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Abstract. A set of Horn clauses augmented with a ‘guard’ mechanism
is shown to be a simple and yet powerful parallel logic programming
language.

1. INTRODUCTION

Kowalski [1974] showed that a Horn clause is amenable to procedural inter-
pretation. Prolog was developed as a sequential programming language based on
the procedural interpretation of Horn clauses [Roussel 1975], and it has proved
to be a simple, powerful, and efficient sequential programming language [Warren,
Pereira and Pereira 1977].

As Kowalski points out, a Horn clause program allows parallel or concur-
rent execution as well as sequential execution. However, although a set of Horn
clauses may be useful for uncontrolled search as it is, it is inadequate for a parallel
programming language capable of describing important concepts such as communi-
cation and synchronization. We need some additional mechanism to express these
concepts, and this paper shows that this can be effected with only one construct,
the guard.

We introduce guarded Horn clauses in the following sections. Guarded Horn
Clauses (GHC) will be used as the name of our language. We compare GHC with
other logic/parallel programming languages. GHC is intended to be the machine-
independent core of the Kernel Language for ICOT’s Parallel Inference Machine.

* Author’s current address: Institute for New Generation Computer Technology, 4-28, Mita
1-chome, Minato-ku, Tokyo 108 Japan

** Major revision was made to Section 6 and slight revision to the other sections. This version
appeared in Proc. Logic Programming ’85, Wada, E. (ed.), Lecture Notes in Computer
Science 221, Springer-Verlag, Berlin Heidelberg New York Tokyo (1986), pp. 168–179.

*** Slightly reworded. This version appeared in Concurrent Prolog: Collected Papers, Shapiro,
E. Y. (ed.), The MIT Press, Cambridge, 1987, pp. 140–156.
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2. DESIGN GOALS AND OVERVIEW

Our goal is to obtain a logic programming language that allows parallel exe-
cution. It is expected to fulfill the following requirements:

(1) It must be a parallel programming language ‘by nature’. It must not be a
sequential language augmented with primitives for parallelism. That is, the
language must assume as little sequentiality among primitive operations as
possible in order to preserve parallelism inherent in a Horn clause program.
This would lead to a clearer formal semantics, as well as to an efficient imple-
mentation on a novel architecture in the future.

(2) It must be an expressive, general-purpose parallel programming language. In
particular, it must be able to express important concepts in parallel program-
ming—processes, communication, and synchronization.

(3) It must be a simple parallel programming language. We do not have much ex-
perience with either theoretical or pragmatic aspects of parallel programming.
Therefore, we must first establish the foundations of parallel programming
with a simple language.

(4) It must be an efficient parallel programming language. We have a lot of
simple, typical problems to be described in the language, as well as complex
ones. It is very important that such programs run as efficiently as comparable
programs written in existing parallel programming languages.

Concurrent Prolog [Shapiro 1983] and PARLOG [Clark and Gregory 1984a]
seem to lie near the solution. Both realize processes by goals and communication
by streams implemented as lists. Synchronization is realized by read-only variables
in Concurrent Prolog and by one-way unification in PARLOG.

GHC inherits the guard construct and the programming paradigm established
by these languages. The most characteristic feature of GHC is that the guard is
the only syntactic construct added to Horn clauses. Synchronization in GHC is
realized by the semantic rules of guards.

GHC is expected to fulfill all the above requirements. We have succeeded
in rewriting most of our Concurrent Prolog programs. Miyazaki and Ueda have
independently written GHC-to-Prolog compilers in Prolog by modifying different
versions of Concurrent Prolog compilers on top of Prolog [Ueda and Chikayama
1985].

3. SYNTAX AND SEMANTICS

3.1. Syntax

A GHC program is a finite set of guarded Horn clauses of the following form:

H :- G1, . . . ,Gm |B1, . . . ,Bn. (m ≥ 0, n ≥ 0).
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where H, Gi’s, and Bi’s are atomic formulas that are defined as usual. H is called
a clause head, Gi’s are called guard goals, and Bi’s are called body goals. The
operator ‘|’ is called a commitment operator. The part of a clause before ‘|’ is
called the guard, and the part after ‘| ’ is called the body. Note that the clause
head is included in the guard. The set of all clauses whose heads have the same
predicate symbol with the same arity is called a procedure. Declaratively, the
above guarded Horn clause is read as “H is implied by G1, . . . , and Gm and B1,
. . . , and Bn”.

A goal clause has the following form:

:- B1, . . . ,Bn. (n ≥ 0).

This can be regarded as a guarded Horn clause with an empty guard. A goal
clause is called an empty clause when n is equal to 0.

In this paper, we use symbols beginning with uppercase letters for variables
and symbols beginning with lowercase letters for function and predicate symbols,
following DECsystem-10 Prolog [Bowen et al. 1983]. The nullary predicate ‘true’
is used for denoting an empty set of guard or body goals.

3.2. Semantics

The semantics of GHC is quite simple. Informally, to execute a program is to
reduce a given goal clause to an empty clause by means of input resolution using
the clauses constituting the program. This can be done in a fully parallel manner
under the following rules of suspension:

• Rules of Suspension

(a) Any piece of unification invoked directly or indirectly in the guard of a
clause cannot bind a variable appearing in the caller of that clause with

(i) a non-variable term or

(ii) another variable appearing in the caller.

(b) Any piece of unification invoked directly or indirectly in the body of a
clause cannot bind a variable appearing in the guard of that clause with

(i) a non-variable term or

(ii) another variable appearing in the guard

until that clause is selected for commitment (see below).

A piece of unification which can succeed only by making such bindings is
suspended until it can succeed without making such bindings (end of the
rules of suspension).
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Note that a set of variables whose instantiation is inhibited by the above rules
can vary as computation proceeds. When a variable X in the set S is bound to a
non-variable term T (in a way not disallowed above), we include all the variables
in T in S and remove X itself from S.

Another rule we have to add is the commitment rule. When some clause
succeeds in solving (see below) its guard for a given goal, that clause tries to be
selected exclusively for subsequent execution of the goal. To be selected, it must
first confirm that no other clauses belonging to the same procedure have been
selected for the same goal. If confirmed, that clause is selected indivisibly; we say
that the goal is committed to that clause and also that that clause is selected for
commitment.

We say that a set of goals succeeds (or is solved) if it is reduced to an empty
set of goals by using a selected clause for each initial or intermediate goal: We are
interested in a reduction path in which only selected clauses are involved. The
notion of failure is not introduced here, but it will be discussed in Section 6.1.

It must be stressed that under the rules stated above, anything can be done
in parallel: Conjunctive goals can be executed in parallel; candidate clauses for
a goal can be tested in parallel; head unification involved in resolution can be
done in parallel; head unification and the execution of guard goals can be done in
parallel. However, what is even more important is that we can also execute a set
of tasks in a predetermined order as long as this does not change the meaning of
the program.

The rules of suspension could be more informally restated as follows:

(a) The guard of a clause cannot export any bindings to (or, make any bindings
observable from) the caller of that clause, and

(b) the body of a clause cannot export any bindings to (or, make any bindings
observable from) the guard of that clause before commitment.

Rule (a) is used for synchronization, so it could be called the rule of synchroniza-
tion. Rule (b) is rather tricky; it states that we can solve the body of a clause
not yet selected for commitment. However, the above restrictions guarantee that
this never affects the selection of candidate clauses nor the other goals running
in parallel with the caller of the clause. So Rule (b) is effectively the rule of
sequencing.

In Concurrent Prolog, the result of unification performed in a guard (includ-
ing a head) and which would export bindings is recorded locally. In GHC, such
unification simply suspends. Suspension of unification due to some guard may be
released when some goal running in parallel with the goal for which the guard is
being executed has instantiated the variable that caused suspension.
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An example may be helpful in understanding the rules of suspension. Let us
consider the following program:

Goal: :- p(X), q(X). (i)
Clauses: p(ok) :- true | ... . (ii)

q(Z) :- true | Z=ok. (iii)

The predicate ‘=’ is a predefined predicate which unifies its two arguments. This
predicate must be considered as predefined, because it cannot be defined in the
language.

Clause (ii) cannot instantiate the argument X of its caller to the constant ‘ok’,
since this unification is executed in the guard. This clause has to wait until X
is instantiated to ‘ok’ by some other goal. On the other hand, Clause (iii) can
instantiate X to ‘ok’ after it is selected for commitment, and this clause can be
selected almost immediately. Therefore, no matter which of the two goals of Clause
(i) starts first, the head unification of Clause (ii) can succeed only after the ‘Z=ok’
goal in Clause (iii) is executed.

The semantics of the following program should be more carefully understood:

Goal: :- p(X), q(X). (i)
Clauses: p(Y) :- q(Y) | ... . (ii′)

q(Z) :- true | Z=ok. (iii)

To solve the guard of Clause (ii′), we have to do two things in parallel: unify
X and Y (i.e., parameter passing), and solve q(Y). Let us assume that parameter
passing occurs first. Then the goal q(Y) tries to unify Y (now identical to X)
with ‘ok’. However, this unification cannot instantiate X because it is indirectly
invoked by the guard of Clause (ii′). Let us then consider the other case where the
goal q(Y) is executed prior to parameter passing. The variable Y is bound to ‘ok’
because this itself does not export a binding to the caller of Clause (ii′), namely
p(X). However, this binding causes the subsequent parameter passing to suspend
because it would export a binding. Hence, no matter which case actually arises,
Clause (ii′) behaves exactly like Clause (ii) with respect to bindings given to the
variable X.

Some important consequences of the above rules follow:

(1) Any unification intended to ‘export’ bindings to the caller of a clause through
its head arguments must be specified in the body. Such unification must be
specified using the predefined predicate ‘=’.

(2) The unification of the head arguments of a clause may, but need not, be
executed in parallel. It can be executed sequentially in any predetermined
order.

– 5 –



(3) The unification of head arguments and the execution of guard goals can be
executed in parallel. That is, the execution of guard goals can start before the
unification of head arguments has completed. However, the usual execution
method that solves guard goals only after head unification is also allowed; it
does not change the meaning of a program.

(4) The execution of the body of a clause may, but need not, start before that
clause is selected. Bindings made by the body are unobservable from the
guard before commitment, so the meaning of the program is independent of
whether the body starts before or only after commitment.

(5) We need not implement a multiple environment mechanism, i.e., a mechanism
for binding a variable with more than one value. This mechanism is in general
necessary when more than one candidate clause for a goal is tried in parallel.
In GHC, however, at most one clause, a selected clause, can export bindings,
thus eliminating the need of a multiple environment mechanism.

Unfortunately, properties (2) and (3) do not hold if we introduce the concept
of failure. For example, the following goal

Goal: :- and(X, false).

Clause: and(true, true) :- true | true.

fails if the arguments are unified in parallel, but suspends if they are unified from
left to right [Gregory 1985].

4. PROGRAM EXAMPLES

4.1. Binary Merge

merge([A|Xs],Ys, Zs) :- true | Zs=[A|Zs1], merge(Xs,Ys,Zs1).

merge(Xs, [A|Ys],Zs) :- true | Zs=[A|Zs1], merge(Xs,Ys,Zs1).

merge([], Ys, Zs) :- true | Zs=Ys.

merge(Xs, [], Zs) :- true | Zs=Xs.

The goal ‘merge(Xs, Ys, Zs)’ merges two streams Xs and Ys (implemented
as lists) into one stream Zs. This is an example of a nondeterministic program.
The language rules of GHC do not state that the selection of clauses should be
fair. In a good implementation, however, the elements of Xs and Ys are expected
to appear on Zs almost in the order of arrival.

Note that no bindings can be exported from the guards; bindings to Zs must
be made within the bodies. This programming style, however, serves to clarify
causality. In most cases, the bi- (or multi-) directionality of a logic program is
only an illusion; it seems far better to specify the data flow which we have in mind
and to enable us to read it from a given program.
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Note that the declarative reading of the above program gives the usual, logical
specification of the nondeterministic merge: arbitrary interleaving of the two input
streams makes the output stream.

4.2. Generating Primes

primes(Max,Ps) :- true | gen(2,Max,Ns), sift(Ns,Ps).

gen(N,Max,Ns) :- N=<Max | Ns=[N|Ns1], N1:=N+1, gen(N1,Max,Ns1).

gen(N,Max,Ns) :- N >Max | Ns=[].

sift([P|Xs],Zs) :- true | Zs=[P|Zs1], filter(P,Xs,Ys), sift(Ys,Zs1).

sift([], Zs) :- true | Zs=[].

filter(P,[X|Xs],Ys) :- X mod P=:=0 | filter(P,Xs,Ys).

filter(P,[X|Xs],Ys) :- X mod P=\=0 | Ys=[X|Ys1], filter(P,Xs,Ys1).

filter(P,[], Ys) :- true | Ys=[].

The call ‘primes(Max, Ps)’ returns through Ps a stream of primes up to
Max. The stream of primes is generated from the stream of integers by filtering
out the multiples of primes. For each prime P, a filter goal ‘filter(P, Xs, Ys)’
is generated which filters out the multiples of P from the stream Xs, yielding Ys.

The binary predicate ‘:=’ evaluates its right-hand side operand as an integer
expression and unifies the result with the left-hand side operand. The binary
predicate ‘=:=’ evaluates its two operands as integer expressions and succeeds iff
the results are the same. These predicates cannot be replaced by the ‘=’ predicate
because ‘=’ never evaluates its arguments. The predicate ‘=\=’ is the negation of
‘=:=’.

Readers may wish to improve the above program by eliminating unnecessary
filtering.

4.3. Bounded Buffer Stream Communication

test(N) :- true | buffer(N,Hs,Ts), ints(0,100,Hs), consume(Hs,Ts).

buffer(N,Hs,Ts) :- N > 0 | Hs=[-|Hs1], N1:=N-1, buffer(N1,Hs1,Ts).

buffer(N,Hs,Ts) :- N=:=0 | Ts=Hs.

ints(M,Max,[H|Hs]) :- M < Max | H=M, M1:=M+1, ints(M1,Max,Hs).

ints(M,Max,[H|- ]) :- M >= Max | H=‘EOS’.

consume([H|Hs],Ts) :- H\=‘EOS’ | Ts=[-|Ts1], consume(Hs,Ts1).

consume([H|Hs],Ts) :- H =‘EOS’ | Ts=[].

This program illustrates the general statement that demand-driven compu-
tation can be implemented by means of data-driven computation. It uses the
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bounded-buffer concept first introduced by Takeuchi and Furukawa [1983] in a
logic programming framework. The predicate ‘ints’ returns a stream of integers
through the third argument in a lazy manner. It never generates a new box by
itself; it only fills a given box created elsewhere with a new value. In the above
program, the goal ‘consume’ creates a new box by the goal ‘Ts=[-|Ts1]’ every
time it has confirmed the top element H of the stream. The top and the tail of the
stream are initially related by the goal ‘buffer(N, Hs, Ts)’.

The binary predicate ‘\=’ is the negation of the predicate ‘=’. It succeeds
when its two arguments are proved to be ununifiable; it suspends until then.

4.4. Meta-Interpreter of GHC

call(true ) :- true | true.

call((A,B)) :- true | call(A), call(B).

call(A=B ) :- true | A=B.

call(A ) :- A\=true, A\=(-,-), A\=(-=-) |

clauses(A,Clauses), resolve(A,Clauses,Body), call(Body).

resolve(A,[C|Cs],B) :- melt-new(C,(A:-G|B2)), call(G) | B=B2.

resolve(A,[C|Cs],B) :- resolve(A,Cs,B2) | B=B2.

This program is basically a GHC version of the Concurrent Prolog meta-
interpreter by Shapiro [1984]. The predicate ‘clauses’ is a system predicate which
returns in a frozen form [Nakashima, Ueda and Tomura 1984] a list of all clauses
whose heads are potentially unifiable with the given goal. Each frozen clause is a
ground term in which original variables are indicated by special constant symbols,
and it is melted in the guard of the first clause of ‘resolve’ by ‘melt-new’. The
goal ‘melt-new(C, (A :- G|B2))’ creates a new term (say T) from a frozen term
C by giving a new variable for each frozen variable in C, and tries to unify T with
‘(A :- G|B2)’.

The predicate ‘resolve’ tests the candidate clauses and returns the body of
an arbitrary clause whose guard has been successfully solved. This many-to-one
arbitration is realized by the combination of binary clause selection performed in
the predicate ‘resolve’.

It is essential that each candidate clause is melted after it has been brought
into the guard of the first clause of ‘resolve’. If it were melted before passed into
the guard, all variables in it would be protected against instantiation from the
guard.

5. IMPORTANT FEATURES OF GHC

5.1. Simplicity

GHC has only a small number of primitive operations all of which are consid-
ered small:
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(1) calling a predicate leaving all its arguments unspecified, i.e., after making sure
only that they are new distinct variables,

(2) unifying a variable with another variable or with a non-variable term whose
arguments are all new distinct variables, and

(3) commitment.

Operation (1) is effectively resolution without unification. From the viewpoint
of parallel execution, resolution in the original sense [Robinson 1965] need not be
considered as an indivisible operation. Resolution can be decomposed into goal
rewriting and unification, and the latter can be executed in parallel with the newly
created goals, as stated in Section 3.2.

Operation (2) shows that the unification of a variable and a non-variable term
is not necessarily a primitive operation. For example, the unification ‘X=f(a)’ can
be decomposed into the two operations ‘X=f(Y)’ and ‘Y=a’, where Y is a new
variable. This was also suggested by Hagiya [1983].

Furthermore, the semantics of guard and commitment is powerful enough to
express the following notions:

(1) conditional branching,

(2) nondeterministic choice, and

(3) synchronization.

This feature is much like CSP [Hoare 1978], but CSP provides additional con-
structs ‘?’ (input command) and ‘!’ (output command) for synchronization. The
Relational Language [Clark and Gregory 1981] was the first to introduce the guard
concept to logic programming for reasons similar to ours****. However, GHC has
removed the restrictions on the guard of the Relational Language together with
mode declarations and annotations.

5.2. Descriptive Power

We have succeeded in rewriting most of the Concurrent Prolog programs we
have. In particular, we have written a GHC program which performs bounded
buffer communication (Section 4.3), and a meta-interpreter of GHC itself (Section
4.4).

5.3. Efficiency

It cannot be immediately concluded that GHC can be efficiently implemented
on parallel computers. The efficiency of GHC will depend very much on future

**** IC-Prolog [Clark and McCabe 1980] was the first to introduce the guard concept to logic
programming, but for rather different reasons.
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research on the language itself and its implementation. However, GHC is more
amenable than Concurrent Prolog to efficient implementation: It needs no mech-
anism for multiple environments; and it provides more information on synchro-
nization statically. We made a compiler of GHC subset which compiles a GHC
program into Prolog [Ueda and Chikayama 1985], and an ‘append’ program ran
at more than 12kLIPS on DEC2065. The current restriction is that user-defined
goals are not allowed in guards. Another GHC-to-Prolog compiler was made by
Miyazaki. Although less efficient than ours, his compiler is capable of handling
nested guards.

For applications in which efficiency is the primary issue but little flexibility is
needed, we could design a restricted version of GHC which allows only a subclass
of GHC and/or introduces declarations which help optimization. Such a variant
should have the properties that additional constructs such as declarations are used
only for efficiency purposes and that a program in that variant is readable as a
GHC program once the additional constructs are removed from the source text.

6. POSSIBLE EXTENSIONS

This section suggests some possible extensions, which are currently not part
of GHC. Issues such as their necessity, implementability, and compatibility with
other language features should be carefully examined before they are actually
introduced.

6.1. Finite Failure and the Predicate ‘otherwise’

The semantics of GHC as described in Section 3.2 does not include the con-
cept of failure. However, failure of unification can be readily introduced into the
language. We can say that a set of goals fails if it contains or derives some unifi-
cation goal and its two arguments are instantiated to different principal functors.
Then, in general, a suspended unification may turn out later either to fail or to
succeed.

Another kind of failure is caused by a goal for which there prove to be no
selectable clauses. Calling a non-existent predicate also falls under this category.
This kind of failure must be detected as failure only under the closed world assump-
tion; otherwise, that goal would have to suspend until somebody adds a selectable
clause to the program.

The predicate ‘otherwise’ proposed by Shapiro and Takeuchi [1983] can be
introduced to express ‘negation as failure’. The predicate ‘otherwise’ can appear
only as a guard goal. A goal ‘otherwise’ succeeds when the guards of all the
other candidate clauses for a given goal have failed; until then it suspends. This
predicate could be conveniently used for describing a default clause.
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6.2. Metacall Facilities

We sometimes want to see whether a given goal succeeds or fails without
making the test itself fail. Consider, for example, a monitor program. A monitor
program may create several processes, some of which are user programs and others
service programs. In this case, the user programs must be executed in a fail-safe
manner, because if one of them should fail, so does the whole system. Furthermore,
a monitor program must have some means to abort its subordinate user programs.

Let us consider a program tracer next. A program tracer must execute a
given program, generating trace information every moment. Even if the program
fails, the tracer should generate appropriate diagnostic information without failing.
The tracer may even have to trace the execution of guards, which is really an
impure feature since information should be extracted from the place from where
no bindings must otherwise be exported.

A partial evaluator is another example. A partial evaluator rewrites a program
clause by executing the goals in the clause. For example, the first clause in the
program

p(Y) :- q(Y) | ... .

q(Z) :- true | Z=ok.

in Section 3.2 can be partially evaluated to the following clause:

p(ok) :- true | ... .

To do such rewriting, it must be possible to execute a given goal to obtain a
finite set of substitutions and, in the case of suspension, a finite set of remaining
(suspended) goals. In this case, the initial goal and the result must be represented
in a frozen form. For if ordinary variables were used, the solver of the initial goal
could not know when that goal had been fully instantiated, nor could we know
when all bindings had been made. The binding delay is not guaranteed to be
bounded.

We are considering language facilities which support all of these applications.
However, we have not reached a satisfactory solution yet. The metacall facility
proposed by Clark and Gregory [1984b] was a candidate solution, but it proved
to have some semantical problems. Their two-argument metacall ‘call(Goal,
Result)’ tries to solve Goal possibly generating output bindings, and it unifies
Result with ‘succeeded’ upon success and with ‘failed’ upon failure. However,
consider the following example [Sato and Sakurai 1984]:

:- call(X=0, -), X=1.

If the first goal is executed first, X becomes 0. Then the unification X=1 fails and
so does the whole clause. If the second goal is executed first, X becomes 1. But
since the first goal never fails, the whole clause succeeds. This is a new kind of
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nondeterminism resulting from the order of unification; without this facility, all
nondeterminism would result from the arbitrary choice of selectable clauses.

Let us consider another example:

:- call(X=0, -), call(X=1, -).

The semantics of a GHC variable is intended to allow the above goal to be rewritten
as follows [Ueda 1985],

:- call(X=0, -), X = Y, call(Y=1, -).

because they are logically equivalent. However, this rewriting shows that the
failure of unification cannot be confined in either ‘call’. The failure can creep out
and topple the whole goal. This means that the metacall facility as proposed by
Clark and Gregory cannot protect a system program from unpredictable behavior
by a user program. Further investigation is necessary to find a better solution.

7. IMPLEMENTATION OUTLINE

The purpose of this section is to demonstrate that the suspension mechanism
of GHC can be implemented. We will first show an easy-to-understand but possibly
inefficient method: pointer coloring. Here we do not consider the suspension of
bodies. The body of a clause is assumed to start after the clause has been selected.

When a term in a goal and a variable in the guard of a clause are unified, we
color the pointer which indicates the binding. A term dereferenced using one or
more colored pointers cannot be instantiated. When the clause is selected, colored
pointers created in its guard are uncolored. For this purpose, the guard of a clause
must record all pointers colored for that guard. Uncoloring can be done in parallel
with the other operations in the body.

Care must be taken when the term in a goal to be unified with the variable
in the guard is itself dereferenced using colored pointers. Consider the following
example:

:- p(f(A)). (i)
p(X) :- q(X) | ... . (ii)
q(Y) :- true | Y=f(b). (iii)

If the variable Y should directly point to the term f(A) by a colored pointer
and uncolor it upon selection of Clause (iii), the variable A would be erroneously
instantiated to the constant ‘b’. There are a couple of possible remedies:

(1) Disallow a pointer which goes directly out of nested guards and use a chain
of pointers instead.

(2) Let each pointer know how many levels of guards it goes through.
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(3) [Miyazaki 1985] Allow a pointer to go directly through nested guards. How-
ever, let each colored pointer know for what guard it is colored. When directly
pointing a term dereferenced using colored pointers, that new pointer must
be recorded in the guard which records the last colored pointer in the deref-
erencing chain.

The pointer-coloring method explained above is general. In many cases, how-
ever, we can analyze suspension statically. The simplest case is the following
clause:

p(true) :- ... | ... .

The head argument claims that the corresponding goal argument must have been
instantiated to ‘true’ for this clause to be selected. We can statically generate the
code for this check, and need not use colored pointers in this case.

In general, if a guard calls only system predicates for simple checking (e.g.,
integer comparison), compile-time analysis is easy because no consideration is
needed on other clauses. On the other hand, if it calls a user-defined predicate,
global analysis is necessary to determine which unification may suspend and which
unification cannot. There will be no general method for static analysis, but in many
useful cases, static analysis like PARLOG’s compile-time mode analysis [Clark and
Gregory 1984c] will be effective.

8. COMPARISON WITH OTHER LANGUAGES

8.1. Comparison with Concurrent Prolog and PARLOG

GHC is like Concurrent Prolog and PARLOG in that it is a parallel logic pro-
gramming language which supports committed-choice nondeterminism and stream
communication. However, GHC is simpler than both Concurrent Prolog and
PARLOG.

Firstly, unlike Concurrent Prolog, GHC has no read-only annotations. In
GHC, the semantics of guards enables process synchronization.

Secondly, Concurrent Prolog needs a multiple environment mechanism while
GHC and PARLOG do not. In Concurrent Prolog, bindings generated in each
guard are recorded locally until commitment and are exported into the global
environment upon commitment. However, this mechanism contains semantical
problems whose solution would require an additional set of language rules, as
Ueda [1985] pointed out. More importantly, we have not obtained any evidence
that we need multiple environments in stream-AND-parallel programming.

Thirdly, unlike PARLOG, we require no mode declaration for each predicate.
PARLOG’s mode declaration is nothing but a guide for translating PARLOG
programs into Kernel PARLOG [Clark and Gregory 1984c], so we can do without
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modes. In fact, GHC is closer to Kernel PARLOG than to PARLOG. However,
unlike Kernel PARLOG, we have only one kind of unification. Although each
unification operation occurring in a GHC program might be compiled into one of
several specialized unification procedures, GHC itself needs (and has) only one.

Another difference from (Kernel) PARLOG is that a (Kernel) PARLOG pro-
gram requires compile-time analysis in order to guarantee that it is legal, i.e., it
contains no unsafe guard which may bind variables in the caller of the guard [Clark
and Gregory 1984c]. On the other hand, a GHC program is legal if and only if it
is syntactically legal; it can be executed without any semantic analysis.

8.2. Comparison with Qute

Qute [Sato and Sakurai 1984] is a functional language based on unification.
Qute allows parallel evaluation which corresponds to AND-parallelism in logic
programming languages, but the result of evaluation is guaranteed to be the same
irrespective of the particular order of evaluation. That is, there is no observable
nondeterminism.

Although Qute and GHC were developed independently and may look differ-
ent, their suspension mechanisms are essentially the same. The Qute counterpart
of GHC’s guard is the condition part of the if-then-else construct, from which no
bindings can be exported.

The major difference between Qute and GHC is that Qute has no committed-
choice nondeterminism while GHC has one. Qute does not have committed-choice
nondeterminism (though Sato and Sakurai [1984] suggest it could), because it
pursues the Church-Rosser property of the evaluation algorithm. GHC has one
because our applications include a system which interfaces with the real world
(e.g., peripheral devices).

Another difference is that Qute has sequential AND while GHC does not.
We deliberately excluded sequential AND, because our programming experience
with Concurrent Prolog has never called for this construct. One may think that
sequential AND could be used for the specification of scheduling and for syn-
chronization. However, the primitives for scheduling should be introduced at a
different level from that of GHC, and sequential AND as a synchronization prim-
itive is of no use in the intended computation model of GHC which allows delay
for communication by shared variables.

8.3. Comparison with CSP

GHC is similar to CSP (Communicating Sequential Processes)[Hoare 1978] in
the following points:
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(1) Both encourage programming based on the concept of communicating pro-
cesses.

(2) The guard mechanism plays an important role for conditional branching, non-
determinism and synchronization.

(3) Both pursue simplicity.

The major difference is that CSP tries to rule out any dynamic constructs—
dynamic process creation, dynamic memory allocation, recursive call, etc.—while
GHC does not. Another major difference is that CSP has a concept of sequential
processes while GHC does not. CSP is at a level nearer to the current computer
architecture. GHC is more abstract and has a smaller set of primitives: it uses
unification instead of input, output, and assignment commands, and it uses a
recursive call instead of a repetitive command.

8.4. Comparison with (sequential) Prolog

Comparison with sequential Prolog must be made from the viewpoint of logic
programming languages, not of parallel programming languages.

First of all, GHC has no concepts of the order of clauses or the order of goals
in a clause. GHC is undoubtedly nearer to Horn clause logic on this point. The
semantics of Prolog must explain its sequentiality; without it, we cannot discuss
some properties of a program such as termination.

GHC deviates from first-order logic in that it introduces the guard construct.
It will be hard to give a semantics to the guard within the framework of first-order
logic. However, Prolog also suffers from the same problem because of the notorious,
but useful, cut operator. The commitment operator of GHC corresponds to the
cut operator. However, since the commitment operator has been introduced in a
more controlled way, it should be easier to give a formal semantics to it.

One problem with Prolog is that the use of ‘read’ and ‘write’ predicates
prevents declarative reading of a program. In GHC, we no longer need impera-
tive predicates because the concept of streams can well be adapted to input and
output. Large data structures such as mutable arrays and databases can also be
logically and efficiently handled using transaction streams as the interface [Ueda
and Chikayama 1984].

8.5.Comparison with Delta Prolog

Delta-Prolog [Pereira and Nasr 1984] is an extension of Prolog which allows
multiple processes. Communication and synchronization are realized using the
notion of an event. The underlying logic which explains the meaning of events is
called Distributed Logic.
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One of the differences between Delta-Prolog and GHC is that Delta-Prolog
retains the sequentiality concept and the cut operator of Prolog. Both seem to be
peculiarities of Prolog, so GHC avoided them. A parallel program in Delta-Prolog
may look quite different from comparable sequential programs in Delta-Prolog
itself and in Prolog. On the other hand, a class of GHC programs which have only
unidirectional information flow (like pipelining) is easily rewritable to Prolog by
replacing commitment operators by cuts, and a class of Prolog programs which
use no deep backtracking and each of whose predicates has only one intended
input/output mode is also easily rewritable to GHC.

9. CONCLUSIONS

We have described the parallel logic programming language Guarded Horn
Clauses. Its syntax, informal semantics, programming examples, important fea-
tures, possible extensions, implementation technique of synchronization mecha-
nism, and comparison with other languages were outlined and discussed.

We hope the simplicity of GHC will make it suitable for a parallel computa-
tion model as well as a programming language. The flexibility of GHC makes its
efficient implementation difficult compared with CSP-like languages. However, a
flexible language could be appropriately restricted in order to make simple pro-
grams run efficiently. On the other hand, it would be very difficult to extend a
fast but inflexible language naturally.
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