PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

OMN FIFTH GENERATION COMPUTER SYSTEMS 1884,
edited by ICOT. © ICOT, 1984

373

CONCURRENT DATA ACCESS ARCHITECTURE

H. Diel, IBY Laboratory, Beeblingen, Germany

ABSTRACT

The Ceoncurrent Data Access Architecture
(COAAR) has been designed with the chjective
to suppert a high degree of parallelism. This
goal is similar to that of data flew archi-
testure and other computer architectures
which have been proposed in recent years.
CORA, in addition aims at providing further
support for these application areas that
could probably utilize best the increased
parallelism. Therefore, additional features
such as backtracking {for Artificial Intelli-
gence applications) and BACKOUT/COMHIT {for
Transaction Processing) are embedded into the
concept. The Cencurrent Data Access Architec-
ture is an evolutionary extension of existing
machine architectures. This results in the
advantage that traditicnal applications can
still run on computers supporting CDAR.

1 OVERVIEW

With the emergence of VLSI, which permits
more and more functions te be packed into a
single chip, the time has come to direct the
attention of processeor designers away frem
the goal to further optimize individual func-
tions,and to search for solutions which allew
the execution af a large number of such func-
tions in parallel. The Concurrent Data Access
arehitecture CDAL has been designed with the
goal te support drastically increased paral-
lelism.

In order to achieve this, it is believed
that the primary problem te be solved is that
of concurtrent data access te shared data
items by multiple processors. Besides sup-
porting inereased parallelism, CDAR offers
additional support for those application
areas which could probably best utilize the
inereased parallelism, namely artificial
intelligence applications and transaction
processing.

The overall concept of CDAA can be
described by four items:

1. The totality of memory data which can be

accessed by a processor is divided into
the following parts:

a. Processor Private Data
b. Shared Read only Data
c. Shared Read/¥Write Data

The collection of this data is hence=-
forth called the data base and it is
the main subdect of this papsr.

With an optimal implementatien of
COAL, these three logical types of memory
would probably be implemented by differ-
ent physical memories. However, less
optimal implementaticons may still be use-
ful. oOne eould imagine CDAR-supported
processor clusters with {physically}
shared memory only,or vice Versa which
have (physically) private memory only.
For CDAR it is only reguired that it is
possible to distinguish the above logical
parts, for example by spescific address
ranges.

2. The data base can only be accessed in a
controlled way. This means

a. Prior to accessing the data, a
machine instruction LOCK Datafield
must be issued and the type of access
READ or WRITE must be specified.

b. When the data has been accessed, it
has to be explicitly released by the
UNLOCE Datafield machine imstruc-
ticn.

. Initialization of data and the
arrival of data values for a partic-
ular datefi=ld can be determined by
explicitly clearing the datafield by
the CLEAR datafield instruction.
Together with the ability to wait for
unitialized datafields this provides
a facility comparable with the con-
cept of data flow architectures.

3. Each processor has a cache associated
with it. The association of ecache to

374

processor may be fixed, i.e. there are as
many caches as processors, or one could
even have a larget number of caches than
processors and perform a dynamic associ-
ation aof cache to processor.

Beszides the traditional purpose of a
cache (which is to allow faster access to
data), with CDAA the cache has the pur-
pose to hold a local copy of the data
base.This suppeorts two geals:

a., It enables an efficient realization
of the explicitly controlied data
access described above., This is
achieved by assuming that data base
deta is accessible only when it
resides in the cache; and the data is
moved into the cache only as the
result of the LOCK datafield instruc-
tien.

b. It supports wersions of data and
thereby the facilities to backout
{i.e. transactien processing) or
backtrack {i.e. artificial intelli-
gence) teo previous states. These
facilities are provided by cache man-
agement instructions COMMIT-CACHE,
CHECKPOINT-CACHE, and RESTORE-CACHE.

Instead of having a true cache one
could imagine CDRA implementations in
which the lecal data base copy is kept in
normal memory (without cache-like char-
acteristics }. In this case howsver it
would be very difficult to detect access
to data which is not yet locked eor ini-
tialized. This may still represent a use-
ful subset of CDAAR, howewver the full CDRA
described in this paper assumes the
detection of access to unlocked and unin-
itialized data. In the following the
terms ‘'cache' and ‘'Local-DB-copy' are
used interchangeably.

The dispatching of processes is con-
trolled by CDAA.This means

a. & process is zet into wait state vhen
it tries to obtain an inaccessible
lock or to read uninitialized data.

b. & process iz resumed when data it has
been waiting for becomes available.

It is assumed that the implementation
gf CDAR supperts these functiens by
direct hardware to the extent necessary
to provide suitable performance.

SHARED READ ONMLY MEMORY

LOCK UNLOCK

SHARED READ/WRITE MEMORY
(Data Base)

L 1%

Local in
DB-Copy | Cache
Private .
Memory
Interconnection Bus
|
| I !
Global Cntrl Informaotion
Processor Datafleld-State Processaor
1 Dispatching-State P
P Lock-Owner-Table n

Figure 1: Overview on CDAA

2 CDAA INSTRUCTIONS
This section describes the CDAR
instructions. Three groups of instruction
are distinguished.
* patafield Management Instructions
. Cache Management Instructions

. Frocess lManagement Instructions

The instructions are described in a kind

of pseudocods to keep the description compact

by still maintaining a reasonable degree of
detail and preciseness.

2.1 MACHINE STATE

The state of a CDAR centroelled machine
consists of the fallowing information:

Hachine-S5tate:=
Frocessor-state-list,
Local-DE-copy-list,
Traditional-state~-list,
Datafield-state,
Dispatehing-state,
Lock-owner-table;

The first thres items (the lists) denote dis-
tributed information, whereas the latter
items denote global control information.
Iraditional-state comprises all state infor-
mation required to describe the general,
non-CDAR related part of the machine seman-
tiz. It is nat further described here.

Processor-state:=
Chak-action,
Current-process-id,
Current-memory-unit-id;

The CDAa=action defines for an individual
processer how this processor reacts vhen a
referenced datafield is net accessible {(e.qg.
not initialized or logked). Two alternatives
WAIT and signal ERRCOR are supported.

ChAL-action =
Initialize-action:= WARIT v ERROR ,
Lock-action:= WAIT + ERROR;

Current-process=id:= Humber;
Current-memory-unit=id:= Humber;

The Datafisld-state defines for all datafields
of the data base . the information CDAR needs
in erder to control aceess to the datafield.

375

Datafield-state=
Datafield-attribute -list;

Datafield-attribute:=
CLEARED w
WE=-CLERRED W
READ-LOCHED w
WRITE-LOCEED v
EHPTY;

Dispatching-state describes the infermation
required by Cbik to perform the deactivation
(wait) and dispatching of processes known by
CORR.

Dispatching-state.=
Dispatch-descr-1list;

Dispatch-descr:=
Process-id:= Humber,
Hemotry-unit=-id.= Humber v 0,
Process-status:= Wall v
DISPATCHABLE v
ACTIVE,
Wait=-condition:= W-LOCHK v
other=wait-ecndition v
ROWARIT,
Datafield-address.= address;

Local=-DE-copy:= Datafield-list;
patafisld:= address, valua;

2.2 DATAFIELD MANAGEMENT

The three instructions described below
control access to the datafislds of the data
base. The instructions apply to arsas of
arbitrary length and alignment. & concrete
realizatien ef CDAZ, however,will probably
work on £ixed size datafields (e.g. 32
bytes)., If the area specified by an instruc-
tion does not match the datafield boundaries,
Chan will extend it te the next boundaries.
This has no effect on the semantics of the
instructions, it affects performance only.
I1f the specified area spans multiple data-
fields, cDak will apply the instructions
automatically to the multiple datafields.

2.2.1 CLEAR-DF (address,length])

The purpose of this instruction iz the
detection of read type references to the
datafield before this datafield is ipitial-
ized. After issuing & CLEAR-DF instruction,
the specified datafisld is still not accessi-
ble by the process, but an additional LOCK-LDF
with WRITE access must be issued before the

376

datafield can be accessed (e.g. initialized).
If a data field to be cleared is locked by
another process, the current process iz set
into wait state. Deadlocks are detected by
use of the lock-owner-table and will be sig-
nalled via a special condition code walue.

CLEAR-DF (address, length):=
For all data=-words Wi
within Range (address, length}

no;
IF =~ Accessible (Wi, CLERE) THEN

Do;

CALL CDAR-action (Wi, CLERR);

RETURN;

END;
ELSE Datafield-attribute (Wi)=CLEARED;
END ;

2.2.2 LOCK-DF (address,length,type)

The LOCK-DF instruction must be issued
before a datafield can be accessed by a pro-
cegsar. 'type' may be READ or WRITE. WRITE
locks are exclusive locks, READ locks can be
shared by multiple processors. The instrue-
tion causes the specified data fields to be
copied from the data base to the lecal data
base copy (i.e. cache). If a data field to
be locked is already locked by another proc-
egs (except if it is & read lock request for a
read-locked data field) ,the current process
is set dimte wait state. Deadlocks are
detected by use of the lock-owner-table and
will be signalled wia a special condition
code value.

LOCE-DF {address, length, type):=
FOR all datafields Wi
within Range {address, length)
Do
IF = Accessible (Wi, type} THEN
Do ;
CALL CDAz-actien (Wi, type):
RETURM;
EHD ¢
ELSE DO;
IF type = READ THEHN
Datafield-attribute (Wi) =
READ-LOCKED ;
IF type = WRITE THEN
IF Datafield-attribute (Wi} =
CLEARED THEN
Datafield-attribute (Wi) =
WR-CLEARED ;ELSE
Datafield-attribute (Wi =
HRITE-LOCKED;
Local=DE=copy =
Local-DB-copy || Datafield (Wi);
EHD :
END;

2.2.3 UNLOCK-DF(address,length, type)

This instruction is used to release locks
held for datafields and to commit the data
field walwes in case of WRITE locks.
UNLOCE=DF for a read lock eliminates the cur-
rent process from the lock-owner-table.If the
lock-owner-1list for a data word becomes emp-
ty the read leck for this data word is
relzased. By use of a type parameter (whose
value may be either READ or 0O) it is possible
to change & leck from WRITE te READ.

Committing data means that the data fields
are copied from the local dsta base copy back
to the shared data base. & further result of
the UNLOCK-DF instruction is that processes
waiting for the unlocked data fields are made
dispatchable.

UNLOCK-DF {(address, length, type):=
FOR all data words Wi
within Range (address, length)

bo;

IF - Rhccoessible (Wi, UNLOCK) THEH
0o,
CALL CDRA-action{Wi, UNLOCK):
RETURH ;
END :

IF Datafield-attribute(Wi)=READ-LOCEED
THEN DD
IF tvpe = REARD THEHW DO:
CRLL EXCEPTIOM (E3):
RETURM; END;
Remove process from lock-owner-list;
IF last-owner THEN DO;
Release from local-DBE-copy(Wi);
Hake-Dispatchable (0, W-LOCK Wi):
END;
EHD
IF Datafield-attribute(Wi)=WRITE-LOCKED
v Datafield-attribute(Wi)=WR=-CLEARED
THEW Do
IF type = RELD THEN
Datafield-attribute (Wi)=READ-LOCKED:
Write-Back-te-DE (Wi):
Make-Dispatchable(0,W-LOCK Wi);
END;
END;

2.3 CACHE MAMNAGEMENT
2.3.7 CLEAR-CACHE

The contents of the cache are cleared and
all locks held by the processor are released.

CLEAR-CACHE ;=
FOR all datafields Wi in Local=DB=copy
RELEASE(Hi);

2.3.2 COMMIT-CACHE

The datafield wvaluss of the cache are
written {(committed) te the database.

COMMIT-CACHE ;=
FOR all datafields Wi in Local-DBE-copy
Hrite-Back-ta-DBE{Wi);

2.3.3 CHECKPOINT-CACHE
(address, length)

The contents of the cache are saved at the
specified area. By use of the RESTORE-CACHE
instructisn the saved copy can be reinstalled
at a later peint in time. This facility is
useful for two purposes:

. To establish versions of datz and to be
able to backout (Transaction Frocessing)
or backtrack (Artificial Intelligence)
to previous versiens.

+ Teo support process switching in cases
where this might be requested on top of
the automatic process management pro-
wided by CORRR.

CHECKPOINT-CACHE (address, length):=
IF cache-size > length THEH
CALL EXCEFTION;
ELSE DOy
ares [(address, cache-size) =
Local-DE-coDy;:
length = cache-size;
EMD:

2.3.4 RESTORE-CACHE (address,option)

The cache is leoaded with the datafi=lds
contained in the specifisd area. The speci-
fied area must have been pravigusly loaded by
a CHECKEPOINT-CACHE instruction.

Two cases are distinguished by the option
parameter. Option = RESET indicates the case
where a previously checkpointed status is
exactly reestablished.Option = COPY iz pro-
vided primarily for support of OR-node paral-
lelizsm and means that a previously
checkpointed status is used, however it is
mapped to a new area (i.e. duplicated).
Thus, it does not interfere with the original
datafields.

377

RESTORE-CACHE (address,eption) .=
Local=-DE-copy =)
Area (address, saved-length);
IF option = COPY THEN
Relocate-cache-addresses{address);

'saved-length' is part of the checkpeint data
stored at the specifisd
address.Relocate-cache-addresses modifies
the addresses of the datafields such that
they point to the checkpoint copy.

2.4 PROCESS MANAGEMENT

The dispatching and gquisscing of processes
as a result of CDAR controlled events (e.g.
data fields being lockedfunlocked or unini=-
tianlized/initialized) is performed automat-
ically by CDRR and does not reguire any
explicit instructions. However., since CDAahA
contains the necessary functions anyway, it is
reasonable to offer them sxuplicitely for con-
trol of non-CDAA related process management.

2.4.1 WAIT
(process-id, waitcondition, datafield)

The specified process {(or present proc-
ess,if process-id=0 } is set into waikb state
until the specified wait condition is sig-
nalled for the specified data £ield.The
instruction can be invoked explicitsly or
implicitely by CDAR-Action (see secktion 2.5).

WALL (process-id, WC,DF) ==
IF process-id = 0 THEN
pid = current-process-id;
ELSE pid = process-id;
Frocess=status{pid)s WAIT;
Datafield-address(pid)= DF;
Wait-condition(pid)= WC ;
f® hetivate other processes &f
CELL ACTIVATE-PROCESS:

After a process has entered the Wait
State ACTIVATE-PROCESS i3 invoked to deter-
mine whether anotheér process is ready to be
dispatched on the present processor. Two cas-
es are distinguished with respect to dis-
patchable processes;

1. The process has & memory unit associated,
i.e. the processes data is still in real
memory and cache.

2. The process has no memory unit asseci-
ated. This case happens if the number of
processes is greater than the number of
memory units and therefore data has to ba

378

swapped out of the memory units to serv-
ice all processes. The functions of swap-
pihg out processes from memory units and
sWwapping them in again have to be pro-
vided by software and are not described
here. They can be implemented by use of
the cache management instructiaons CHECH-
POINT-CACHE and RESTORE-CACHE,

ACTIVATE-PROCESS :=

/* First scan for processes which have
&lready a memory unit associated *f

FOR all elaments I of Dispatch-descr-list

0o ; .

IF process=status (I} = DISPATCHRBLE AND
Memory-unit-id (I) » O THEW '
o
process-status (I) = ACTIVE:
Current-process-id = I;
Current-memory=-unit-id =

Hemory=-unit=id (I);
RETURN ;
END;
END

/™ How scan for processes w/io
asgoviated memory unit ®/

FOR all elements I of Dispatch-descr-list

DG

IF process-status (I) = DISPATCHABLE THEN
Do,

Signal-special-svent;
f* i.e. interrupt which causes logic
for process switch te be invoked
on current processor *f
RETURN ;
END;
END;

2.4.2 MAKE-DISPATCHABLE
(process-id, waiteondition, datafield)

The specified process {or all processes,if
process=-id=0) is made dispatchable, if it is
waiting for the specified wait condition and
data field. The instruction can be invoked
explicitely or implicitely by the UNLOCE-DF
instruction. The function will not necessar-
ily be executed by the processor which exe-
cuted the UNMLOCK-DF instruction, but it may
for example.run on a dedieated processor, aor
at a processor which is waiting anyway.

Make-Dispatchable{process-id,WC,DF) .=
IF process-id = 0 THEN
process-list = Dispatch-descr-1ist:
ELSE process-list = process-id:
FOR all elements of process-1list
Do;
IF process-status (I) = WAIT AND
Datafield-address (I) = DF AND
WC = Wait-condition {(I) THEN
DISEATCH (I);
END:

DESPATCH (I}.=

Frocess-status (I) = DISPATCHRELE;

batafield-address (1) = EMPTY:

Wait-condition (I) = MOWAIT:

FOR all processors J DO;
IF current=process-id (J) = 0 THEW
Doy
Start-process-oh-processor(I,J);
RETURN;
END;

EH'D-

[l

2.5 GENERAL FUNCTIONS AND PREDI-
CATES

In the preceding sections 2.2,2,3,2.4 cer-
tain functions and predicates are wsed which
are described in scme more detail below.

ACCESSIBLE (W, Tvype)

This predicate checks if a certain data-
field W is accessible in a specific access
mode. The predicate iz inveked by the data-
field management instructions, but in addi-
tion also by all general purpose instructions
which reference datafields in memory. This
leads to the following possible values for
the Type parameter: CLEAR, READ, WRITE,
UNLOCE, READ-REF (for read references from
general purpose instructions), and WRITE-REF
{for write references from gensral purpose
instructions). The validity of accessing a
datafield depends on the access mede, the
datafield-attributes of the referenced data-
field, and on whether or net the datafield is
available in the cache,

BAccesgible (W, Type):=

IF is=glement-of (Local-DE-copy, W) THEN
SELECT{Type);
WHEH{ READ-REF } ==3> true,
WHEN(WRITE-REF v CLERR} -->
IF Datafield-attribute (W)=READ-LOCKED
THENW false,
ELSE true,
WHEN{ UNLOCK) ==> true,
OTHERWISE =-» false ;
END;
ELSE
/*i.e. not centained in Local-DB-cepy®/
SELECT(Type):
WHEN{ WRITE v CLEAR) =-->
IF Datafield=attribute(W)=CLEARED ¥
patafield-attribute (W)}=EMPTY
THEN trusa,
ELSE false;
WHEM{ READ) ~--3
1F Patafield-attribute(W)=READ-LOCEED
v Datafield-attribute(W)=EWMPTY
THEW true,
ELSE false;
OTHERWISE ==> false;
EHD;

CDAA-action (W, type)

This function is invoked whenever it 1is
detected (by a datafield management instrue-
tien eor by a general purpose instruction)
that a reguested datafield is not accessible.

COAR-action (W, type):=
IF is-element-of (Local-DE-copy, W) THEN
DO
IF type =CLEAR THEW CALL EXCEPTION(EL};
IF type =READ THEN CALL EXCEPTION(E3);
IF type =WRITE THEN CalLl EXCEPTION(ER) ¢
IF type =WRITE-REF THEW CALL EXCEPTION(EL};
EHD,
ELSE DO;
IF type =CLERR v type = READ v type =wRITE
THEN CALL WE(W=-LOCK.W);
IF type =UMLOCK THEN CALL EXCEPTIONW(EZ2);
IF typ =READ-REF THEN
DO
IF Datafield-attribute (W)= CLEARED
v Datafield-attribute (W)= WR-CLERRED
THEN IF
Tnitialize-action {current-process-id)=
ERROR THEN CALL EMCEPTION{E4):
ELSE CALL HAIT{B,I\‘—LUCK,H}:
END; ELSE CALL EXCEPTION(EL};
IF type = WRITE-REF THEN CALL EXCEPTION({ELl};
EHD
/* El: hocess Exception: Reference wfo
ecorrect lock
EZ: UNLOCK for datafields not access-

379

ible by present process

E3: Multiple lock reguests by same
process for same datafield

E4: Reference to unavailable or
wninitialized datafield *f

WE (type W }:=

IF Lock-zction{current-process-id)=ERROR
THEN CALL EXCEPTION(E4):
ELSE CALL WAIT(0O,W-LOCE,W);

3]MPLEMENTA110N CONSIDERATIONS

3.1 MEMORY ORGANIZATION

is already menticned in Section
1, '0verview', an optimal implemsntation of
ChAL would support the three logical types of
memory, processor private data, read only
chared data,and the data base by different
physical memories. However, less optimal
implementations may still be useful. For
example, the processor private data and the
read only data could easily be supported by a
commen , physically shared memory. It is a spe-
cial characteristiec of CDAA, that it is also
feasible to represent the logically shared
data {the data base) by multiple, processor-
local memories. It reguires that, whenever
data is committed (by use of UWLOCK-DF). the
dats has to be communicated to the multiple,
processor-local memories.

section 1 also mentions, that cache-less
implementations of CDAA may still be useful
if the automatic detection of unlocked and
uninitialized datafields is relinguished. If
a cache is available {as with full CDAR), it
need npot be restricted te suppert of the
local data base cepy, but may also be applied
te the processor private data and the
read-only shared data. Separate read and
write caches per processor might also be use-
ful.

The walue or necessity of the above
described implementation alternatives
depends very much on the type of application
for which the CDAA-supported processors will
be used (see section 4 }.

3.2 PROCESS DISPATCHING

Besides efficient memory organization,
this is the second area of CDAR where an
efficient implementation is critical for the
feasibiliey of CDAA in general. It is pro-

380

posed that the CDAA perform a certain degree
of saving and restoring of process status
{e.g. Program Status Word, registers, cache
contents) automatically. In addition, a soft-
ware-provided {(small) exit routine iz inwvoked
which performs additional operating-system-
dependent saving or restering. Three cases
have to be considered:

1. Setting processes into wait state

This is performed autematically when a
data field which is attempted to be
accessed is not accessible {locked or
uninitislized) or when the Waik instruc-
tion is issued., The process status in the
dispatching table is changed from 'Ac-
tive' to 'Waiting'. The saving of the
process state and the invocation of the
Save-gxit-routine however, is daferred
until another precess gets dispatched an
that processor.

2. Dispatching a process

When a process is dispatched at a proces-
sor (because that processor became free
and/or the process became dispatchable),
L{DaA has to update the dispatching table,
invoke the Save-exit-routine for the old
process and the Restore-sxit-routine for
the nmew process, and resume execution
according te the Program Status Word.

i. Haking processes dispastchable

It is assumed that the function of scan-
ning and updating the dispactching table
is not performed by the proceszsor that
caused the datafield to become available,
but that a message is sent to a processor
which performs this work. In the simplest
case this precessor will be a dedicated
processor (with possibly additional
functions). Hore sophisticated schemss
may utilize the fact that sertain proces-
sors may be in wait state anyway.

3.3 MESSAGE-BASED VERSUS SHARED-
MEMORY-BASED PARALLEL PROCESSING.

There is & lot of discussion ameng comput-
er architects about the valusg of
message-based parallel computer architec-
tures wersus parallel precessing based on
shared memory. Even the argument that the
advantage of one type of architecturs owver
the other depends on the type of application
for which the processers will be used does
not terminate the discussion, but at best
restricts it to specific application types.

CDax cannet properly be associated with one
or the other of these two types of parallel
processing. It has the advantage that the

question of message-based versus shared-me-
mory-based parallel processing does mnot
relate to CDAZ as a computer architecture,
but is rather a CDAA internal implementation
issue. Both types of processing could be
supperted by CDAR. As already mentioned,CDan
implementations which do not have a {phys-
ically} shared memory may be reassnable,
depending on the type of application. It
requires that the committment of data (when
UHLOCK-DF is issued) has to be communicated
te the other processors (i.e. messages have
to be sent). It seems that,in the same way as
this kind of CDAA implementation is not opti-
mal for all applications, message-based par-
allel processing in general might not be
optimal for all kinds of application.

4 CDAA APPLICATIONS

4.1 GEMERAL MULTIPROCESSING

Host operating systems {e.qg.
UNIE, VHM/CH5,05/VS2 HVS) do net allaw the
readfwrite sharing of memory data directly by
multiple user applications.Distribution of
an cperating system with this restriction to
multiple CDAk-centrolled processors would
require medifications in the respective oper=
ating s¥stem only (but not in the user appli-
cations).It would provide the image of
tightly coupled multiprocessing witheut
implying all the hardware burden of tightly
coupled multiprocessing {e.g. cache broad-
casting).

4.2 DATA FLOW LANGUAGES

Programs written in a data flew language
(see Rckermann 1982) or in a functional pro-
gramming language could be compiled such that
they could run on CDad utilizing parallel
processing. The following CDAaf-related work
would have to be performed by the compiler:

1. Initislization
&t the beginning of the object program
+ the program pieces which are executa-
ble in parzllel must be distributed
to multiple processes (statically or
dynamically),

» the cache must be clearsd by use of
the CLEAR-CACHE instruction,

s the datafields being subject to con-
current data access must be marked as
not being initialized by use of the
CLEAR-DF imstruction.

2. Hhenewf a datafield obtains a wvalue
which is input to other processes, the
UMLOCK-DF instruction has to be issued.

Processing then functiens similarily te
data flow architecture,namely when a process
references uninitialized data it waits auto-
matically until this data becomes available.
This kind of processing could alsc be
achieved with programming languages other
than data flow languages,if the compilers
were eMtended accordingly. For example, as
pointed ocut in Shapire 1983, Concurrent Fro-
log could be utilized to obtain the behaviour
of data flow languages.

4.3 TRANSACTION PROCESSING

In order to discuss hew CDAR can be used
te support transaction processing, it might
be useful to consider an cperating system
kernel supporting transaction processing as
described in H.Diel et al., 1984. The data
management kernel described there offers
transaction processing facilities (sharing,
locking, committment of data, backout to pre-
vious state) by & close cooperation between
these functions and the virtual memory man-
agement functions. 2s a consequence, the
internal sharing/locking granularity is
equazl to the page size (e.g. 4K bytes). For
cercain applications this may result in less
than optimal performance.

CDRE would be an excellent supplement to
such a data management kernel by allowing
locking/sharing granularity < page sire, and
by supporting the process dispatching by the
processor arvchitecture. Since it is neither
necessary nor feasible te apply the smaller
locking granularity to a complete large data
base, cne could apply CDAA to small data bas-
es or to small parts of data bases with a high
degree of concurrent data access.

1t should be noticed that the consistency
copsiderations related to distributed data-
base concepts do not affect CDRA support of
transaction processing, because the database
managed by a single CDAR complex is not a
distributed database. Suppart of
‘Two=-Fhase=-Commit' , for example,is not
required.Consistency control and sharing
among multiple CDAR controlled complexes
{e.g. multiple network nedes) would De the
task of the data base system or data manage=

381

ment kernel above CDRA, because these func-
tions 4lso manage the non-velotile storage.

4.4 ARTIFICIAL INTELLIGENCE

The parallel execution of artificial
intelligence applications such as Froblem
Splving, Logic Programming and Theorem Prov-
ing distinguishes two types of parallelism:

OR - parallelism:

Alternative paths are investigated. The
paths have identical initial state and it is
possible te prevent interferences between the
alternative paths by working on lecal copies
of the application state only.

To implement OR-parallelism with CDAR it
is usaful te copy the process state to the
multiple processors.This can be done by an
instruction sequence such as the following:

CHECKPOINT-CRCHE{ Area, L1 };

Start-Process{ Pn)

/¥ At process Pn */f

RESTGRE-CACHE(Area, L1, COPY):

Depending on the actual application, addi-
tional functiens would have to be performed
to start OR=parallelism. OR=-parallelism with
structure sharing instead of copying,of
course could be implemented with CDARZ as
well.

In case whers constrained or designated
Of-parallelism is supported, Backtracking
may have to be implemented as
well.Backtracking can be done by an instruc-
tion seguence such as the following:

/* Bt OR-Hede nf

CHECKPOINT-CACHE({ Area, L1):

Perform function of individual

OR-Naode branch

IF failure THEN

RESTORE-CACHE{ Area, L1 RESET);

AND - parallelism

Hultiple paths are executed to evaluate a
common goal. In geteral, the multiple paths
share data angé thus interfere with sach other
when the shared data iz updated. Diffspent
schemes have been proposed to weaken the con-
currency problem by restricting the AND-par-
allelism. For example,Concurrent Frolog (see
Shapiro 1983) supports so-called Determinate
AND=parallelism. PARLOG (see Clark and Grego=
ry 1984) supports one-way communication
betwsen a producer of a variable and a con-
sumer only.L.V.Kale and David 5. Warren (see
#ale and Warren 1984} have introduced
Reduce-Nodes instead of ARD-Wodes.

382

It is believed that given a particular
definition of AND-parallelism, CDAR with its
controlled access to shared data and its sup-
port for backeut or committment of data is
very suitable for support of AWD-parallel-
ism.For example, the one-way communication
can be implemented in CDAR by instructions
such as the following:

CLEAR-DF{X,L) J/* prior to forking L
LOCK-DF(X,L,WRITE)/* at producer process #/
instantiate ¥ /% at producer process #/f
UNLOCK=-DE(X,.L,0) /J* at producer process */
LOCK-DE{X,L,READ) /* at consuber process %/
use X /* st consumer process *f
UMLOCK-DF{X,L.0) /% at consumer process %/

5 SUMMARY

The paper describes a computer architec-
ture that supports a high degr=e of parallel
processing. CDaa is svitable for a wide range
of applicatien areas (e.g. Transaction Proc-
essing, Artificial Intelligence)} which could
utilize the increased parallelism. In addi-
tion CDRAA supports further features (e.g.
Backout, Checkpointing, Backeracking) which
are e¢ssantinl for such application areas.

CDRA leaves much freedom with respect to
possible implementation alternatives.
Although dimplementations with shared memory
are probably most efficient. impleméntaticns
without shared memory, but with message com-
munication instead may be appropriate for
spacific kinds of applications, as well.

& REFERENCES

1. W.B. hAckermann, Data Flow Lapguages, LEEE
Computer 15(2),1982

2. h. Ciepielewski, 5. Haridi, A Formal Mod-
el of OR-parallel Execution, IFIF 1983,
Horth Helland

3, FK.Clark,S5.Gregory, PARLOG:Parallel Pro-
gramming in Logie, Reaearch Report Doc
Ba/4, April 1984.

4. J.a. Crammond, €,0.F. Miller. An Archi-
tecture for Parallel Logic Lan-
gquages , Froceedings of second
Interpational Logic Programming Confer-
ence, Uppsala, 1984

5. H. Diel, M. Lenz, G. HKreissig,
M.Scheible, B. Schoener, Data Management
Facilities of an Operating System Ker-
nel, Proceedings of SIGHCD 284.

&. L.V. Kale, David 5. Warren, A Class of
Architectures for B Frolog
Hachine ,Proceedings of Second Interna=
tional Legic Programming Conference,
Uppsala, 1934

10.

I. Lima, D. Mundy, F. Treleaven, Decen-
tralized Control Flow Programming, IFIP
1283, North Holland)

T. Moto-ocka, K. Fuchi, The Architecture
of -the Fifth Generation Computers, IFIF
1583, North Holland

D.FP.Reed, Haming and Synchronization in a
Decentralized Computer S¥stem, Technical
Report MIT/LCS/TR-205,5ept. 1978

E.Y. Shapiro, A Subset of Concurrent PRO-
LOG and its Interpreter, Technical Repert
TROO3,I1COT Institute for New Generation
Cemputer Technology, 1583.

