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Abstract. A grand challenge in computing is to establish a substrate
computational model that encompasses diverse forms of non-sequential
computation. This paper demonstrates how a hypergraph rewriting frame-
work nicely integrates various forms and ingredients of concurrent com-
putation and how simple static analyses help the understanding and
optimization of programs. Hypergraph rewriting treats processes and
messages in a unified manner, and treats message sending and parame-
ter passing as symmetric reaction between two entities. Specifically, we
show how fine-grained strong reduction of the λ-calculus can be con-
cisely encoded into hypergraph rewriting with a small set of primitive
operations.

1 Introduction

It is fifty years since Carl Adam Petri formalized Petri Nets in his PhD thesis.
Since then, we have seen a lot of proposals to capture and formalize the essence
of concurrency. Yet, the world of concurrency and concurrent programming is
not like its sequential counterpart where Turing machines and the λ-calculus are
the two established formalisms. This indicates two things: one is that the world
of concurrency has more aspects to address than the sequential world, and the
other is that we don’t understand concurrency in sufficient depth yet.

The author’s research career started with the design of a concurrent program-
ming model, where he reengineered the nuts and bolts of logic programming
(such as first-order terms and unification) to have a simple model of commu-
nication and synchronization as an improvement over previous attempts [16].
In the resulting model, Guarded Horn Clauses (GHC), processes work on data
structures equipped with logical (single-assignment) variables. Processes com-
municate by instantiating logical variables by unification and observing their
values by matching (one-way unification). The dataflow synchronization mech-
anism provided by one-way unification was widely recognized as the highlight
of concurrent logic programming. However, another key highlight of concurrent
logic programming is that first-order terms with logical variables were expres-
sive enough to represent sequences of messages with reply boxes (necessary to
encode Concurrent Objects) and channel mobility (exactly in the sense of the
π-calculus). This is in sharp contrast with many other concurrency formalisms
in which communication is heavily studied but data structures are not treated
as primary issues.
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It is worth mentioning that the development of the concurrent logic pro-
gramming paradigm and Guarded Horn Clauses proceeded in parallel with the
development of Concurrent Objects in early 1980’s, partly stimulated by each
other. Both shared the high level goal of establishing a concise model of message-
passing concurrency but with somewhat different focuses: Concurrent Objects
were designed at a higher level of abstraction, that is, in terms of objects and
messages, while concurrent logic programming languages were designed as a sub-
strate model consisting of a smallest possible set of primitive constructs and still
allows the encoding of Concurrent Objects and operations on them [17].

In spite of the nice properties and the expressive power of Guarded Horn
Clauses, it was felt that we could treat processes and data in a more unified man-
ner. Communicating fine-grained processes may form process structures (such as
lists or grids of processes) that act as autonomous, concurrent data structures,
but process structures and ordinary data structures had to be handled very
differently.

With this motivation, the author designed LMNtal a decade ago as his sec-
ond model of concurrent programming based on a small class of graph rewriting,
where nodes represent processes or data and edges represent one-to-one channels
or links. In fact, nodes are nothing more than atomic logical formulas and edges
are nothing more than zero-assignment logical variables (i.e., variables that will
never get concrete values). First-order terms, which are trees with constructors
and variables, are represented using relations by employing one (n + 1)-ary re-
lation for each n-ary constructor.

It turned out that LMNtal was almost backward compatible with concurrent
logic languages. LMNtal also allowed interpretation as a linear logic program-
ming language [23]. Nevertheless, the real challenge of LMNtal was to have a
formalism that could be understood without deep technical knowledge in com-
puter science (such as logic and categories). The adoption of graphs, a widespread
mathematical notion, as the basic structure is motivated exactly by this goal.
The versatility of the graph data structure became evident when our publicly
available LMNtal implementation was tailored into a model checker that used
LMNtal as a modeling language for state transition systems in general [25].

The present paper is concerned with our next step of language evolution.
We have already incorporated hyperlinks (links interconnecting multiple points)
in addition to one-to-one links so that it may better cover a broader range of
computational models. The resulting language, HyperLMNtal [26], has much in
common with Bigraphical Reactive Systems [14], and its versatility and viability
seem to be worth exploring in depth to establish it as a substrate model of
computation.

The rest of the paper is organized as follows. Section 2 briefly describes LM-
Ntal with some examples. Section 3 describes how LMNtal evolved to Hyper-
LMNtal. Section 4 discusses static analysis techniques that reveal two important
properties of programs, capabilities of links and multiplicities of nodes. As one
of the most challenging case studies, Section 5 presents a fine-grained encoding
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Fig. 1. LMNtal graphs: A tree-shaped graph with one free link (left) and a hierarchical
graph with two membranes (right). An arrowhead indicates the first argument and the
ordering of links.

of the full reduction of the lambda calculus into HyperLMNtal and how the type
system of Section 4 gives further computational structures to the encoding.

2 LMNtal: a Model and Language Based on Graph
Rewriting

This section reviews LMNtal briefly. Technical details and relation to other for-
malisms can be found in [23].

LMNtal embodies the view that computation is manipulation of graphs,
which in our setting consist of (i) atoms, (ii) links for one-to-one connectivity,
and (iii) membranes that can enclose atoms and other membranes and can be
crossed by links. Connectivity and hierarchy are the two major basic structuring
mechanisms in both real worlds and cyberworlds including computing, society,
biological systems and body of knowledge. The purpose of LMNtal is to pro-
vide a concise programming and modeling language that allows us to represent
the two mechanisms simultaneously and manipulate them in a direct manner.
Figure 1 shows some graphs that can be manipulated by LMNtal.

The choice of links and membranes as structuring mechanisms allows pro-
gramming with sets and graphs. Although sets and graphs are less common than
arrays, records and pointers as programming language constructs, they are more
standard and commonly used in the rest of the world and in mathematics in
particular. As a formalism of concurrency, an important feature of LMNtal is
that it provides a well-defined notion of atomic actions: graph rewriting by a
single rule application is always done atomically.

2.1 Basic syntax

The syntax of LMNtal is defined as in Fig. 2, where the syntactic constructs not
used in this paper are omitted for simplicity.

The two syntactic categories, link names (denoted by Xi) and atom names
(denoted by p) are presupposed. Processes are the principal syntactic category
and consist of hierarchical graphs and rewrite rules. In the concrete syntax,



4 Kazunori Ueda

capitalized names represent links, while other names (e.g., those starting with
lowercase letters, numbers, and non-alphanumeric symbols) represent atoms.

A process P must observe the following link condition: Each link name in
P (excluding link names occurring in rules) may occur at most twice. A link
whose name occurs exactly once (twice) in P is called a free link (local link) of
P , respectively. The T ’s are process templates that are used in rewrite rules and
handle local contexts, namely contexts within particular membranes.

(Process) P ::= 0 | p(X1, . . . , Xm) | P, P | {P} | T :- T

(Process template) T ::= 0 | p(X1, . . . , Xm) | T, T | {T} | T :- T | @p | $p

Fig. 2. Syntax of LMNtal.

0 stands for an inert process (represented as an empty symbol in the concrete
syntax), p(X1, . . . , Xm) stands for an atom with m links, and P, P stands for
parallel composition called a molecule. Note that links of an atom are totally
ordered and that multiple links between atoms are allowed as well as links con-
necting the same atom. {P} is called a cell and stands for a process enclosed by
a membrane { }. T :- T stands for a rewrite rule, which is applied to processes
located at the same place of the hierarchy formed by membranes. The two T ’s
are called the head and the body of the rule, respectively. A rewrite rule is sub-
ject to several syntactic conditions [23]. Most notably, a link name occurring in
a rule must occur exactly twice in the rule.

The reserved atom name, =, is called a connector. The process X =Y short-
circuits the link X and the link Y . A rule context, denoted by @p, matches the
(possibly empty) multiset of all rules within a membrane, while a process context,
denoted by $p, is to match all processes other than rules within a membrane.

2.2 Operational Semantics

The operational semantics of LMNtal (Fig. 3) consists of structural congruence
defined by (E1)–(E10) and the reduction relation defined by (R1)–(R6). (E4)
stands for α-conversion. (E9)–(E10) are the interaction rules between atoms/cells
and connectors.

Computation proceeds by rewriting processes using rules collocated in the
same place of the nested membrane structure. (R1)–(R3) are standard structural
rules, while (R4)–(R5) are the mobility rules of =. The central rule of LMNtal is
(R6), in which θ is to map process contexts into actual processes. For programs
that do not use membranes, (R6) degenerates to a simpler form: T,(T :- U) −→
U,(T :- U).

2.3 Extended Syntax and Examples

A rule may be prefixed by a rule name and two @’s.
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(E1) 0,P ≡ P (E2) P,Q ≡ Q,P (E3) P,(Q,R) ≡ (P,Q),R

(E4) P ≡ P [Y/X] if X is a local link of P

(E5) P ≡ P ′ ⇒ P,Q ≡ P ′,Q (E6) P ≡ P ′ ⇒ {P} ≡ {P ′}

(E7) X =X ≡ 0 (E8) X =Y ≡ Y =X

(E9) X =Y , P ≡ P [Y/X] if P is an atom and X occurs free in P

(E10) {X =Y , P} ≡ X =Y , {P} if exactly one of X and Y occurs free in P

(R1)
P −→ P ′

P,Q −→ P ′,Q
(R2)

P −→ P ′

{P} −→ {P ′}
(R3)

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) {X =Y ,P} −→ X =Y , {P} if X and Y occur free in {X =Y ,P}

(R5) X =Y , {P} −→ {X =Y ,P} if X and Y occur free in P

(R6) Tθ,(T :- U) −→ Uθ,(T :- U)

Fig. 3. Structural congruence and reduction relation of LMNtal.

[] =
Y

Z X0
Y

Zappend . .
A A

Z0 Z0
Y Y

X0 ZX Xappend append

Fig. 4. Reaction rules for append.

An abbreviation called a term notation allows an atom b without its final
argument to occur as the kth argument of a, to mean that the kth argument of
a and the final argument of b are interconnected. For instance, f(a) is the same
as f(A),a(A). This can be written also as f=a because f(A),a(A) is congruent
(i.e., convertible in zero steps) to f(A),A=A1,a(A1) (by (E9) of Fig. 3), to which
we can apply the abbreviation twice to obtain f=a. A list with the elements Ai’s
can be written as X = [A1, . . . ,An], where X is the link to the list.

Example 1 Two lists can be concatenated using the following two rules:

append(X0,Y,Z), ’[]’(X0) :- Y=Z.
append(X0,Y,Z0), ’.’(A,X,X0) :- ’.’(A,Z,Z0), append(X,Y,Z).

This form makes it explicit that there is no distinction between predicate symbols
and constructors, but we can write it also in a more familiar, Prolog-style form:

append([],Y,Z) :- Y=Z.
append([A|X],Y,Z0) :- Z0=[A|Z], append(X,Y,Z).

Figure 4 shows a diagrammatic representation of the two rules, where the arrow-
heads indicate the first arguments of atoms and the ordering of arguments. ut

Some atoms such as ‘+’ are written as unary or binary operators. Parallel
composition (e.g., P1, P2, . . . , Pn) can be written also in a period-terminated
form (e.g., P1. P2. . . . Pn.).
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Example 2 The dining philosopher problem can be represented as a circular
graph with philosophers and forks:

phi(L1,R1), fork(+R1,+L2), phi(L2,R2), fork(+R2,+L3),
phi(L3,R3), fork(+R3,+L4), phi(L4,R4), fork(+R4,+L5),
phi(L5,R5), fork(+R5,+L1).

fork(+X,+L), phi(L,R) :- fork(-X,+L), phi(L,R). % grab left fork

fork(-X,+L), phi(L,R), fork(+R,+Y) :-
fork(-X,+L), phi(L,R), fork(+R,-Y). % grab right fork

fork(-X,+L), phi(L,R), fork(+R,-Y) :-
fork(+X,+L), phi(L,R), fork(+R,+Y). % release forks

Each link represents a philosopher’s access to a fork, and the atoms ‘+’ and
‘-’ indicate the availability of the fork. The LMNtal model checker constructs
and visualizes the state space of the model, where the state space construction
algorithm takes advantage of the symmetry of the circular graph to avoid state
space explosion. ut
Example 3 One of the uses of membranes is to encapsulate rules and delimit
their scope of effect. Suppose we have the following rule:

{module(m),@m}, {use(m),$p,@p} :- {module(m),@m}, {$p,@p,@m}

The first cell stands for a rule set repository with a module name, while the
second cell stands for a “test tube” that requires the rules in the module m. This
rule causes a new copy of @m, which is the content of the module m, to be loaded
to other cells containing use(m). ut

The rest of this subsection is about how to specify operations on primitive
datatypes.

We note that numbers in LMNtal are unary atoms such as 8(X), where X is
connected to the atom referring to the number. To specify operations on primi-
tive types such as integers, the two constructs, typed process contexts and guards,
are introduced. While the process matched by an ordinary process context is de-
termined by the membrane it belongs to (i.e., hierarchy), the process matched by
a typed process context is determined by the graph structure (i.e., connectivity)
and the atom name inside the structure. For instance, the guarded rule

p(X), $n[X] :- int($n), $n>0 | p(Y), $n[Y], p(Z), $n[Z].

means that, when a unary atom p is connected to a positive integer, that two-
atom molecule will be duplicated. The guard constraint int($n) requests that
$n[X] is a typed process context (with one free link) representing an integer
atom, and the constraint $n>0 requests that the value of the integer is positive.

Available type constraints other than int include unary (standing for unary
atoms) and ground (standing for non-hierarchical connected graphs with exactly
one free link). Note that int is regarded as a subtype of unary which in turn is
a subtype of ground. A rule containing typed process contexts can be viewed as
a rule scheme that represents a set of rules without guards.
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3 Incorporating Hyperlinks

The design decision of LMNtal to feature one-to-one links rather than hyper-
links came from the observation that multi-point connectivity could be encoded
using membranes. However, membranes are a general construct that can be used
to enclose processes and rules for localized reactions and are somewhat heavy-
weight for representing just multi-point connectivity or multisets. Also, program
variables in most computational models and languages represent possibly shared
data, and efficient and succinct encoding of those program variables is of practi-
cal importance. This motivated us to incorporate hyperlinks into LMNtal. The
main driving force was to build an efficient encoding of Constraint Handling
Rules (CHR) [6], a constraint programming language syntactically close to LM-
Ntal.

The first step towards HyperLMNtal was the design of the hyperlink con-
struct. Since the design and implementation of LMNtal was quite stable, it was
considered ideal if the extension could be made smoothly without changing the
basic framework of the language and its implementation or affecting the perfor-
mance of existing applications. The two design choices we have made are the
following:

– Distinguish between links and hyperlinks. Although hyperlinks could be re-
garded as subsuming links, we maintain the distinction between them. Each
link connection has exactly one partner, and this property is not only a fun-
damental program invariant but also utilized by the implementation of links
in many ways, including the access to partners and the garbage-collection of
partners.

– Treat hyperlinks as atoms with local names. Having decided that hyperlinks
are a syntactic category different from links, we must decide whether to
incorporate something totally new or something close to an existing category.
We already observed that links are local names shared by exactly two atoms
[23], and this suggests that hyperlinks should be treated as local names
shared by any number of atoms. This can be realized by providing a construct
to create a unary atom with a fresh local name, because unlike link names,
unary atoms can be copied and discarded in our extended syntax.

Now we describe the constructs provided for hyperlink manipulation. A fresh
local name can be created by a new guard construct as:

H :- new($x) | B

where the hyperlink name $x can be used in B. The scope of x (i.e., the set of
atoms that can access x) is B initially, but it may extend to other atoms in the
course of graph rewriting, as is the case with local names of the π-calculus.

To check if an argument of an atom is a hyperlink, we write:

H :- hlink($x) | B
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where $x occurs in H. Because hlink is a subtype of unary, the equality and
inequality of hyperlinks can be checked using guard constraints ‘==’ and ‘\==’.

Motivated by Linear Logic, we allow hyperlinks to be written in the form
!X (X capital), in which case either of the guard constraints hlink and new is
implicitly provided, depending on whether the hyperlink occurs in the head or
not.

The most characteristic operation is the fusion of two hyperlinks,

H :- . . . | !X >< !Y, B.

which is a hyperlink version of the connector ‘=’ and interconnects two hyperlinks
by fusing two hyperlink names. In the abstract syntax, >< will be denoted as ./.

Another characteristic operation is to obtain or check the cardinality (i.e.,
number of endpoints) of a hyperlink:

H :- num(!X,$n) | B

where !X occurs in H and $n is bound to the current cardinality of !X.
The shorthand notation illustrated below allows a hyperlink to occur more

than once in the head of a rule to represent sharing:

Example 4

a(!X), b(!X), c(!X) :- .

is the same as

a($x), b($x0), c($x1) :-
hlink($x), hlink($x0), hlink($x1),
$x==$x0, $x==$x1 | .

This rule removes three unary atoms a, b, c if they share the same hyperlink, in
which event the cardinality of that hyperlink is reduced by three. ut

4 Analyzing HyperLMNtal Programs

Since graphs are highly general data structures, programming with graphs will
greatly benefit from tools and techniques for analyzing and understanding the
properties and the behavior of programs.

With this motivation, we have developed a model checker for LMNtal and its
integrated development environment (IDE)[25] and found them extremely useful
for analyzing the state space of nondeterministic concurrent systems. The model
checker can presently handle systems with a half billion states with various
optimization techniques and shared-memory parallel processing. The LMNtal
model checker was later extended to handle hypergraphs.

HyperLMNtal as a programming language requires no declarations of any
kind (variables, types, procedures, etc.), and could be positioned as a scripting
language for model checking in the sense that it allows concise description and
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quick development of small- to medium-scale models. To analyze hypergraph
rewriting, however, static analysis will also play an important rôle because we
are far less familiar with computing with hypergraphs than computing with lists
and trees. It will also identify important subclasses of programs that are more
legitimate or likely to be correct than others.

With this in mind, we describe two static analysis techniques that address
aspects of program properties in a clear way. Our goal here is not to analyze
programs as precisely as possible; rather, we are concerned with extracting sim-
ple properties by abstracting others. Chemistry suggests that the fundamental
properties of graphs are those about (chemical) atoms and those about bonds,
and we follow this metaphor. For the sake of simplicity, henceforth we focus on
Flat HyperLMNtal, a fragment of HyperLMNtal without membranes, and call
Flat HyperLMNtal simply as HyperLMNtal.

4.1 Assigning Polarities and Capabilities to Links and Hyperlinks

Let a port, denoted by 〈a, i〉, stand for the ith argument of an atom a, which
is an endpoint of a link or a hyperlink. Firstly, we are interested in which port
of an atom may be connected to which port of the same or another atom. This
information will lead to a type system that deals with graph structures based on
a local view. Although the connectivity information alone may not capture the
global shape of data (e.g., whether a grid forms a square or a rectangle; whether
a list is terminated by a nil or not), it addresses local properties of structures
with sharing (i.e., more than one path leading to a single atom) and cycles.

Secondly, we may be interested in the rôle of each port. Informally, by a rôle
we mean the polarity or capability of a port, where a polarity stands for the
direction of access (i.e., whether the port is used for sending data or receiving
data), information flow, or ownership (i.e., whether the port of an atom is used
to access data it owns or is used to be accessed by its owner), while a capability
additionally stands for whether the port of a hyperlink has exclusive access to
the partner(s) or shares them with others. We focus on this second aspect of
ports, namely their polarities and capabilities.

Technically, we choose to represent the capability of a port using a real num-
ber between −1 and +1 inclusive. The capability value +1 means that the port
stands for an exclusive, full ownership of (or exclusive reference to) the partner
atom(s), while a value 0 < c < 1 stands for a non-exclusive, partial ownership
(or shared reference). The value −1 stands for a sole source or access point of
data available to the partner(s). A hyperlink with a −1 port and several posi-
tive fractional ports is a directed hyperarc of a specific kind called a backward
hyperarc [7] (Fig. 5), and can be represented by a family of pointers pointing
to the atom with the −1 port. A value −1 < c < 0 represents a partial source
and appears when a partial ownership is returned through that port. The value
0 stands for an inactive port not connected to anywhere else.

This notion of capability inherits the author’s capability type system de-
signed for a class of Flat GHC programs [21], except that the system described
in the present paper simplifies the original one thanks to the unified treatment of
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α1 −1α2
α3 (αi > 0,  Σαi +1= 0) 

Fig. 5. A backward hyperarc with three owners.

processes and data and by focusing on individual (hyper)links. The use of frac-
tions in type systems later appeared in [3] and subsequent papers with different
settings. Our type system is unique in that it uses negative as well as positive
fractions, enjoying symmetry around zero. Historical account of fractional type
systems can be found in [19].

The capability type system for (Flat) HyperLMNtal consists of the con-
straints given in Fig. 6, where a capability type c is formulated as a function
from the set of ports to the closed interval [−1, +1]. To be useful, our type system
is necessarily polymorphic because capabilities are very often split and passed to
atoms with the same name, that is, they keep decreasing in the course of recur-
sion. The polymorphism is realized by suffixing each atom in a rule l:- r1, ..., rn

as ls :- r1,s.1, ..., rn,s.n, where a suffix s is a sequence of indexes, and s.i means
appending an index i to s. Atoms with the same name and different suffixes are
subject to the same constraints but may adopt different solutions.

The first constraint, (Conn), represents the relationship between the ports of
a connector and a fuser.

The key advantage of our formulation is that the central type constraint on
a (hyper)link is exactly Kirchhoff’s current law (KCL), i.e., the capabilities of
the endpoints of a (hyper)link sum up to 0.

Constraint (Coop) states that

– if a left-hand side occurrence of L has a positive capability, all the left-hand-
side occurrences must have positive capabilities and jointly act as the source
of data in the rule, and

– otherwise exactly one of L’s occurrences in the right-hand side must have a
negative capability and act as a single source of data.

In other words, it states that that a hyperlink L represents a backward hyperarc
(if k = 0) or transforms a backward hyperarc into another backward hyperarc
(if k ≥ 1) by using the rule. Note that the capability of a hyperlink occurrence
on the left-hand side of a rule must be negated because the left-hand side acts
as a template of rewriting. This constraint states also that the capability of
a hyperlink port should be nonzero. The non-zero condition is to disallow the
“silent” participation to and withdrawal from a hyperlink.

Constraint (Link) states that the capability of a link should be either 1 or −1
(i.e., non-fractional). We could allow a singleton hyperlink with a zero capability
as was done in [21], but will not discuss it here.

Although we have installed the suffix system to allow polymorphism, Occam’s
razor tells us that type inference as an explanation of program properties should
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(Conn) If (X1 =s X2) ∈ Q then c(〈 =s, 1〉) + c(〈 =s, 2〉) = 0;
If (X1 ./s X2) ∈ Q then c(〈 ./s, 1〉) + c(〈 ./s, 2〉) = 0

Let a link or a hyperlink L occur n (≥ 1) times in P and Q at p1, . . . , pn, of which the
occurrences in P are at p1, . . . , pk (k ≥ 0). Then

(KCL) −c(p1)− · · · − c(pk) + c(pk+1) + · · ·+ c(pn) = 0 (Kirchhoff’s Current Law)

(Coop) If k = 0 then R`{c(p1), . . . , c(pn)}´;
If k ≥ 1 then R`{−c(p1), c(pk+1), . . . , c(pn)}´;
where R is a ‘cooperativeness’ relation:

R(S)
def
= ∃s ∈ S

`
s < 0 ∧ ∀s′ ∈ S \ {s} `s′ > 0

´´

(Link) If L is a link then c(pk) ∈ {−1, 1} for 1 ≤ k ≤ n (= 2)

Fig. 6. Capability constraints imposed by a rule P :- Q.

– prefer maximally general solutions to those with unnecessary constraints and
– prefer least polymorphic (i.e., most uniform) solutions to those that give

different types to each instance of atoms with the same name.

As an example, we first consider polarizing append (Sect. 2.3) in a monomor-
phic setting.

Example 5 The constraints imposed by (KCL) and (Conn) on append in a
monomorphic setting are as follows:

c(〈append, 1〉) + c(〈[], 1〉) = 0 by X0
c(〈append, 3〉) + c(〈append, 2〉) = 0 by =
c(〈append, 1〉) + c(〈., 3〉) = 0 by X0
c(〈append, 3〉) = c(〈., 3〉) by Z0
c(〈., 2〉) = c(〈append, 1〉) by X
c(〈., 2〉) + c(〈append, 3〉) = 0 by Z

This is satisfiable with the following solution satisfying (Coop) and (Link) also:

c(〈append, 1〉) = 1, c(〈append, 2〉) = 1, c(〈append, 3〉) = −1,
c(〈[], 1〉) = −1,
c(〈., 2〉) = 1, and c(〈., 3〉) = −1, (no constraints on c(〈., 1〉)

which intuitively means an append reads its first and the second arguments and
writes to the third argument. However, this is not the only satisfying assignment,
and another solution is:

c(〈append, 1〉) = −1, c(〈append, 2〉) = −1, c(〈append, 3〉) = 1,
c(〈[], 1〉) = 1,
c(〈., 2〉) = −1, and c(〈., 3〉) = 1, (no constraints on c(〈., 1〉).

The latter solution makes practical sense. A ‘.’ here can be thought of an ac-
tive message that activates append which generates another ‘.’ that may act
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on the subsequent procedure connected to the third argument of append. This
message-oriented scheduling policy was studied and implemented in the logic
programming context [20], but our framework which does not distinguish be-
tween predicate symbols and constructors provides more uniform treatment of
different reduction strategies. ut

A set D of atoms is said to dominate the left-hand side of a rule if all the
atoms in the left-hand side can be reached (by following directed (hyper)links)
from the atoms in D. In the case of the above example, the atom append dom-
inates the left-hand sides in the first solution, while ‘.’ and [] dominate the
left-hand sides in the second solution. One may wish to interpret dominators as
procedures and non-dominators as data.

An example involving hyperlinks will be described in Section 5.6.
The capability type system turns hypergraphs into directed hypergraphs and

allows them to be represented using one-way pointers. The type system thus pro-
vides key information for compiler optimizations even when undirected links are
a more natural tool for modeling purposes (e.g., when directed links break sym-
metry). It will also help deeper understanding of graph structures and debugging.

We have confirmed that most simple LMNtal programs allow uniform polar-
ization that gives the same polarity vector to atoms with the same name. We
have found exceptions as well:

Example 6 A program constructing a fullerene (C60) structure does allow
polarization but needs two different polarity vectors for c:

dome(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9) :-
p(T0,T1,T2,T3,T4), p(L0,L1,H0,T0,H4), p(L2,L3,H1,T1,H0),
p(L4,L5,H2,T2,H1), p(L6,L7,H3,T3,H2), p(L8,L9,H4,T4,H3).

dome(E0,E1,E2,E3,E4,E5,E6,E7,E8,E9), /* top half */
dome(E0,E9,E8,E7,E6,E5,E4,E3,E2,E1). /* bottom half */

/* icosahedron -> fullerene */
p(L0,L1,L2,L3,L4) :- X=c(L0,c(L1,c(L2,c(L3,c(L4,X))))).

It is easy to see that there is no uniform (monomorphic) solution because exactly
half of the 180 ports provided by the 60 ternary carbon atoms must be positive,
namely 1.5 ports per atom. ut

Thanks to the algebraic formulation, it is rather straightforward to prove the
subject reduction property:

Theorem (subject reduction). If a program P : c and P −→ Q then Q : c.

4.2 Composition Analysis

Many programs that handle data structures enjoy beautiful invariants with re-
spect to the size of data. The append program is a typical example, where the
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Fig. 7. Size space of the dining philosopher program.

recursive rule just changes connectivity and preserves all the atoms, while the
base case rule loses two atoms, append and []. The possibly non-terminating
dining philosopher program preserves the total number of atoms, while the com-
position of the ‘+’s and the ‘-’s keeps changing. This suggests that composition
analysis (exactly in the sense of chemistry) could be a useful tool to analyze
properties about the number of atoms.

Remarkably, properties about the increase and decrease of atoms in state
transition systems have been studied in depth in the field of Petri Nets [1].
Boundedness of the number of tokens at each place is a fundamental property
of Petri Nets and is analyzed by forming a reachability graph of possible mark-
ings. The possible markings of unbounded Petri Nets can be represented using
coverability graphs, which over-approximates possible markings of unbounded
Petri Nets using the ordinal number ω, and much work has been done on the
algorithms for constructing coverability graphs [5][15].

Now notice that place/transition nets, the most basic form of Petri Nets, are
exactly multiset rewriting systems; they are different representations of the same
thing. Note also that graph rewriting degenerates to multiset rewriting simply
by forgetting about links. Thus, it is almost trivial to have a multiset rewriting
system corresponding to a given LMNtal program and analyze its state space
that captures just the composition of atoms.

Example 7 Figure 7 shows the state space of the dining philosopher program
with respect to the number of atoms, which was visualized by our LMNtal IDE.
The multiplicities of atoms are indicated by suffixes as in chemical formulae. The
shape clearly indicates that the number of available forks is reduced one by one,
possibly leading to deadlock, while it may be increased by two at a time. ut

Example 8 Let us consider append again. The polarization of links establishes
an interpretation of the initial graph such as

X = append([1,3,5,7,9],[11,13,15])

as a binary tree. Composition analysis tells that, upon termination, there will
be a single list consisting of the initial elements. Now notice that the preorder
traversal of the above tree, modulo append and [], visits the list elements in in-
creasing order, and the second rule of append is exactly a tree rotation operation
that does not affect preorder traversal (modulo append and []).
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The same line of argument applies to establish the associativity of append:

X = append(append([1,3,5],[7,9]),[11,13,15])
X = append([1,3,5],append([7,9],[11,13,15]))

Each of the above graphs is obtained by rotating the two append atoms at the
top of the other graph, which preserves preorder traversal modulo append and
[]. ut

5 Encoding the Pure Lambda Calculus into
HyperLMNtal

Substitutions is the éminence grise of the λ-calculus.
—Abadi et al. (1991) [2]

The usual implementation of functional programming languages based on
a weak evaluation paradigm (no reduction inside a lambda), betray the

very spirit, i.e., the higher-order nature, of lambda-calculus.
—Asperti (1998)

One of the most significant challenges in the (Hyper)LMNtal project has
been to have a concise encoding of the λ-calculus. This may sound surprising,
but it was a real challenge because HyperLMNtal’s connection to the λ-calculus
was far less obvious than to concurrency calculi such as the π-calculus and the
ambient calculus [27]. The encoding of the λ-calculus is significant because the
λ-calculus and λ-terms play fundamental rôles not only in functional languages
but in the treatment of variable binding, scoping, and substitutions that appear
in various formalisms.

The core of the λ-calculus is β-reduction, (λx.M)N → M [x 7→ N ], but the
definition of substitutions used here is far from simple and provoked various
alternative formulations. In particular, “to replace all the free occurrences of x
by copies of N” does not necessarily reflect actual implementation, which may
share the representation of N whenever possible but must sometimes make copies
of N (e.g., when applying another λ-term to N).

One of the formalisms aiming at the precise representation of the λ-calculus is
the λσ-calculus [2], which provides two syntactic categories, λ-terms and explicit
substitutions, and gives rewrite rules to both.

Another approach to formalizing the λ-calculus is to adopt graph represen-
tation of λ-terms; a bound variable can most naturally be represented as an
edge (or a hyperedge) that connects the defining and applied occurrences of the
same variable. Most previous work in this approach adopted Interaction Nets
[8] to represent and manipulate graphs ([9][11][12], to name a few). Many of
the encodings of the λ-calculus into Interaction Nets pursued optimal sharing
or efficiency, and resulted in more or less involved representation of λ-terms to
achieve the objective. One notable exception is the encoding by Sinot [18], which
addressed the simplicity of the encoding, but it focused on the weak λ-calculus
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that did not evaluate the body of λ-abstractions. Indeed, as KCLE [12] suggests,
encoding of the pure calculus can be much less concise (in terms of the number
of rules involved) than the encoding of the weak calculus. Weak λ-calculi may
be appropriate for the foundations of functional languages, but the applications
of the λ-calculus as a whole call for strong (or pure) λ-calculi as well.

This raises one question: Is there any concise graph-based encoding of the
pure λ-calculus? With Interaction Nets, YALE [11] proposes a relatively simple
solution but still needed to simulate “boxes” for scope management. So the
next question is: To obtain a more concise encoding (appropriate, say, for an
undergraduate text), what additional constructs should be included to the graph
rewriting framework?

A concrete answer to these questions was given using LMNtal by presenting
a fine-grained and highly nondeterministic encoding of the pure λ-calculus (with
open terms) and discussing its properties [24]. Although the membrane construct
of LMNtal provides powerful functionalities such as the copying of the graph
enclosed by a membrane, the encoding used membranes only to represent and
manipulate fresh local names, called colors, so that each rewrite step could be
executed in (almost) constant amortized time. Thus the encoding was essentially
not specific to LMNtal, and the evolution of LMNtal to HyperLMNtal gives us
another chance of bringing insights on what constructs are most basic for concise
encoding. The purpose of this section is to describe our encoding of the pure λ-
calculus into typed HyperLMNtal whose hyperlink manipulation is significantly
more restricted than that of untyped HyperLMNtal. Since each of the proposed
rewrite rules is simple and well-motivated, the proposed method is expected to
serve not only as an encoding but as a fine-grained reformulation of the pure
λ-calculus.

5.1 Representing λ-terms in HyperLMNtal

Now we describe our encoding of the λ-calculus into (Flat) HyperLMNtal. Our
starting point was the encoding into Interaction Nets. Interaction Nets is a non-
hierarchical graph rewriting formalism with strong syntactic conditions, and Hy-
perLMNtal can be considered as a model and a language that extends Interac-
tion Nets by alleviating their syntactic conditions and introducing hyperlinks.
Of various encodings into Interaction Nets, Sinot’s encoding [18] is one of the
simplest in the sense that it dispenses with the explicit management of free
variables in each λ-abstraction. However, the method is to compute weak head
normal forms (terms of the form xM0 . . .Mn (n ≥ 0) or λx.M , where M and
Mi are not necessarily in normal form) and the computation is serialized using
a control token navigating over the λ-graph. Our goal, in contrast, is to encode
the basic reduction semantics of the pure λ-calculus, preserving and manifesting
nondeterminism inherent in the formalism.
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5.2 Representing λ-terms

First of all, we define the encoding from a λ-term L into an LMNtal process. The
result must have exactly one free link (say R), which is connected to the atom
referring to L. So the translation function T receives as arguments the λ-term
L and the free link name R.

– When L is a variable x, it is represented as a unary atom with the name x
connected to R via a binary atom fv indicating a free variable:

T (x,R) def= fv(x,R) (= R = fv(x)).

– When L is a λ-abstraction λx.M , let k (≥ 0) be the number of free oc-
currences of x in M , and Tx(M, [R1, . . . , Rk], R) be a process obtained from
T (M,R) by removing all unary atoms x and their tags fv and changing them
into free links R1, . . . , Rk. (For example, Tx(x, [R1], R) = R =R1.) Then

T (λx.M,R) def= lambda(R0, R
′, R), Tx(M, [R1, . . . , Rk], R′),

connect[R0, R1, . . . , Rk] ,

where connect[R0, R1, . . . , Rk] is a process with free links R0, R1, . . . , Rk

defined as follows:

connect[R0]
def= rm(R0)

connect[R0, R1]
def= R0 =R1

connect[R0, R1, . . . , Rn] def= cp(R1, R
′
0, R0), connect[R′0, R2, . . . , Rn] (n ≥ 2).

– When L is an application MN :

T (MN,R) def= apply(R1, R2, R), T (M,R1), T (N, R2) .

Bound variables are encoded into LMNtal links, but because of the Link
Condition of LMNtal, bound variables not occurring exactly twice requires the
branching or termination of links. We employ a unary atom rm (remove) to
terminate unused bound variables and a ternary atom cp (copy) to bifurcate
links. The encoding of a bound variable with more than two occurrences forms
a tree of cp’s, but the form of the tree does not count for our encoding and its
properties. For example, a combinator I = λx.x is represented as

lambda(X,X,Result) (= Result = lambda(X,X))

where Result is the free link name representing the result. The Church encodings
of natural numbers, λfx.fnx (n ≥ 0), can be represented as

0: lambda(rm,lambda(X,X),Result)
1: lambda(F,lambda(X,apply(F,X)),Result)
2: lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X))),Result)

and so on.
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Fig. 8. Graph representation of the Church numerals 0, 1, 2, 3, where ‘@’ stands for
apply.

5.3 Reaction Rules with Color Management

Figure 9 shows a complete set of rules that encodes the pure λ-calculus using our
λ-term representation, in which cpc stands for a complement of cp and hereafter
denoted as cp. Intuitively, an atom a is said to be a complement of b if they may
cancel each other. Likewise, topc and subc are the complements of top and sub
and will be denoted as top and sub.

The first rule, beta, performs “bare” β-reduction, that is, performs parameter
passing without copying the argument even when it is referenced more than
once. Rule beta alone is sufficient if all formal parameters are used exactly once;
otherwise we need reaction rules for the atoms cp, cp, rm, and rm (11 rules
following beta) to destroy or copy graph structures incrementally. The final four
rules are for the color management described next.

The ternary cp’s in λ-terms are first converted to quinternary cp’s by Rule
c2c. The additional third and fourth arguments form a pair of complementary
circuits for distinguishing between cp’s with different origins (i.e., cp’s copied
from the ones belonging to different λ-abstractions) when copying nested λ-
abstractions. The additional information is called a color after the Petri Net
terminology. Let us focus on the circuit formed by the third arguments and
come back to the other circuit formed by the fourth arguments later. Each color
is represented using a hyperlink that interconnects all atoms sharing that color.

Colors form tree-shaped partial order. Two colors in the supercolor-subcolor
relationship are interconnected by an atom sub. The topmost color is connected
to the atom top. Figure 10 shows a graph structure consisting of one cp with
a top color, one cp and one cp with the complementary pair of a subcolor, and
one cp and two cp’s with the complementary pair of another subcolor.

Each quinternary cp is given a top color initially. Rule c2c creates an in-
dependent top color cell for each cp, but whether to create independent top
color cells or share a single top color cell does not affect the correctness of our
encoding.

Graph copying starts when beta reduction takes place and a cp on the formal
parameter side meets apply, lambda, or fv in the argument term. Figure 11
depicts important rewrite rules related to cp’s.



18 Kazunori Ueda

¶ ³
beta@@ H=apply(lambda(A, B), C) :- H=B, A=C.

l_c@@ lambda(A,B)=cp(C,D,!L,!M) :-

C=lambda(E,F), D=lambda(G,H),

A=cpc(E,G,!L1,!M1), B=cp(F,H,!L2,!M),

sub(!L1,!L2,!L), subc(!M1), .

a_c@@ apply(A,B)=cp(C,D,!L,!M) :-

C= apply(E,F), D= apply(G,H),

A=cp(E,G,!L,!M1), B=cp(F,H,!L,!M2), !M=jn(!M1,!M2).

c_c1@@ cpc(A,B,!L1,!M1)=cp(C,D,!L2,!M2), sub(!L1,!L2,!L) :-

A=C, B=D, sub(!L1,!L2,!L), !L1 >< !M1, !L2 >< !M2.

c_c2@@ cpc(A,B,!L1,!M1)=cp(C,D,!L2,!M2), top(!L2) :-

C=cpc(E,F,!L1,!M11), D=cpc(G,H,!L1,!M12), !M1=jn(!M11,!M12),

A=cp(E,G,!L2,!M21), B=cp(F,H,!L2,!M22), !M2=jn(!M21,!M22),

top(!L2).

f_c@@ fv($u)=cp(A,B,!L,!M) :- unary($u) |

A=fv($u), B=fv($u), !L >< !M.

l_r@@ lambda(A,B)=rm :- A=rmc, B=rm.

a_r@@ apply(A,B)=rm :- A=rm, B=rm.

c_r1@@ cp(A,B,!L,!M)=rmc :- A=rmc, B=rmc, !L >< !M.

c_r2@@ cpc(A,B,!L,!M)=rm :- A=rm, B=rm, !L >< !M.

r_r@@ rmc=rm :- .

f_r@@ fv($u)=rm :- unary($u) | .

promote@@ subc(!L1), sub(!L1,!L2,!L3) :- !L2 >< !L3.

join@@ !Y=jn(!X,!X) :- !X >< !Y.

c2c@@ A=cp(B,C) :- A=cp(B,C,!L,!M), top(!L), topc(!M).

gc@@ top(!L), topc(!L) :- .

µ ´
Fig. 9. HyperLMNtal encoding of the pure λ-calculus.

When a cp meets an apply, it copies the partner, splits itself, and proceeds
to the copying of the apply’s two arguments. In this case, the color of the split
cp’s remains unchanged (Rule a_c).

When a cp meets a lambda, it copies the partner and splits itself in the
same manner, but in this case it turns into a complementary pair of cp and
cp. Furthermore, the complementary pair is made to have different colors as
described below (Rule l_c).

The hyperlink !L on the left-hand side of l_c stands for the current color.
The right-hand side creates a subcolor !L2 and its complement !L1. A cp moving
anticlockwise (in the representation of Fig. 8) from the x side of a λ-term λx.M
and a cp moving clockwise from the M side are given the same color held by
the first and the second arguments of sub, respectively.
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Fig. 10. Coloring cp atoms. Non-circular atoms and dotted edges form a circuit for
color management.
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Fig. 11. Reaction rules for cp atoms. A white triangle stands for jn; a white trapezoid
stands for sub; a black trapezoid stands for sub; and a white square stands for top.

As can be seen from the Church numerals example, the link representing the
bound variable of a λ-abstraction is either terminated by rm or is split using zero
or more cp’s and connected to some places in the body. Accordingly, each cp
will eventually meet, and is annihilated by, either an rm or a cp with the com-
plementary color (possibly after crossing and copying cp’s with the top color).
When a cp meets a cp with the top color, it copies the partner using c_c2, splits
itself, and proceeds.

In contrast, a cp may not meet a cp with the complementary color, because
it may escape the scope of the λ-abstraction through a link representing nonlocal
variables. The color of a cp that has escaped must be changed back to the original
color. This is done using promote, which fuses a subcolor with its supercolor by
removing the atom sub when all the cp’s of the subcolor disappear (Fig. 12).
This promotion mechanism was realized using membranes in our first encoding
[24], where the emptiness checking of membranes was used in an essential way.
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Fig. 12. Color promotion triggered by the short-circuiting of sub and sub.

Based on this experience, a cardinality operator of some sort was considered an
indispensable construct for hyperlinks, and was incorporated into HyperLMNtal.

The concurrency research community has been deeply concerned with the
choice of primitives which may affect the expressive power of the formalism.
Thus, exactly what primitives are needed to encode the lambda calculus is a
central rather than marginal issue. The major contribution of the encoding pre-
sented in Fig. 9 is that a symmetric hyperlink circuit works nicely for color
management and is amenable to capability typing.

Recall that, when a cp is annihilated, it is not allowed to discard the color
capability carried by its third argument in a typed setting; the cp instead returns
it through the fourth argument. When a cp is copied into two, the capabilities
distributed to the two copies through their third arguments are returned through
the fourth arguments and are joined by an atom jn defined in the rule join. The
initial cp’s carry the top color top, and their fourth arguments are connected to
top, the complement of top.

A similar mechanism is implemented for the cp’s sharing the same subcolor;
the third arguments of the cp’s are connected to the first argument of sub, while
their fourth arguments are connected, possibly via jn’s, to the complementary
atom sub. From Fig. 10, one can observe that a hyperlink circuit between a sub
and a corresponding sub form a circuit involving cp’s and containing jn’s on
the sub side. When the cp’s are short-circuited, the jn’s will detect the identity
of two hyperlinks and join their capabilities. The sub and the sub will establish
one-to-one connection eventually, when they annihilate each other and triggers
promotion. Similarly, observe from Fig. 10 that a top and a corresponding top
form a circuit involving cp’s, which also contains sub’s on the top side and jn’s
on the top side, which is symmetric if the sub’s and the jn’s are ignored.

Rule promote is applied asynchronously with other rules; it is not necessarily
applied as soon as all the cp’s of some color disappear. The delay of promote
simply delays the reaction between cp’s and cp’s (using c_c1 and c_c2) and
does not cause wrong reactions by affecting the applicability of other rules.

Of the remaining rules, f_c copies global free variables. This rule contains
a side condition, unary($u), that specifies that the first argument of fv is con-
nected to some unary atom, which will be copied in the right-hand side because
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Fig. 13. State space of the omega combinator.

$u occurs twice there. Rules l_r, a_r, c_r1, c_r2, r_r, and f_r are to delete
any partner that an rm or an rm may encounter. Rule gc is to delete a topmost
color not referenced any more.

5.4 Examples

From numerous examples we have run using our LMNtal system, we pick two
well-known λ-terms to illustrate our encoding.

Example 9 The omega combinator Ω = (λx.xx)(λx.xx) is a beautiful λ-
term that involves copying. Figure 13 shows the state space of Ω encoded into
HyperLMNtal, where beta is allowed to be used only once for the purpose of our
analysis. Figure 14 shows some of those states. Graph (G1) is the initial state
decorated with colors by c2c. The only rule applicable to (G1) is beta, which
yields (G2). Now λ reacts with cp and is split into two ((G3)). (G4) is obtained
from (G3) by a_c and c_c2 (in either order). Now the two complementary pairs
of cp and cp are canceled by two applications of c_c1, and the resulting (dis-
connected) graph, (G5), consists of Ω (left) and a graph of used colors (right),
where the Ω graph came with a color representation different from (G1). The
color graph will be erased by join, promote and gc.

When we do not restrict the number of β-reductions, the encoding turns out
to have infinitely many states (unlike Ω in the original λ-calculus which has only
one state) because the erasure of the garbage graph may be delayed arbitrarily
long. ut

Example 10 The exponentiation of Church numerals seems to be an impor-
tant test of λ-calculus encodings because the extremely simple encoding of mn,
λmn.nm, involves exponential amount of graph copying. It is important also
because it requires the evaluation of the bodies of λ-abstractions.

The program in Fig. 15 reduces to

R = apply(fv(s),apply(fv(s),...,apply(fv(s)︸ ︷︷ ︸
81 times

,fv(0))...))
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Fig. 14. Reduction of the omega combinator. a white square stands for top; a black
square stands for top; a white trapezoid stands for sub; a black trapezoid stands for
sub; and a white triangle stands for jn.

that stands for s322

(0). The encoding is highly nondeterministic, reflecting the
fine-grainedness of the encoding. Even the computation of R = apply(n(2),n(2))
(22) has 2874 possible states. ut

5.5 Properties of the Encoding

The encoding described above decomposes β-reduction into many small mi-
crosteps that allow asynchronous, out-of-order execution. The adequacy of the
encoding is therefore not obvious; recall that the confluence and termination
of the λσ-calculus was not obvious, either [4][13]. Furthermore, because of the
asynchrony, the “meaning” of an intermediate state of graph reduction broken
into microsteps is far from obvious.

To address the above problems, in [24] we proposed to interpret graphs using
λ-terms with additional binder constructs corresponding to rm and cp atoms,
and established several important properties of the (original) encoding through
well-known properties of the λ-calculus. Exactly the same technique can be used
to establish the properties of the encoding described in this paper because the
two encodings differ only in the representation of colors that is abstracted in the
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¶ ³
N=n(2) :- N=lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X)))).

N=n(3) :- N=lambda(cp(F0,cp(F1,F2)),

lambda(X,apply(F0,apply(F1,apply(F2,X))))).

R = apply(apply(apply(apply(n(2),n(2)),n(3)),fv(s)),fv(0)).

µ ´
Fig. 15. Church numerals and their exponentiation.

extended λ-term representation of graphs. We do not repeat the technical details
but mention that the encoding enjoys the following properties, whose proofs can
be found in [24]:

1. Preservation of strong normalization: If a λ-term M is strongly normalizing,
the HyperLMNtal encoding of M is strongly normalizing.

2. Soundness: If an HyperLMNtal encoding G of M reduces in 0 or more steps
to G′ which is an encoding of some term M ′, then M −→∗ M ′.

3. Completeness: If G is a HyperLMNtal encoding of M and M −→∗ M ′, then
there is a HyperLMNtal encoding G′ of M ′ such that G can be reduced to
G′ in 0 or more steps.

Most previous encodings into Interaction Nets used two kinds (i.e., two col-
ors) of copying tokens. Two colors sufficed in [18] because it did not evaluate
bodies of λ-abstractions. YALE and KCLE computed normal forms, but did so
by explicitly managing nonlocal variables, which added certain complexity. Al-
though not for computing normal forms, Lang’s encoding [10] employed many
colors, where colors were represented as sequences of fresh names. Color compar-
ison was based on whether one color was a prefix of the other, whose practical
cost is yet to be studied. Lamping’s optimal sharing [9] also employed many
colors (called levels), and further employed tokens called croissants and brackets
(both coming with many colors as well) to achieve sharing and complicated level
management. Our encoding pursues a different direction: the size of the rewrite
system. Color hierarchy implemented using hyperlinks lead to a rewrite system
that added only a few rules to the rules for handling all possible pairs of atoms
that may meet.

Our rewrite system could be slimmed down further. Rule c2c can be dis-
pensed with by starting with colored cp atoms. Rules l_r, a_r, c_r1, r_r, f_r
(i.e., all rules involving rm and rm except c_r2), plus gc are just for garbage col-
lection and tidying up the tree of cp’s, and could be dispensed with. (Rule c_r2
cannot be removed because it kills cp’s whose cardinality is counted.) This leaves
us only nine essential rules, beta, l_c, a_c, c_c1, c_c2, f_c, c_r2, promote, and
join, which suffice for the full evaluation of colored λ-term representation.

5.6 Typing the encoding

The encoding described in this section is designed to allow capability typing. We
omit the typing constraints but show a well-typing of atom ports:
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c(〈@, 1〉) = c(〈@, 2〉) = 1, c(〈@, 3〉) = −1,
c(〈λ, 1〉) = −1, c(〈λ, 2〉) = 1, c(〈λ, 3〉) = −1,
c(〈cp, 1〉) = c(〈cp, 2〉) = −1, c(〈cp, 5〉) = 1,
c(〈cp, 3〉) > 0, c(〈cp, 4〉) < 0, c(〈cp, 3〉) + c(〈cp, 4〉) = 0,
c(〈cp, 1〉) = c(〈cp, 2〉) = 1, c(〈cp, 5〉) = −1,
c(〈cp, 3〉) > 0, c(〈cp, 4〉) > 0, c(〈cp, 3〉) + c(〈cp, 4〉) = 0,
c(〈rm, 1〉) = 1, c(〈rm, 1〉) = −1,
c(〈jn, 1〉) > 0, c(〈jn, 2〉) > 0, c(〈jn, 3〉) < 0,
c(〈jn, 1〉) + c(〈jn, 2〉) + c(〈jn, 3〉) = 0,
c(〈sub, 1〉) = −1, c(〈sub, 2〉) < 0, c(〈sub, 3〉) > 0,
c(〈sub, 2〉) + c(〈sub, 3〉) = 0,
c(〈sub, 1〉) = 1, c(〈top, 1〉) = 1, c(〈top, 1〉) = −1

Ports constrained by inequalities and zero-sum constraints are polymorphic ports
for hyperlinks. The above constraints give us an interpretation that

– @ works on λ in Rule beta,
– cp and rm work on @, λ, cp, rm, and fv in Rules a_c, l_c, c_c1, c_c2, c_r1,

f_c, a_r, l_r, c_r2, r_r, and f_r,
– top works on top in Rule gc,
– sub works on sub in Rule promote, and
– jn works by itself.

Thus, the capability typing provides all atoms (except jn) with active or pas-
sive rôles in reaction, and this directionality information should be useful in an
optimized implementation of our encoding.

6 Conclusion

We have shown that programming with controlled use of links and hyperlinks
provides us with a uniform framework of concurrent and non-deterministic com-
putation that allows (among other things) concise and fine-grained encoding of
the strong λ-calculus. The encoding shows that the carefully chosen set of hy-
perlink operations (equality checking and fusing) are powerful enough to express
multiset operations necessary to encode the scope management of the λ-calculus.

The simple capability type system with a [−1, +1] real-valued type domain
gives interpretation of hyperlinks as backward (directed) hyperlinks. The type
constraints are formulated around Kirchhoff’s current law, and could be solved
rather easily using SAT (for links) or SMT (for hyperlinks) solvers. Although we
advocate distinguishing between links and hyperlinks syntactically, the distinc-
tion is for practical reasons, since the capability type system is powerful enough
to automatically infer which ports and hyperlinks are used as (and can be im-
plemented as) links. The capability type system seems to advocate a symmetric
program structure with respect to capability management; that is, hyperlink ca-
pabilities split into fractions in a tree-like manner should eventually be joined in
the tree-like manner.
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Our ongoing work includes the encoding of Bigraphical Reactive Systems into
Flat HyperLMNtal, in which hyperlinks are used in a much more sophisticated
way. Two major directions of future work are (i) to apply the proposed type
system to aggressive compiler optimization and (ii) to develop a verification
framework for programs based on hyperlink rewriting.
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