984). The atempl was quile salis-
factory, and the performance of our systems were
in line with other implementations (Deutsch and
Schiffman 1984, Wirfs-Brock 1983, Unger 1084).
However, we Lhought Lhat we could creale a sys-
tem [aster by an order of magnitude if we build a
special purpose microprocessor wilh powerful
fealures designed Lo execule Smalltalk. Thers-
fore, we started Lo design a general-purpose,

Smalltalk-80 is the trademark af Xerax Carp.

bytecode-emulaling microprocessor luned Lo exe-
cule Smalitalk bylecodes particularly efficiently in
the summer af 1883,

While we could have wrillen our Smalitalk
system in microcode on Perq or Symbelies 3800,
building our ewn VLSl microprocessor allows us
to explore geveral new architectural ideas thab
should result in a syslem Lhat is significantly faster
than one implemented on Perg or Symbolics 3600,
Furlthermore, as one of our research goal iz Lo
design and build our own compuler systems, par-
licularly ones based on VL3l microproceszors,
such an undertaking seems appropriate.

Mevertheless, because Lhiz iz Lthe first mi-
croprocessor we have designed, we have kepl our
aspirations modest. We have eliminated many
fealures Lhat might have improved the speed or
flexibility, but at the cost of increased architectural
and layeul complexity. Yet, as we wrole the mi-
crocode  for Smalllalk-80 (Suzuki 1983}, we
discovered that it may run significantly faster than
many previous implementations, even those on
sophisticaled bytecode emulalion compulers buill
using ECL (Deutsch 1983). We also have kepl
our sollware aspirations modesl. We made the in-
slruetion sel of Sword32 to be completely compati-
ble with Lhe Smalllalk-80 Virlual Machine except
Lthat Sword32 uses 32-bil object poinlers with
slightly differenl encodings of small inlegers., This
is because we did nel want Lo spend our efforls in
creating a special system in order for Smalltalk Lo
run on Sword32, Furthermore, since we have no
conlrol over lthe future syslems, we decided Lo
conform to lhe standard format so that we need
nol keep crealing versions of Lthe Virlual Image.

We completed Lhe first archilectural design
of the microprocesser in the aulumn of 1983 and
have designed an ALU in NMOS technology.
This was a 16-bil microprocessor, which we called
Sword {Suzuki et al. 1983). We first designed a
16-bit microprocessor, since we inlended to run
the Smalltalk-80 Virtual Image as j3. We did nol
have enough experience Lo know Lhe limilations of
the 16-bit system and lo know how lo rewrile il
for 32-bil computer. However, afler we created
the first virtual machine on SUN Workslalion, we
knew immediately Lhat the size of the object
memaory is Loo small Lo implement any serious ap-



390

plication programs. Se we redesigned a virlual - P r—
mechine Lo have 32-bil object poinlers, and havel[— 1 = ga |
implemented on SUN workstation (Suzuki et al. | sl-""s"""':'tm E_“l”l—‘:ﬂ USUI_“ ai{']ﬁR f{wordSE
1984). From Llhis experience znd from the fact] oo e yhamic " m:mc
Lhat we were able lo have an access Lo fast CMOS - ::;L = z-twhl ;';H'E'Mf %&L
technology, we decided Lo redesign the whole sys-| - _": ! . e
tem to have 32-biL data paths. This is Lhel W
Sword32 microprocessor, which we will deseribe in| O Tex k= L o
Lhis paper, it .
Garbage Reference Trensaclicn Generation Transaclion
| Colleclor Counting Scavenger ]
2. Comparison wilh Other Systems ~lpaicuclion | byieceds | nalive sode | nalive code | bviecode |
Method Malhad [aline Inline Methed
We compare architectural features off-Szrch L cathe oache | eoche
several dislincl implementstions of Smalltail-g0] Centes hesp ek slack sinck
(Table 1). | Allacstion
Primilives migracade s bler ) | microcode
+BCPL +C
The systems compared in this table are Dol-] sultipracessor Ho Ha Mg Yes

phin sold by Xerox, SUN Workstetion syslem
{Deutsch and Schiffman 1984), SOAR micropro-
cessor  syslem  implemented al UC  Berkeley
{Unger et al. 1984), and Sword32.

Dolphin system is & microcoded emulator
of the Smalltalk-80 Virtual Machine implemented
in a way very close lo the book. SUN lmplemen-
tetion iz Lhe fastesl running system besides Dora-
do implementlation; it dynamically compiles
bylecodes inte nalive codes. Throughout the rest
of the paper, we mean Deulsch and Schifman's
implementation if we mention SUN implementa-
lion without any gualification. SO0AR is a reduced

instruclion  sel  microprocessor lailored for
Smalltaik. All the object codes are nalive codes.
Sword32 is a microcoded emulaler of Lhe

Smalltalk-80 Virtual Machine just like Dwolphin,
but the implemenlation techniques are close Lo
those of SUN.

Object pointers are unique identifiers of ob-
jects. In Dolphin an objecl poinler is an index of
an object table, whose enlry contains the real ad-
dress of the object, the relerence count, and
several flags. The object pointer of Lhe Sword32 is
Lhe absolute address of Lhe object table enlry. The
abject pointer of SOAR is the absolule address of
the object, so il does nol have an objecl table. We
do nol knoew Lthe detajls of SUN implementation.

Dolphin cmploys reference counling gar-
bage cellection. Sinece thiz was a major perfor-
mance botlleneck, Lhe SUN implementation uses
Deutsch-Bebrow lransaclion garbage collection
{Deulsch and Bobrow 1976). We also use transac-
tion garbage collection in Sword32, S0AR uses s
generation scavenger, which is a variant of copying
garbage colleclor.

Both Dolphin and Sword32 directly execute
Smalitelk-80 bylecodes, which are very high-level
instruction sel for slack machines. Therefare, the
decompilation can be done essily and Lhe various
system software does not have Lo be rewritten in
erder Lo run en Swerd32. The programs of SUN
runs 68000 netive code but the eompilation is
done dynamically, se Lhal it still retains Lhe com-

patibility with the system seltware. SOAR uses ils
own instruclion set so Lhat system software has Lo
Smalltalk-80 is a late-

be rewrilten,

bound language. The link between a message and
a method is delermined al run-time every lime a

message sent.

In order Lo speed up the linking,
various implementations use some kind of cache.

Dolphin uses a methed eache, which is a global
hash table where the keys are Lhe class of the re-
ceiver and the message seleclor, and the walues
are the method and the primitive index. The table
size is usually from 256 Lo 2048 entries, but the
hil rate is quite high, 95% {(Conroy 1983). SUN

implementalion uses an inline cache,

Afllter each

message send instruction, the class and the ad-
dress of Lhe object code for the melhod are stored.
If the receiver's class s the same as Lhe class
stored inline, the direct subrouline ecall iz done.

SOAR uses the same Llechnique.

Sword32 uses

lhe melhod cache, in order Lo speed up the link-
img, we store the absolule address of the instrue-
tion, Lhal is Lhe address of the firsl bytecode of Lhe

method

il Lthe

method

is

implemented by

Smalllalk-80 code, and the microcode address il
the melhod iz implemented by a primilive, the ab-
solute address of the method, and the number of
temporaries other than the parameters.

Conlexts are Lhe objects thal store informa-
Lion necessary for methed activation; they are usu-
ally called stack frames ln olher programming
languages. In Drolphin conlexts are the first class
objects; Lhey are allocated and deallocated for all
the melhed activations and relurns, and even
reference counted. This inefficlency has been el-
iminated in SUN by allocating conlexts on Lhe
steck a8 long &5 Lhe contexts ere nol retained.
SOAR and Sword32 use the same Lechnique.

We provide a hook Lo creste a high perfor-

mance mulliprocessor system, in which each pro-

cessor has its ewn cache and caches are connected
lo a common memory bus and shere a main
memory. A microinstruclion is provided which
ean implement a test-and-sel instruclion lor such a
sysiem.



4. Overview of lhe System Design

Most of our archilectural fealures are driven by
our knowledge of inefficiencies of Delphin syslem.
The boltlenecks are relerence counling garbage
collection, metheod search, and the context alloca-
tion in the heap.

3.1. Reference Counting

In order Lo creale a personal compuber sys-
ten thal provides real-lime response ler interac-
tion, we have Lo use a real-lime garbage collector.
Therefore, Lhe Dolphin implementation employs a

reference-counting garbage eeolleclor. However, -

Lhis consumes a substantial amount of compula-
lion time. According Lo our caleulation BO% of the
Uime spent for pushes and pops is spent [or refer-
ence counting.

There are bwe algorithms {or real-time gar-
bage eollection thal lead lo suceessful implementa-
lions of Smalltalk-80 (Deutsch and Schiffman
1984, Unger 1984). We implemenled Deulsch-
Bobrow transaction-based garbage collection wilh a
satisfactory resull in our MCE8000 implementalion
(Suzuki et al. 1984). Therefore. we use Lhis algo-
rithm for Sword32.

There i no special hardware supporl for
transaction garbage colleclor except lhat most of
Lhe program will be written in microcede.

3.2, Object Representations

References Lo objects are made Lhrough ob-
jecl pointers jusl like in Dolphin implementation.
Object pointers are absclute addresses of object
table enlries, in which the absclute addresses of
the u:::rjects and reference counts are stored (Fig-
ure 1).

/ﬁ -

rel count

ohject object

abject teble

Fig.1. Object pointers are absolule addresses of en-
tries in Lhe objecl lable,
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Both Dalphin and SUN implementalions use ob-
ject pointers in order to simplify compaclion.
Furthermore, there is a methed called become:
which swaps objects that are poinled by Lwo object
pointers. This is difficull to implement withoul
the objecl Lable. Smalllntegers are
encoded in object pointers; if Lhe leasl significant
bil iz zere, the rest of 31 bits denole Smallln-
tegers. We chose this form. because ordinary ar-
ithmetic on Smalllnlegers can be performed by an
ALU designed to work for unsigned integers.
Therefore, Lhe leasl significant three bils of object
poinlers are zero, zero, and one. if Lthey are
indexes to an object Lable, (Figure 2)

a1 L]
oop . [ofof1]
Emelllnteger | value | 4] |

Fig.2. The formals of object poinlers.

In order Lo accommodate special encodings
of object poinlers and perform Lype checks, we
have unique memory operalions. Memory opera-
tions of Sword32 are fetch, store, felch byte, and
slore byte., Fetch and store read and write aligned
four bytes, and felch byle and store byle read and
wrile any byle in Lhe memory. For feleh and store
lhe memeory operalion is started if the least
significant bit in MAR is one, and the memory ad-
dress pul out from the chip has zero as the leasl
significant bil. 1f the bit is zere, no operstion s
performed bul Lhe least significant bil of lhe ad-
dress of the next microinstruction is or'ed wilh
oné. So feleh and store operations always cause
conditional branches.

3.3. Method Lookup

In order to speed up the message linking
most of Smalltalk-80 implementations use cache.
Delphin implementation use a method cache, each
entry of which consisis of selector, class, method,
and primitive index. By a proper cheice of a hash
function, the hit rate can be guile high, as much
as 95%, bul still Lhe time to compare Ltwo enlries,
seleclor and class, then decode the locations of
bytecodes is substantial. Deutsch and Schiffman’s
implementalion used an inline cache; after each
gend instruction the class and Lhe address of the
instruction of the method last called from Lhe par-
ticular message send is slored. The link is fast but
it rewrites and expands codes. This method is also
used for SOAR. We also use a global method
cache, but we store informalion Lhal enable [aster
method activation; Lhey are the absolute address
of the melhod, the address of the instruclion, and
lhe number of Lemperaries other than Lhe argu-
ments. The format of an entry of the method
cache iz shown in Figure 3. .
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class

lemp size selactor

instruction addrezs

method address

Fig.3. Each enlry in the methed cache occupies
[our words.

The address of the instruction is encoded in such
a way that il the most significant bit is zero it is
the absolute address of the bylecode, and if the bit
is one, the least significant 12 bits are microcode
address of Lhe primilive. (Figure 4)

0o bytecode address

1 microcode address

Fig.4. Format of an insltruction address.

The number of lemporaries olher than the argu-
ments are lhe number of NIL's that have to be
pushed on Lhe stack.

3.4. Stack Organizalion

Since procedures are invoked wvery fre-
quently in Smalllalk-80, hardware supporl for pro-
cedure calls is importanl. Sword32 has a large (128
words) on-chip slack and 32 general purpose regis-
ters. We would use these registers to cache Lhe
Lop part of the contexts.

There are four stack peinters FF, CP, TP,
SP: Lhe data are accessed frem Lhe parls pointed
by these pointers. In the Smalltalk-BO emulator,
FF is a conlext base pointer, TF is the work
pointer to retrieve local variables in Lhe active
contexl, and 3P iz the lop of the stack poinler. FP
itself iz orgenized as an eight-level stack. The
cwrrent [rame poinler is poinled by CP. The first
18 words of Lhe general purpose registers can alse
be used as two eight-level slacks, whese poinler is
alse CP. These Llwo slacks can be accessed
lhrough CP, if we access Lthe lowesl address regis-
ler in each stack. Thus, if the value of CP is 5
and if we feleh register 0, we aclually obtain the
value of register 5. If we Telch register 8, we actu-
ally felch register 13. We can still access other re-
giflers al random. 1f we felch register 2, we really
felch register 2.

The stack organization for emulating
Smalltalk-80 is shown in Figure 5.

TeCEiver

[ Brguments —
.

Cpe N = lemporarias =
—stack -

FP receiver

CP-H
7

instruction counter
micToprecessor stank

Che

method address

Fig.5. Stack organization for Smalltalk-80 emula-
Lar,

At most 8 conlexls can be stored in Lhe stack, FP
points Lo Lthe beginning of each context. Two B-
word slacks slore the bylecode instruction counter
gnd Lhe method address. Each context sceupies a
slack region bounded by twe conseculive FP's.

The slack is erganized this way so Lhal
Lhere is no need for copying arguments [rom Lhe
sender to the melhod as is done in Dolphin. The
receiver and lhe argumenls are pushed in the
evaluation stack of the aclive context, and the
message is inveked. Then the top most several
locations defined by each bylecode become the
boltom parl of the newly aclivaled context.

4. Microarchiteciure

Our guiding principle throughout architec-
lural design was lo keep the microprocessor sim-
ple. We would supply just enough hardware, so
that mosl of Lhe complex jobs could be done
efficiently with microcode. We encounlered a
number of occasions where i we added some
hardware [ralure, a particular microprogram or a
particular bylecode would run faster. However, in
maost cases we lound Lhal either a diferent micro-
coding for Lthe same job would give us the same
speedup, or Lhal the parl thal was speeded up was
executed relatively infrequently so  Lhat the
hardware addition would not resull in a significant
overall performance improvemenlt. Furthermore,
adding hardware often has a negalive efflect on the
averall speed of the machine because the basic
machine cycle has Lo be slowed down lo accom-
modale the addition. Therelore we were very



careful whenever we were lempted te add new
hordware fealures.

Probably the most successful practice in the
design of Lhiz mieroprocessor was thal we started
Lo wrile microcode wilhin 2 week after the project
was startéd. The firsl version of the mierocode
was wrillen within lwe weeks. This helped im-
menzely in luning the machine; meny fealures
were f[ound to be unnecessary, and many new
featlures were added to improve Lhe perlormance.
Another successful practice was Lhat we wrole a
microgssembler very early wilh only 2 couple of
days efforts. This was probably made possible be-
cause we used LISP. The microassembler
discovered many programming errors Lhal Lried to
astign several differenl values Lo microinsiruction
fields. This resulled in microprograms thal were
more packed than logically possible. Without the
arror deleclion the machine would have been
designed under the false assumplion thal eficient
codings can be done under the archilecturs.

Some of Lhe big surprises were Lhat we
thought, al Lhe beginning. we need o special
hordware [or handling small objects such as in-
Legers Lhal are encoded inm Lhe poinler ficlds.
Heowever, afler writing Lthe microcode we realized
Lhal we did nol need any special hardware for
lrealing encoded inlegers. All we are using are
masking. shiflt. and standard arithmetic hardware.
Anolher hardware which we dropped is a barrel
shifter. A barrel shifter may be useful in
Smalltalk-80 execulion in three ways: decoding the
bytecode, decoding the data, and execuling shifl
bylecode. However, in all cases microprograms
wilhoul & barrel shifler perform just as geed or
belter than micreprograms with a barrel shifter.

On Lthe other hand we decided to include
special hardware [or bytecode dispelch afler we
wrote microcode. We first tried Lo use the general
dispatch mechanism [or Lhe bylecode dispalch, bul
Lhal uses one field (F2 field) of an instruclion, and
needs one instruclion before the next bylecode Is
execuled since the general dispalching requires
one instruclion delay. This additional hardware
reduced Lhe length of most microprograms by [ or
2,

By continuously tupning lhe archileclure we
came up with a quile efficienl bytecode emulator
for Smalllalk, We describe Lhe design slrategies of
Lhe componenls in the following.

4.1. Bylecode Felching

Efficient bylecode feleh machinery s impor-
lant, bul we did nol support any sophislicaled in-
slruction [elch unil such as lhe one [ound In
Dorado (Lampson el al. 1981), Whal we are pro-
viding are hardware lor fasl bylecode dispalching,
sulomatic felching ol bylecode, process switeh,
and dynamic switching of bylecode dispalch lables.

As explained previously, there is no delay
belween Lhe microinstiruction Lo signal the end of
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8 bylecode execulion and the first instruction of
Lhe next bylecode; il Lhe micreinstruclion is a
brench to zero, the nexl instruclion execuled Is
the first instruction of the next bylecode. Further-
more, Lthis does nol use a microinstruction field.
There is a 32-bit instruclion buffer; if the bylecode
read is the leasl significanl byle of the buffer, Lhe
buffer is filled aulomalically by issuing & [eleh. IL
15 the responsibility of the microprogrammer to
make sure Lhal the bylecode feteh does nol oceur
while a memory operation is in progress.

The process swilch reguirement of internai
or external reasons are reported by setling a Pro-
cessSwitch flag by a microinstruction. Then at the
bylecode dispaleh time, if this Mayg is sel the con-
lrol lransfers lo a fixed micToprogram address to
perform the process swilech. The bytecode instrue-
tion counter does nobt increment, since the pro-
gram may declde nel to perform the process
swilch and conlinue to execule from the original
process.

Another valuable mechanism is Lthe Lwo sets
of byleeode dispateh lables, and the fast, dynamie
switching of micrecode dispalch tables. We cache
Ltop most conlexls in the internal slack. It is, how-
ever, costly Lo mainlain the lop meosl context,
which iz called an active context, Lo be always in
the stack at each bylecode dispateh. So ab Lhe be-
ginning of each bytecede execulion Lhe aclive con-
lexl may be on lhe slack or in lhe heap. Since
mest of the bylecodes and primilives behave very
differenlly according Lo whelher Lhe active conlext
is on the stack or in Lthe heap, Lthe interpreler has
lo know which slate Lhe machine is in al Lhe be-
ginning of each bytecode. However, we would not
like to check by microcode Lhe slale of the eon-
toxls at the beginning of each bylecode; instead,
we have Iwo sels ol microcode according lo the
stales of Lhe active conlext and swilch among
Lthem, Lhus speeding up most of Lthe bylecodes by
Lwo cycles.

4.2. 1/0

Unlike Alte {Thacker el al, 1979) or Dara-
do (Lampson et al. 1981), we assume Lhal Lhere
will be anolher microprecesser (MCBB000) Lo per-
form mest of Lhe I/Q work, such as disk 140, ras-
ter operations, and keyboard [5/0.

The input &nd oulpul mechanisms of
Sword32 resemble those of the Smalltalk-80 Virlu-
al Machine. There iz one input queune implement-
ed a3 a cyclic bufier in Lhe mein memory. When
some inpul events such as a keyboard depress and
a mouse movement occoer, il Iz detecled by
MCEB000. The inpul is decoded and the inpul data
is added to Lhe queue, and MCEB00D nolifies
Sword32 by asserting PWR. Sword32 increments
the Input semaphore, asserts PWRAck, and
resumes Lhe bylecode emulation,
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4.3. Microsequencing

Micreprogrammable microprocessors often
use micresequencer Lo eliminale address fields In
microcodes. In Sword32 we decided to use a next
fleld, because a large porlion of the mlerepro-
grams are shared and there are a number of place-
ment conslraints so Lhal without a next feld expli-
cit branch instruclions would be very frequent.

4.4, Pipeline Organization

The pipeline organization of inslruction
decoding and execution depends on how we or-
ganize the dala paths structures. We considered
Lwo approaches for the pipeline organization. One
approach is lo organize like Dorado (Lampson el
al. 1881) where the baslc machine operation is to
read an accumulator and a data word Irem the re-
gister file, perform an operation, and store the
resull back into the register file. This organizalien
regquires Lhree-stage pipeline and a by-pass circuit
in order Lo attain maximum speed: a stage to read
a micrecode, a slage Lo read two registers and put
data into ALU, and 2 stage Lo gel result from
ALU and write it inte & register. Since Lhe write
register cycle of an inslruction is overlapped with
Lhe read register cycle of the nexl instruetion, il
must be possible to read and wrile diferent loca-

tiens in Lhe register file in one cycle. Another or-
ganization is used in the Alto {Thacker et al
1981) in which the pipeline has two slages: one
stage Lhal reads an inslruction, and another stage
thal eilher reads one data word from the register
file, performs an cperation and stores the result in
special latches, or else gels a data word from the
latches and stores it inlo Lthe register file.

The Dorade approach I= suited if the Ume
that lakes to read and wrile the register file is
short eompared with the ALU operation lime. In
particular, this approach requires lo read from a
register file in the first half of the cyele and wrile
Lo Lhe register file at the second half of Lhe cycle;
the lime lo read and then write Lhe register file
should be approximately equal Lo Lhe time Lo per-
form the ALU operation. On the other hand the
Allo approach is suited il Lthe register file read and
write limes are longer Lthan the ALU operation
time. Since in MOS VLSI register files are imple-
mented using (in our case, stalic}) memory arrays,
and read and write limes are relatively large com-
pared with thé ALU operation lime, we adopled
Lhe Allo approach for the pipeline organizalion.

4.5. Dala Palths
Figure 6 shows the logical organization of

dala palhs, lalches, and reglslers in the Sword3z
Microprocessor.,

Fig.B. The logical organization of data paths.

The date paths in Sword32 are 32 bils wide. Even
Lhough the standard Smalltalk-80 Virtual Image is
built on 18-bit dala path compulers, we adopted to
have 32-bit data paths, because the large object

space is inevitable if Smalltalk is going to be used

for serious applications. The aclual layout of the
data paths are mere orderiy. {Figure 7)

Fig.7. The diagram of Lhe dala paths that closely
correlates the physical layoul.



4.5.1. Register File

The largest overall performance galn comes
from having many internal registers. They are
used for various purposes--stack, centext cache, or
cache of the real addresses of frequently accessed
objects. If we organized these registers into
separate groups, the number of busses and the
number of poris to the busses would be very
large. Therefore, we put as many regislers as pos-
sible inlo one large register file so that the number
of separate poris and wires in the entire chip is
small.

The register file is 160 weords of 32 bits
each. The firsk 128 words are used as a slack Lhat
can be sccessed Lhrough the stack pointers. The
clher 32 words are general-purpose registers. The
firsL 16 words can be used as general-purpose re-
pisters or lwo stacks of 8 words each. They are
aceessed eilher through RSEL field of & microin-
structlon or through a stack pointer CP.

4.5.2. Stack Pointer Manipulation

The four stack pointers can be manipulated
i lwe ways. First, each slack pointer can be a bus
gpurce. Therefore, in one cycle a stack pointer
can be read onlo the bus and subjected to an ALU
operation, then, in Lhe nexlt cycle, it can be wril-
ten back to the stack pointer regisler. However,
most of Lhe stack peinter operations increment or
decremenl a stack pointer by some small eon-
slanls. So, there is a second mechanism [or alter-
ing a stack pointer in which a special adder is used
to add or subtract small amounis frem a stack
pointer in one cycle; one can read {rom or wrile lo
Lhe stack using Lhe value of a slack pointer at the
beginning of the cycle. In the same cycle one can
medify Lhal stack pointer.

4.5.3. Temporary Registers

L. R, and Q are temporary regislers Lo store
the intermediate results. @ can be shifted left or
nght by one bit to be used for mulliplication and
division. In Smalitalk-80 emulator R conlains the
top of the stack and SF poinls to the second [rom
the Lop of Lhe stack.

4.5.4. External Memory Interface Registers

The micromachine Inlerfaces with Lhe
memary system through MAR, and Lhe Lemporary
register B, When writing to memory, B must be
loaded at least a eyele before the store cperation
slarts. MAR i3 loaded by slore instruction and the
memeory operation is started. When reading from
memory, MAR is loaded by fetch instruclion and
Lthe data comes inlo R Lwo eycles later. If a refer-
ence is made to R a cycle afler the felch opera-
lion, Lhe instruction is held until Lhe data transfer
iz compleled.
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4.5.5. Shiflers

As was explained earlier, we did not include
a barrel shifler. Instead we have a byle swapper,
and a one-bil shifter. Both shifters operale on the
result of the ALU belore Lhe date iz loaded lo L,
Count, or MAR. The byte swapper transposes the
B-bit halves of the leasl significant 18-bit resull of
the ALU.

4.6. Control Syslem

Microprograms are executed conlinuously
al & rate of one faiereinstruclion per machine cy-
cle. There sre six different ways le choose the
next microinstruction.

MFPC is Lhe program counter of the mi-
croinstruetion. This value is set al Lhe end of the
microcode read stage from several sources. The
sources of MPC are, NEXT field of ihe previcus
inslruction, 1024 when a wake-up reguest signal is
detected, 1025 if a process swilch is walling, RE-
TURM register when it is returning from a micro-
subrouting, INTRETURMN register when it is re-
lurning Irem interrupt processing, the logical dis-
junclion of Next field and Abus if dispatching, and
BIR when il dispatches Lo & new bytecode.

The order for granting Lhe sources is: 1024
is the highest priority, 1025, RETURN, INTRE-
TURN, dispalch, and IR should be mutually ex-
clusive and comes next, and finally NEXT field.

5. Performance

Performance of Sword32 Is measured using
lhe standard benchmark {McCall 1983). We com-
piled several benchmarks by the existing compiler
to produce bylecodes. Then we wrote micropro-
grams {or these bylecodes and measured the time
to compule benchmarks. Since we are caleulaling
Lhe performance eslimales by hand simulation, it
is only feasible to compute for some small sample
programs. Smalllalk-80 benchmarks consist of mi-
crobenchmarks and macrobenchmarks. Micro-
benchmarks consist of small pregrams Lhat Lest
several specific bytecodes. The microbenchmark
whose performance correlale besl with the perfor-
mance of Lhe everall system performance as well
as lhe performance of macrobenchmerks is the
method activation and return benchmark.

The source program for the method activa-
tien and return is

recur: tl
L1=0 ifTrue: [tself].
sell recur: L1-1.
tsell recur: t1-1

This melhod is called wilh 14 as the argument;
Lhus, recur: is called 2 to the 15 minus 1, or 32767
times. It is compiled inlo the [ellowing sequence
of bylecodes. The number on lhe right is Lhe
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number of micreinstructions lo implemenl Lhe
bylecodes,

pushTemp: 0
pushConzslanl: O
gsend: =
jumpFalse: 10
returnSell
pushSell
pushTemp: D
pushCenslanl: 1
send: =

send: recur:
pop

pushSell
pushTemp: 0
pushCeonslant: 1
send: -

send: recur:
returnTop

o
=
i ]

el apeun—NMapunawonw

When the argument ls 0, il takes 15 cycles Lo com-
plete the execution, and when the argument is not
0, it takes B3 cycles. Since the number of times
recur: is senl wilth O is one more than Lhe number
ol Limes recur: Iz senl with nen-zero argument, it
takes 49 cycles on Lhe average. If we can accom-
plish the imitial plan and can fabricale the mi-
croprocessor with 125ns eycle time, Lhe average
execulion time is 8.125psec, This translates Lo 17
bylecodes per 12.25usecond. or 1.4 million
bylecodes per second. This is 5.03 limes [aster
than Deorado Smalllalk, or 23 per cenl [aster than
S0AR for Lhis Lest,

6. Conelusion

We have designed & general-purpose.
bylecode-emulating microprocessor. We compleled
the logic design and Lhe microprogramming; Lhe
layoul design has been carried out by a menulac-
Lurer.

We did nol even consider an architeclure
that would have required substantial rewriting of
any part of Lhe source program of the standard
Smalltalk-80 Virtual Image. This iz because we
would like Lo run Smalltalk-80 as seon as the chip
is fabricated. This requirement virtually ruled out
a register-oriented architecture. Even though we
have kepl our archilectura] aspirations modest, Lhe
Smaolltalk-80 emulalion microcede we wrole [or
Swordd2 would be 25% [agler than Lhe SOAR
Smalltalk, and would probably be many limes [as-
ter Llhan Dorado Smalltalk.

There are many features Lhat we mighl in-
clude in a fulure version of Lhe microprocessor.
These [estures include: multi-level pipelining.
inlernal cache for instructions and dala, and lag
support hardware.
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