KLIC User’s Manual

March 1995
(Revised at June 1997)
This manual corresponds to KLIC version 3.002

Takashi Chikayama (Tokyo University)
Tetsuro Fujise (Mitsubishi Research Inst., Inc.)

Daigo Sekita (Mitsubisi Research Inst., Inc.)

Copyright (©) 1994, 1995 Institute for New Generation Computer Technology

Table of Contents

Terms and Conditions for Use of

1

ICOT Free Software.............................. 1
Introduction L. 3
1.1 Description of Predicates and Methods.......................... 3
1.1.1 Predicates and Methods 3
112 MIeSSaZES « o vv vttt et e 4
1.1.3 Argument Modes ..ot 4
1.2 Reporting Bugs and Sending Comments......................... 4
KL1 Language 5
2.1 Basic Execution Mechanism i)
2.2 Predicates.........ooiiiiii 6
2.3 Modules. ... 6
2.4 GOalS. ... 7
2.5 Imitial Goal. ... 7
2.6 Generic ODbjectsttt 7
2.6.1 Creating Generic Objects ..o, 8
2.6.2 Guard Methods of Generic Data Objects................... 8
2.6.3 Body Methods of Generic Data Objects.................... 8
2.7 Priority Specification i 8
2.8 Clause Preference......... ..o 9
2.9 Shorthand Notation for Argument Pairs......................... 9
2.9.1 Paired Arguments and their Expansion.................... 10
2.9.2 Macros for Paired Arguments............................. 11
2.9.3 Usage of Paired Arguments.................cooiiiia... 11
2.10 Inserting C Language Code Inline 12
2.10.1 Inline Insertion at the Top of Files....................... 12
2.10.2 Inline Insertion in the Guard 12
2.10.3 C-Level Representation of KLL1 Terms.................... 13
2.10.4 Examples. 13
2.10.5 Some Hints on Using the Inline C Code Feature.......... 14
Builtin and Library Features.................. 15
3.1 Common Operationsouueeeiirteeniieenaenannn.. 15
311 Unificationo.uiiiii 15
3.1.2 Synchronization 15
3.1.3 Comparison and Hashing 15
3.1.4 Execution Status........... ..o i 16
3.1.5 Debugging.o 16

3.2 Atomic Dataooi 17

3.2.1 Symbolic AtOmSt 17
3.2.1.1 Notation of Symbolic Atoms 17
3.2.1.2 Operations on Symbolic Atoms....................... 18

3.2.2 Integer AtOMSottt 19
3.2.2.1 Notation of Integers.ooiiiiiiiiiiiiin. 19
3.2.2.2 Integer Arithmetics.......... 19
3.2.2.3 Integer CompariSoncovueiiiiiniennennn.. 20

3.2.3 Floating Point Numberso .. 20
3.2.3.1 Notation of Floating Point Numbers 21
3.2.3.2 Creating New Floating Point Numbers............... 21
3.2.3.3 Floating Point Arithmetics........................... 21
3.2.3.4 Floating Point Comparison........................... 22

3.3 Structured Data........ ..o 23

3.3.1 Functor Structures.ouiiiiiiiiiiii 23
3.3.1.1 Notation of Functors............... ...t 23
3.3.1.2 Operations on Functors.....................oooian. 23

3.3.2 LSS ottt 24
3.3.2.1 Notation of Lists. ..o 25
3.3.2.2 Manipulation of Message Streams.................... 25

3.3.3 VeCtors . ..o 27
3.3.3.1 Notation of Vectors........... ..., 27
3.3.3.2 Creating New Vectors...........ccoviiiiiiiienannn.. 27
3.3.3.3 Predicates on Vectors...............oooiiiiiiiiia, 27

3.3:4 SETINES . .o v et 28
3.3.4.1 Notation of Strings ..., 28
3.3.4.2 Creating New Strings ..., 29
3.3.4.3 Predicates on Strings ... 30

3.4 Handling Program Code as Data............................... 31
3.4.1 Modules. ... 31
3.4.2 Predicateso.oiiiii i 31

3.5 Unix Interface....... ..o 32

3.5.1 Obtaining Unix Interface Stream.......................... 32

3.5.2 Opening Streams for Input and Output Operations........ 33

3.5.3 Using Sockets.o 34

3.5.4 Files and Directories...........cooiiiiiiiiiiiiiiiiii.. 34

3.5.5 Handling Signal Interrupts............ ... oL 35

3.5.6 Miscellaneous Messages to the Unix Stream 36

3.5.7 Predicate Interface......... i, 36

3.6 Input and Outputo 37

3.6.1 Input and Output with C-like Interface 37
3.6.1.1 Common Messages with C-like Interface.............. 37
3.6.1.2 Input Messages with C-like Interface................. 38
3.6.1.3 Output Messages with C-like Interface 38

3.6.2 Input and Output with Prolog-like Interface............... 39
3.6.2.1 Opening Prolog-like I/O Streams..................... 39
3.6.2.2 Common Messages with Prolog-like Interface......... 39
3.6.2.3 Input Messages with Prolog-like Interface 40

3.6.2.4 Output Messages with Prolog-like Interface........... 40

ii

3.6.2.5 Wrapped Terms. ...t 41

3.7 Controlling System Behavior............. ool 42
3.8 TImeT . o oo 43
3.9 Random Number Generator, 44
4 Using KLIC............ 45
4.1 Compiling Programs with KLIC 45
4.1.1 Command for Compilation...................... 45
4.1.2 Compiler Options.coviiiiiiiiii i 45
4.1.3 How KLIC Compiler Works.............ccoiiiiiiiin... 47
4.2 Running Programs Compiled with KLIC....................... 47
4.2.1 Runtime Switches for Programs Compiled with KLIC 48
4.3 Tracing Program Execution.............. ... i i, 48
4.3.1 Preparation for Traced Execution......................... 48
4.3.2 Trace Ports..... ..o 49
4.3.3 Format of Trace Displaycoooiiiiiiiiii .. 49
4.3.4 Trace Controlling Commands, 51
4.3.4.1 Controlling Tracing of the Traced Goal............... 51
4.3.4.2 Controlling Tracing of Newly Created Subgoals....... 52
4.3.4.3 Changing Default Trace of Predicates................ 52

4.3.5 SPYING . oot 53
4.3.6 Controlling Trace Ports............o il 53
4.3.7 Display Control Commands.................coiiiiia... 54
4.3.8 Dumping Goals........ .o 55
4.3.9 Miscellaneous Commands............ooiiiiiiinieeno... 95
4.3.10 Detecting Perpetual Suspensions......................... 55
4.4 Tnstallation........ .o e 56
4.4.1 Configuration. 56
4.4.2 Compiling the KLIC systemt 56
4.4.3 Testing the Compilationcoiiiiiiiin... 56
4.4.4 Installing the Objects., 57
4.4.5 Cleaning Up the Installation Directory.................... 57
4.4.6 When Something Goes Wrong 57
4.5 Distributed Memory Parallel Implementation of KLIC 57
4.5.1 Installation of Distributed KLIC 57
4.5.2 Compiling Programs for Distributed KLIC 58
4.5.3 Running Programs of Distributed KLIC................... 58
4.5.3.1 Setting Up PVM.o i 58
4.5.3.2 Runtime Options for Distributed KLIC............... 58
4.5.3.3 Known Bugs of Distributed KLIC.................... 59

4.6 Shared-Memory Implementation of KLIC 59
4.6.1 Installation of Shared-Memory KLIC...................... 59
4.6.2 Compiling Programs for Shared-Memory KLIC............ 60
4.6.3 Running Programs of Shared-Memory KLIC 60
4.6.3.1 Runtime Options for Shared-MemoryKLIC........... 60

4.6.3.2 Known Bugs of Shared-Memory KLIC 60

Data Type Index

Predicate, Method and Message Index

Module Index

Concept Index

v

Terms and Conditions for Use of ICOT Free
Software

1. Purposes and Background of ICOT Free Software.

The Institute for New Generation Computer Technology (ICOT) had been promoting
the Fifth Generation Computer Systems project under the commitment of the Ministry
of International Trade and Industry of Japan (the MITI). Since April 1993, ICOT has
been promoting the Follow-on project to the FGCS project. This follow-on project aims
to disseminate and further develop FGCS technology. The FGCS project and the Follow-
on project (collectively, the Project) have been aimed at creating basic technology for
novel computers that realizes parallel inference processing as their core mechanism, and
contributing toward the progress of computer science by sharing innovative knowledge and
technology with the research community worldwide.

Innovative hardware and software parallel inference technology has been under devel-
opment through the Project, which involves varieties of advanced software for experiments
and evaluation. This software, being at a basic stage of research and development, should
be disseminated widely to the research community.

According to the aims of the Project, ICOT has made this software, the copyright of
which does not belong to the government but to ICOT itself, available to the public in
order to contribute to the world, and, moreover, has removed all restrictions on its usage
that may have impeded further research and development in order that large number of
researchers can use it freely to begin a new era of computer science.

This program together with any attached documentation (collectively, the Program) is
being distributed by ICOT free of charge as ICOT Free Software.

2. Free Use, Modification, Copying and Distribution

Persons wanting to use the Program (Users) may freely do so and may also freely modify
and copy the Program. The term "modify," as used here, includes, but is not limited to, any
act to improve or expand the Program for the purposes of enhancing and/or improving its
function, performance and/or quality as well as to add one or more programs or documents
developed by Users of the Program.

Each User may also freely distribute the Program, whether in its original form or modi-
fied, to any third party or parties, PROVIDED that the provisions of Section 3 (NO WAR-
RANTY) will ALWAYS appear on, or be attached to, the Program, which is distributed
substantially in the same form as set out herein and that such intended distribution, if
actually made, will neither violate or otherwise contravene any of the laws and regulations
of the countries having jurisdiction over the User or the intended distribution itself.

3. NO WARRANTY

The program was produced on an experimental basis in the course of the research and
development conducted during the project and is provided to users as so produced on an
experimental basis. Accordingly, the program is provided without any warranty whatsoever,
whether express, implied, statutory or otherwise. The term “warranty” used herein includes,
but is not limited to, any warranty of the quality, performance, merchantability and fitness
for a particular purpose of the program and the nonexistence of any infringement or violation
of any right of any third party.

Each user of the program will agree and understand, and be deemed to have agreed and
understood, that there is no warranty whatsoever for the program and, accordingly, the
entire risk arising from or otherwise connected with the program is assumed by the user.

Therefore, neither ICOT, the copyright holder, or any other organization that partici-
pated in or was otherwise related to the development of the program and their respective
officials, directors, officers and other employees shall be held liable for any and all damages,
including, without limitation, general, special, incidental and consequential damages, aris-
ing out of or otherwise in connection with the use or inability to use the program or any
product, material or result produced or otherwise obtained by using the program, regard-
less of whether they have been advised of, or otherwise had knowledge of, the possibility
of such damages at any time during the project or thereafter. Each user will be deemed
to have agreed to the foregoing by his or her commencement of use of the program. The
term "use" as used herein includes, but is not limited to, the use, modification, copying and
distribution of the program and the production of secondary products from the program.

In the case where the program, whether in its original form or modified, was distributed
or delivered to or received by a user from any person, organization or entity other than
ICOT, unless it makes or grants independently of ICOT any specific warranty to the user
in writing, such person, organization or entity, will also be exempted from and not be held
liable to the user for any such damages as noted above as far as the program is concerned.

1 Introduction

This manual describes a portable implementation of KL1 called KLIC, developed at Insti-
tute for New Generation Computer Technology as a part of the Fifth Generation Computer
national project of Japan and its follow-on project.

KL1 is a concurrent logic programming language based on Guarded Horn Clauses (GHC,
in short). KL1 has very simple and concise syntax and semantics and yet provides very
powerful features for concurrent computation.

KLIC compiles KL1 programs to C programs. A C compiler of the host system then
compiles the C programs to relocatable objects, which will then be linked together with the
runtime library of KLIC (see Section 4.1.3 [How KLIC Compiler Works], page 47). Thus,
the system is independent from the hardware architecture of the host system. Also, the
system is written so that only minimal features of Unix are used to assure portability.

1.1 Description of Predicates and Methods

1.1.1 Predicates and Methods

Unlike other logic programming language systems, KLIC provides two kinds of procedures,
predicates and generic methods. Predicates define relations on their arguments and their
semantics is fixed. Generic methods, (or methods, simply) are defined by objects they are
applied to. Thus, their semantics depends on the object applied.

Sometimes the same operation is provided by both predicates and methods. For example,
obtaining an element of a string can be done by either of the following two.

string_element +String +Index -Element [Body Predicate on builtin]
element +String +Index -Element [Body Method on string]
The former is a builtin predicate of the system. Predicate invocations are written as follows.

ModuleName:PredicateName (Arguments, ...)

In case of the predicate string_element mentioned above, it is defined as a builtin predicate
and thus no module name is needed in its invocation. Thus, an invocation is written as
follows.

string_element (String, Index, Element)

In general, a module name may come first with a colon before the predicate name. Some
predicates do not have any arguments. In such cases, parentheses enclosing arguments are
also omitted.

The latter is a generic method defined on the objects of class string. Method invocation
is written as follows.

generic:MethodName(Object, OtherArguments, ...)
In case of the method element mentioned above, its invocation is written as follows.
generic:element (String, Index, Element)

The same operation may be effected using either a predicate or a method. For example,
obtaining the third element (element number 2) of a string S into E can be done by either
of the following invocations.

string_element(S, 2, E)

Chapter 1: Introduction 4

generic:element (S, 2, E)

Note that, while the predicate string_element is only for obtaining an element of a string,
a generic method invocation can also be used to obtain an element of similar object. For
example, an element of a vector (one-dimensional array) can also be obtained by the same
invocation.

1.1.2 Messages

KL1 programs often consist of many processes. Processes often communicate one another
using streams. Streams are actually lists of messages. Lists are made of cells called cons
cells with two fields car and cdr, just as in Lisp or similar languages. Thus, when used as
message streams, the car part of a cons cell contains the message and the cdr contains the
rest of the stream.

Some standard features of the KLIC system are also provided as processes with message
stream interface. An example of such message described in this manual follows.

putc +C [Message on C-like I/0]
This means that a message named putc is accepted as a message to a C-like I/O process
interface stream. The message has one argument called C in this case.

To send a message to a message stream, the variable referring to the message stream
should be instantiated with a cons cell whose car contains the message and cdr contains the
rest of the stream. Thus, when § is a stream to C-like I/O and character with code 10 is to
be output, the following unification should be made.

S = [putc(10)IT]

Here, the variable T is given the rest of the stream and thus any following messages to the
stream should be sent to this variable.

1.1.3 Argument Modes

Arguments of predicates, methods or messages may have specific input /output mode. Input
arguments are read by invocation of predicates or methods; the invocation will be suspended
if any of the input arguments are left undefined. Output arguments are given a value by
the invocation.

In the description of predicates and methods, input arguments are marked with a + and
output arguments are marked with a -. Some arguments are not either read or given value.
Such arguments are marked with a 7.

1.2 Reporting Bugs and Sending Comments
Please report bugs and comments on the KLIC system and this document to the following
mail address.
klic-bugs@icot.or. jp.
There is a mailing list for users of KLIC. This mailing list is used for announcement from
the developers on known bugs, fixes or availability of new releases. The same mailing list

can also be used for communication among users. To subscribe to the mailing list, please
send your request to the following address.

klic-requests@icot.or. jp

2 KL1 Language

KL1 is a programming language for describing concurrent computation based on Guarded
Horn Clauses (GHC, in short). GHC belongs to a family of languages called concurrent
logic programming languages or committed-choice logic programming languages. Languages
that belong to the family are, for example, Concurrent Prolog, Parlog, Fleng, Strand and
Janus. These languages have simple and concise syntax and semantics and yet provide very
powerful features for concurrent computation.

Here, a very rough and informal description of the KL1 language is given. More detailed
and accurate specification are planned to be supplied in future (hopefully).

2.1 Basic Execution Mechanism

The following is an example of a small KL1 program that defines a part of quicksort program.
Example 1: Quicksort

:— module quicksort.
sort(X, Y) :- sort(X, Y, [1).

sort([], Y, Z) :- Y = Z.

sort([PIX], Y, Z) :-
partition(P, X, X1, X2),
sort (X1, Y, [PIY1]),
sort (X2, Y1, Z).

partition(_, [J, S, L) :-

s=10,
L=1[].

partition(P, [W|X], S, L) :- W =< P |
S = [wls1],

partition(P, X, S1, L).
partition(P, [W|X], S, L) :-= W >= P |

L = [W|L1],
partition(P, X, S, L1).
The first line, :- module quicksort declares that this program module will be called

quicksort (see Section 2.3 [Modules], page 6).

Execution of a KL1 program is a (possibly parallel) repetitive reduction of given goals
using program clauses. Each clause has the following form.

PredicateName(Argument pattern ...) :- Guard | Body.

When a goal is to be reduced, clauses for the predicate of the goal will be inspected. For
clauses with matching argument pattern, their guard parts are tested. All the clauses with
matching argument pattern and satisfied guard conditions are candidates to be used in the
reduction. Only one of them, arbitrarily chosen, will be used and the original goal will be
replaced by the goals in the body of the clause chosen.

If no guard condition tests are required, the guard part along with the vertical bar can
be omitted.

Chapter 2: KLL1 Language 6

2.2 Predicates

Predicates of KL1 corresponds to subroutines of Fortran or functions of C. Predicates are
defined by a collection of clauses with the same predicate name and the same number of
arguments in their heads. Unlike in some other languages, predicates are identified not only
by their names but also by their arities (numbers of arguments). To identify predicates with
the same name but different arities, the notation Predicate/Arity is used in this manual.

In the example of the quicksort program, two predicates with the same name sort, with
2 and 3 arguments respectively, are defined (see Section 2.1 [Basic Execution Mechanism],
page 5). Such predicates are referred to as sort/2 and sort/3 respectively.

The order of clauses defining a predicate does not affect the meaning. For example, a
predicate for computing maximum of two integer values can be defined as follows.

max(X, Y, M) (- X>=Y | M = X.
max(X, Y, M) :- X =<Y | M =Y.

Exactly the same predicate can be defined by reversing the order of the clauses as follows.

max(X, Y, M) (- X =<Y | M=Y.
max(X, Y, M) (- X>=Y | M = X.

When a set of clauses are to be used only when another set of clauses are known not
to be applicable, the keyword otherwise should be put in between the two sets of clauses.
For example, the above ‘max’ predicate may be defined as follows.

max(X, Y, M) (- X>Y | M = X.
otherwise.
max(X, Y, M) (- M =Y.

The meaning of the predicate is almost the same except that this version succeeds after
unifying ‘M” with ‘Y’ even when ‘X’ or ‘Y’ does not have an integer value, while the two
previous versions will fail.

The otherwise directive specifies that clauses after the directive should not be applied
unless all the clauses preceding the directive are known not to be applicable, even with
any information (variable bindings) may become available afterwards. This feature should
not be confounded with the alternatively directive, which specifies that clauses preced-
ing the directive should be given priority to the clauses following (see Section 2.8 [Clause
Preference], page 9).

2.3 Modules

KL1 provides module structure for dividing large programs into many modules. A module
consists of one or more predicates. Definition of a module starts with a module declaration
of the form :- module Module. Clauses defining predicates in the module will follow. The
end of the file or another module declaration ends the definition of the module.

In the quicksort example, the first line:
:— module quicksort

declares that this program module is called quicksort (see Section 2.1 [Basic Execution
Mechanism]|, page 5).

Chapter 2: KLL1 Language 7

Predicates defined with the same name and arity but in different modules are considered
to be different predicates. Thus, when necessary, the notation Module:Predicate/Arity
is used to explicitly specify the module name.

2.4 Goals

A Goal is a unit of execution of KLL1. Goals are associated with a predicate. A goal is
reduced to zero or more simpler goals by applying one of the clauses defining the predicate.

Goals are written as:
Predicate(Arguments, ...)
or simply as the following.
Predicate
when the predicate has no arguments.
When the predicate is not in the same module, the syntax is either:
Module:Predicate(Arguments, ...)
or as the following.
Module:Predicate

For example, a module named main that uses the quicksort module might be defined as
follows (see Section 2.1 [Basic Execution Mechanism], page 5).

Example 2: Module using quicksort

:— module main.

main :-
X =109,2,8,3,6,7,4,1,5],
builtin:print(X),
quicksort:sort(X, Y),
builtin:print(Y).

Here, the body goal quicksort:sort (X, Y) is associated with the predicate sort/2 of the
module quicksort.

2.5 Initial Goal

All KLIC programs start from the initial goal main:main, i.e., the predicate main with no
arguments defined in the module main. The example of the module main (see Section 2.4
[Goals], page 7) is an example of a main program.

Command line arguments are not passed to the initial goal. Predicates to access
command line arguments are provided separately (see Section 3.5.7 [Predicate Interface],
page 36).

2.6 Generic Objects

Generic objects provide a framework to extend the KL1 language with new data types and
their operations. There are three kinds of generic objects, namely, data objects, consumer
objects and generator objects.

Chapter 2: KLL1 Language 8

Generic objects are created by pseudo-predicates generic:new. Generic data objects
are similar to usual KL1 data. Operations on data objects are defined by their generic
methods. Methods are invoked by pseudo-predicates generic:Method. Consumer and
generator objects look like variables to normal KL1 programs and operations on them are
implicit by unification.

Many of the standard types of KLIC, vectors and strings, for example, are actually
implemented as generic data objects. For them, builtin predicates can also be used as aliases
for generic methods. For example, set_vector_element(Original, Index, NewElement,
New) means the same as generic:set_element(0Original, Index, NewElement, New).

2.6.1 Creating Generic Objects

Generic objects are created by the following pseudo-predicate.
generic:new(ClassName, Object, Args, ...)

ClassName should be a symbolic atom which names the object class. By this invocation, a
new generic object is created and associated with Object. Parameters for creation can be
specified by Args. The meaning of Args depends on each object class.

2.6.2 Guard Methods of Generic Data Objects

Clause selection depending on generic data objects can be done by calling guard methods.
Guard methods have the following format.

generic:Method(Object, Input, ...):Output:...
Input, ... specify input arguments. If any of the input arguments are left undefined,
this invocation will be suspended. Output: ... specify output arguments, which are re-

turned from the method. If some concrete value is specified as an Output, guard unification
of the specified and returned values will be made. Some guard methods have no output
arguments, in which case colon and following Output are omitted.

2.6.3 Body Methods of Generic Data Objects

Operations on generic data objects can be done by calling body methods. Body methods
have the following format.

generic:Method(Object, Args, ...)
Unlike guard methods, input and output arguments are not syntactically distinguished.
The method to be called can be determined in runtime. To do that, an alternative format
is provided.

generic:generic(Object, Functor)
With this format, Functor should be (or become in runtime) a functor structure of the

format Method(Args, ...). Invocation will be suspended until Functor will become in-
stantiated.

2.7 Priority Specification

Goals have execution priority associated with them. FExecution priority is specified by
a positive integer value. Goals with larger priority values are (usually) executed earlier
than goals with smaller priority values. However, priority specifications are no more than
suggestions and actual implementations may or may not strictly obey them.

Chapter 2: KLL1 Language 9

Body goals can have execution priority specification in one of the following formats.

Goal@priority(AbsPrio)
Goal@lower_priority(RelPrio)
Goal@lower_priority

Here, AbsPrio and RelPrio should be a non-negative integer constant, or a variable which
should be instantiated to a non-negative integer later. In the current implementation,
negative priority values are interpreted as zero.

With the absolute priority specification, the goal with the specification will have the
priority value specified by AbsPrio. With the relative priority specification, the goal will
have priority less than the priority of the parent goal by the amount specified by RelPrio.
The specification Goal@lower_priority has the same effect as Goal@lower_priority(1).
Goals without any priority specifications will have the same priority as their parents.

The highest possible priority is the largest possible integer value, which depends on host
systems (see Section 3.2.2 [Integers], page 19). The initial goal main:main has the maximum
priority possible for the host system (see Section 2.5 [Initial Goal], page 7).

2.8 Clause Preference

Predicates of KL.1 may have nondeterminacy; more than one clause may be applicable. In
such cases, preference among clauses may be specified using the alternatively directive.

When the keyword alternatively is put in between two sets of clauses, clauses
preceding it are preferred to those following it. However, when clauses preceding the
alternatively directive cannot be applied directly due to lack of information (insufficient
instantiation of variable values), the clauses following it may be used. This feature is often
useful in controlling speculative computation depending on progress of computation.

The feature is not be confounded with the otherwise feature (see Section 2.2 [Predi-
cates|, page 6). For example, consider the following two predicates.
p(1, Y, R) :- R = a.
alternatively.
p(X, 2, R) :- R

b.

q(1, Y, R) :- R = a.
otherwise.

q(X, 2, R) :- R =b.

When the first argument is still undefined and the second is 2, the predicate p may return
b to the third argument using its second clause. The predicate q will wait until the value
of the first argument becomes available. Thus, if the first argument eventually becomes 1,
the predicate q is guaranteed to return a, but the predicate p may return either a or b.

2.9 Shorthand Notation for Argument Pairs

KL1 programs often require passing two arguments as a pair to a predicate: one as input
and the other as output. KLIC provides a shorthand notation for such cases.

Chapter 2: KLL1 Language 10

2.9.1 Paired Arguments and their Expansion

The head and goals in both guard and body parts of a clause can have argument pairs
specified by a single variable name attached to the head or goals by a hyphen character.
We call such pseudo variable an argument pair name. An example is shown here.

pX,Y)-Pair :- q(X)-Pair, s(Z)-Pair, r(Pair,Y), t(Z)-Pair.

The pseudo-variable Pair is an argument pair name. Such a clause is interpreted the same
as the following clause.

p(X,Y,P0,P) :- q(X,P0,P1), s(Z,P1,P2), r(P2,Y), t(Z,P2,P).

Occurrences of argument pair names attached to the head or goals by a hyphen character
are interpreted as a pair of two different variables added at the end of the argument lists.
In what follows, we call the two variables generated from an paired argument an expanded
pair.

The second of an expanded pair of a goal is the same as the first of the expanded pair
of the next goal with the same argument pair name. In the example above, P1 appearing
as the third argument of the goal of q/3 also appears as the second argument of s/3, as
originally they both have the same argument pair name Pair.

The first of an expanded pair in the head will be the same as the first of the expanded
pair in the first goal in the clause with the same argument pair name. The second of an
expanded pair in the head will be the same as the second of the expanded pair in the last
goal with the same argument pair name.

In the above example, the first of the expanded pair PO in the head appears again as the
second argument of the first goal calling q/3, and P, the second of the expanded pair in the
head, appears again as the third argument of the last goal of t/3.

If the argument pair name appears only in the head, two variables of the expanded pair
are unified in the body. For example, a clause:

p(X)-Y :- q(X).
is expanded into the following.
p(X,Y0,Y) :- YO=Y, q(X).

An argument pair name may appear at a usual argument position rather than being
attached to the head or goals, as does the first argument of the goal for r/2 in the above
example. In such a case, it is expanded to a single variable. This variable is the same as
the second of the last expanded pair and is also the same as the first of the next expanded
pair. Thus, in the above example, Pair appearing as the first argument of r/2 is expanded
into P2, which is the same as the third argument of s/3 and the second argument of t/3.

Arbitrarily many argument pair names can be specified for a head or a goal. For example,
a clause such as:

pX-Y :- gX, r-Y, s-Y-X.
is interpreted as follows.
p(X0,X,Y0,Y) :- q(X0,X1), r(Y0,Y1), s(Y1,Y,X1,X).

Sometimes, specifying normal arguments after some argument pair names is desirable.
This can be done by connecting them with a plus (+) character. For example:

p—X+Y :- gq-X+35, r(Y), s+Y-X.

Chapter 2: KLL1 Language 11

is interpreted as follows.
p(X0,X,Y) :- q(X0,X1,35), r(Y), s(Y,X1,X).
Note that the expansion rules for paired arguments described above are position sensitive

for goals. However, this does not at all mean that the execution order of body goals are
constrained anyhow.

Also note that the argument pair notation is no more than macro expansion of clauses.
One predicate may have clauses some of which written in the argument pair notation and
others in the usual notation.

2.9.2 Macros for Paired Arguments

To fascilitate the usage of paired arguments, KLIC provides the following macros to be used
in place of a goal.

S <=M Expanded to SO = [M]|S1] where SO and S1 are expanded pair for the argument
pair name S.

M=3 Expanded to [M|S0] = S1 where SO and S1 are the expanded pair for the ar-
gument pair name S.

S += E

S —=E

S x= E

S /=E Expanded to S1 := SO + EO etc, where SO and S1 are the expanded pair for the
argument pair name S.

S <== Expanded to S1 = X, where SO and S1 are the expanded pair for the argument

pair name S. SO does not appear in the expansion; the original value of the
paired argument for S will be lost, and the next occurrence of S will mean
X instead. This feature is normally used with a non-paired occurrence of the
argument pair name. For example:

.» p~S, q(8), S <==X, r-§,
means the following.
., p(s80,81), q(s1), 82 = X, r(sS2,83),

2.9.3 Usage of Paired Arguments

Some examples of typical usage of paired arguments are given here.
The following program is for summing up elements of a list of integers.

sum(List,Sum) :- sum(List)+0+Sum.

sum([])-Acc.
sum([H|T])-Acc :- Acc += H, sum(T)-Acc.
Here, the paired argument Acc plays the role of an accumulator.
The following program inverts the sign of the elements of a list of integers.

inv(List,Inv) :- inv(List)+Inv-[].

inv([])-Inv.
inv([H|T])-Inv :- MH := -H, Inv <= MH, inv(T)-Inv.

Chapter 2: KLL1 Language 12

2.10 Inserting C Language Code Inline

The inline C code feature allows specifying C programs to be inserted in the object code
within KLL1 programs. This feature is somewhat similar to the asm statements of C.

Appropriateness of inserted C code totally depends on internal implementation schemes
of the KLIC system, which may be altered in future. Thus, general users are not recom-
mended to use this feature.

2.10.1 Inline Insertion at the Top of Files
At the top of a source file, strings to be inserted in the object C program can be specified
in the following way.

:— inline:"C Program Text to be Inserted".

The specified text is inserted in the object C program after standard declarations and
before any user-defined modules.

There can be any number of such inline specification. A typical example is as follows.
:— inline:"#include <stdio.h>"

As inserted C programs are written as string constants of KLIC, doubleqoute characters
have to be escaped with a backslash character. A typical example is as follows.

:— inline:"#include \"myheader.h\""

It might also be a good idea to define macros and functions here, that are invoked from
the inline code in clause guards.

2.10.2 Inline Insertion in the Guard

Inline insertion specification can also appear as a guard goal with one of the following forms.
inline:"C Program Text"
inline:"C Program Text":[ArgSpec, ...]

With either format, the C program text is literally inserted in the object code corre-
sponding to the guard part, except that percent signs (%) in the program text string specify
special formatting. The following table lists special format characters after percent signs
and what they mean.

digit The name of the C variable corresponding to the digit-th ArgSpec (zero ori-
gin). Note that only up to 10 such arguments are allowed.

f The name of the C label to goto when this clause should fail or suspend.

% The percent character itself, i.e., percent characters should be doubled. Be

careful when you specify format strings for printf.
ArgSpec has one of the following formats.

Variable+Type
Specifies that the value of the variable is used within the inserted program
text. Object code for synchronization with availability of the variable value
and checking of the value type is generated by the compiler.

Variable-Type
Specifies that variable is given a value within the inserted program text. This
has to be the first occurence of the variable. The compiler assumes that, after
executing the inserted code, the variable will have value of Type.

Chapter 2: KLL1 Language 13

The Type field should be one of the following.

any Anything, including uninstantiated variables
bound Any bound value

atomic An atomic value (a symbolic atom or an integer)
int An integer

atom An symbolic atom

list A list structure

functor A functor structure (including generic object)
object A generic data object

object(Class)
A generic data object of Class

Values are referenced without any indirections for all types except for any. For an input
(+) mode argument, the generated code makes sure that, before executing the inserted
program text, the argument will have the value of the specified type directly, without
indirect references. For an output (=) mode argument, the compiler assumes that, after
executing the inserted program text, the variable will have the value of the specified type
directly, without any indirect references, and uses that information for optimization. If you
cannot be sure of this for output mode arguments, specify any, which may be less efficient
but safe.

2.10.3 C-Level Representation of KL1 Terms

Note that C language types of the C variables and KL1 language types of corresponding
KL1 values are not the same. All the C variables corresponding to a KL1 value have the
type q which means almost nothing except that it occupies a single word. KL1 values
are somehow encoded (with attached tag etc). For example, an integer 3 of KL1 is not
represented by the bit pattern corresponding to integer 3 in of the language C.

This document is not intended to describe all the details of the data representation
scheme of KLIC. Such description and programs depending on it will be obsoleted anyway
by future revisions of the KLIC system. However, manipulation of integer values may be
the easiest and useful in most C programs written inline. Thus, we’ll describe macros for
data conversion for integers. They are unlikely to be changed in future versions.

To obtain the integer value of a variable corresponding to an integer value of KLI,
use the macro intval(X). To obtain KL1 representation of integer in C, use the macro
makeint (N).

2.10.4 Examples
Example 1: Adding Two Integers

Two integers can be added by the following clause.
p(X,Y,2) := W := X+Y | Z = W.
The same function can be realized using the inline insertion feature as follows.
p(X,Y,Z2) :-

Chapter 2: KLL1 Language 14

inline:"%2 = makeint(intval(%0)+intval(%1));":
[X+int, Y+int, W-int] | Z=W.
The inserted text will be as follows.
x0 = makeint(intval(aO)+intval(al));
Where variables a0 and al correspond to X and Y, and x0 to W in the KL.1 program.
Note that the Z and W are unified in the body.
Example 2: Comparing Two Integers
Two integers can be compared by the following clause.
pX,Y) (- X >Y |
The same function can be realized using the inline insertion feature as follows.
pX,Y) :-
inline:"if (intval(%0) <= intval(%1)) goto %f;":
[X+int, Y+int] |
The inserted text will be as follows.
if (intval(a0) <= intval(al)) goto p_2_interrupt;
Where variables a0 and al correspond to X and Y in the KL1 program, and p_2_
interrupt is a label automatically generated by the compiler.

2.10.5 Some Hints on Using the Inline C Code Feature

e Whenever possible, avoid using the inline feature. Revisions of the KLIC system may
obsolete your code.

e If multiple lines are to be inserted consecutively, specify all of them in one single
inline specification. Otherwise, they might be interleaved by other code for the guard.
Newlines are allowed within the inserted program text.

e Do not forget to prefix doublequotes and backslahes with a backslash. Do not forget
also to write two percent signs to insert one. If you would like to say hello to the world,
you should write such a program as follows.

hello :-
inline:"printf (\"Hello, world\\n\");" |

Note the backslashes before doublequotes within the inlined code and doubled backslash
before n. If you put only one backslash before n, it will become a newline code after
inline expansion; it will appear within a string constant in the expanded C program.
It fortunately works the same in this case, except that some C compilers may generate
a warning message.

e If your program with inline code does not work as you expect it to, the best way to
find the problem may be to look into the C code generated.

15

3 Builtin and Library Features

This chapter describes builtin and library features of KLIC.

3.1 Common Operations

Some predicates are used commonly for all the data types or are independent from any data

types.

3.1.1 Unification

’X7Y [Guard Predicate on builtin]

Checks whether X and Y are unifiable without giving values to variables outside the
clause.

’X7Y [Body Predicate on builtin]

Unifies X and Y. If X has no value yet and Y already has some defined value, the
value of Y is given to X. If Y has no value and X has some, the reverse takes place.
If both do not have values yet, two variables are made to mean the same variable.
If both have values, they are matched. If both are the data structures of the same
kind, this unification operation is made recursively to corresponding elements of two
structures.

3.1.2 Synchronization

wait +X [Guard Predicate on builtin]

Walits until instantiation of X.

3.1.3 Comparison and Hashing

compare +X +Y -R [Guard Predicate on builtin]

Compares X and Y, and returns the result in R. The result is an integer value less
than, equal to, or greater than 0, when X is less than, equal to, or greater than Y,
respectively.

The comparison is made by the standard order. This predicate can compare data
of any types. If both X and Y are of the same numeric type, normal numerical
comparison is made. Note that integer and floating point numbers are not of the
same type; their comparison may not be meaningful. Two strings are compared in
(so-called) dictionary order.

The order of any two data of different types is somehow defined by the system. How-
ever, the ordering is guaranteed to be kept only within a single executable program.
If some data sequence is saved into a permanent file using the ordering provided by
this predicate, the same program recompiled or linked with some other programs may
or may not recognize the sequence as ordered. Different programs, of course, may use
different ordering.

Both X and Y have to be instantiated enough for making the comparison. For
example ‘£ (V) @< £(W)’ will suspend if not both ‘V’ and ‘W are instantiated. On

Chapter 3: Builtin and Library Features 16

the other hand, ‘£(1,V) @< £(2,W)’ will succeed immediately, as the order can be
determined without looking into values of ‘V’ or ‘W’.

The absolute value of the result R may have some meaning for certain data types.
When comparing two strings, the absolute value of the result is one more than the
index of the first differng element (a la strcmp of C).

Some generic objects may not implement their comparison methods, and, in such
cases, their comparison will result in a fatal error.

< +X +Y [Guard Predicate on builtin]
=< +X +Y [Guard Predicate on builtin]
@@= +X+Y [Guard Predicate on builtin]
> +X +Y [Guard Predicate on builtin]

Compares X and Y with the standard order. If the condition is not satisfied, the
invocation of the predicate fails.

\= +X +Y [Guard Predicate on builtin]
Compares X and Y and succeeds if and only if their principal functors are different.
For atomic values, it means that they are different; for functor structures, it means
that either they have different functor names or different arity. For generic objects,
the predicate succeeds when two objects are of different classes.

Note that ‘f(a) \= £(b)’ fails, as the two terms have the same principal functor.
Note also that, floating point numbers are generic objects and thus ‘X \= Y’ fails for
any two floating point numbers, as they are objects of the same class.

hash +X -H [Guard Predicate on builtin]
Computes the hash value of X and returns it in H. The hash value is a non-negative
integer value.

Hashing function may look into elements of structured data recursively. X has to be
instantiated enough to compute hash value. Some generic objects may not implement
hash methods, and, in such cases, their hash value becomes a constant.

3.1.4 Execution Status

current_priority -P [Guard Predicate on builtin]
Returns the priority value of the reduced goal to P. See Section 2.7 [Priority Specifi-
cation|, page 8, for further details on the priority mechanism.

current_node -Node -NumNodes [Body Predicate on builtin]
On a parallel implementation, the predicate returns the processor number execut-
ing the predicate in Node and the total number of (pseudo-) processors available
in NumNodes. Processor numbers have zero origin. Thus, the maximum value re-
turned to Node is one less than the value returned to NumNodes. On a sequential
implementation, 0 is returned to Node and 1 to NumNodes.

3.1.5 Debugging

unbound 7X -Result [Body Predicate on builtin]
Checks whether X is already bound to some concrete value or not and returns the
Result.

Chapter 3: Builtin and Library Features 17

If the toplevel of X is already defined, Result is unified with a single-element vector
of the form {X}. When X is bound to a structured value, its elements may or may
not be bound yet.

If X is not bound yet, Result is unified with a three element vector of the form { Addrl,
Addr2, X}, where Addrl and Addr2 are integers indicating the current address of
the variable X somehow. Note that variable addresses may change in time by garbage
collection, automatic data migration in parallel implementations or any such low level
implementational reasons; they are no more than debugging hints.

Do not use this predicate in normal application programs. Unlike the var/1 feature of
sequential Prolog, variables once judged as unbound can be bound in the next instance
on parallel implementations. Thus, usage of this predicate should be restricted to
programs that have to go into low level details of the system implementation, such as
debugging tools.

3.2 Atomic Data

KLIC provides two kinds of atomic data types, numerical and symbolic.

For numerical data, KLIC provides integer and floating point number data types and
operations to manipulate them. Floating point numbers are implemented as generic objects
and thus actually are not an atom.

Note that implicit type conversions between integer and floating point data are never
made. Integer numbers and floating point numbers are treated completely separately.

Whether given data is atomic or not can be tested by the following guard predicates.

atomic +X [Guard Predicate on builtin]
Tests whether X is atomic or not. Floating point numbers are not judged as atomic
by this predicate.

3.2.1 Symbolic Atoms

Symbolic atoms are atomic data objects that give names to notions. Symbolic atoms with
the same name are the same and with different names are different.

3.2.1.1 Notation of Symbolic Atoms

The notation of symbolic atoms is similar to Edinburgh Prolog, which is one of the following.

e A lower case letter followed by a sequence of any number (including zero) of letters,
digits or underlines.

Examples:
icot k11 a_symbolic_atom_with_a_long_name
e A sequence of special characters (some of ~, + - * /., \, 7, <, > = ¢ (backquote), :,
L 7,0 # 8 &).
Examples:
+ >= i ==

e A sequence of any characters quoted by single quotes. If single quote characters are to
be included, they should be doubled or escaped by a backslash.

Chapter 3: Builtin and Library Features 18

Examples:
’Hello world’ ’an atom with \’singlequotes\’ in it’
e Special one-character atoms. There are three of them, which are !, | and ;. Also, |

has a special meaning in list notation (See Section 3.3.2.1 [Notation of Lists|, page 25).

e A special atom [], which usually is used to represent ends of lists (see Section 3.3.2
[Lists], page 24). Spaces can be in between [and].

Important differences with Edinburgh Prolog syntax are the following.

e A vertical bar (|) means a one-character atom. Even when it is used as an operator,
it is not treated the same as a semicolon (;) but as a different atom.

e A pair of curly braces ({}) does not stand for a symbolic atom. It means a vector with
no elements (see Section 3.3.3.1 [Notation of Vectors], page 27).

3.2.1.2 Operations on Symbolic Atoms

Whether a given data object is a symbolic atom or not can be tested by the following guard
predicate.

atom +X [Guard Predicate on builtin]
Tests whether X is a symbolic atom or not.

To maintain the uniqueness of atoms, the system gives a unique number to each atom
and maintains the association between atom name strings and atom numbers. Association
of symbolic atoms and their names can be known by the following predicates defined in the
module atom_table.

make_atom +String —-Atom [Predicate on atom_table]
When given a String, returns Atom with that name. If such an atom does not exist,
a new atom is registered.

atom_number +Atom -Number [Predicate on atom_table]
Internal serial number for Atom is returned to Number as an integer value.

get_atom_string +Atom -String [Predicate on atom_table]
The name string of Atom is returned to String.

intern +String -Result [Predicate on atom_table]
The same as atom_table:make_atom, except that the returned value is a functor
structure of the form normal (Atom).

get_atom_name +Atom -Result [Predicate on atom_table]
The same as atom_table:get_atom_string, except that the returned value is a functor
structure of the form normal (String).

Although symbolic atoms are associated with their name strings, do not use them for
string manipulation. String data objects provide much more functionality and better per-
formance (see Section 3.3.4 [Strings|, page 28).

Chapter 3: Builtin and Library Features 19

3.2.2 Integer Atoms

KLIC provides integer data with usually 28 or 60 bits as its basic standard feature. The
width depends on the C compiler you use. It is 4 bits shorter than the width of type long
int.

integer +X [Guard Predicate on builtin]
Tests whether X is an integer atom.

3.2.2.1 Notation of Integers

KLIC provides several ways to denote integer constants.

e Usual decimal notation: optional minus sign followed by a sequence of decimal digits.
Examples: ‘123’, ‘-35’.

e Based notation: optional minus sign followed by a sequence of decimal digits specifying
the base (1 to 36), an apostrophe, and then a sequence of digits of the base, that are
digits and alphabets (case insensitive). Examples: ‘2?1010’, ‘16°0D0a’. Value of an
integer with base 1 is the number of ones in the digit sequence; for example ‘1’10110’
means 3.

e Character code notation: optional minus sign followed by a digit 0, an apostrophe and
a character. Examples: ‘0’a’ means the character code of lowercase letter a.

The above listed constant notations can be used in both KL1 programs and KL1 data
read in by Prolog-like I/O interface (see Section 3.6.2 [Input and Output with Prolog-like
Interface], page 39).

The following are also allowed in KL1 programs for compatility with PIMOS system on
PIM machines.

e Based notation: optional minus sign followed by a sequence of decimal digits specifying
the base (1 to 36), a sharp sign, and then a charcter string of digits of the base, that
are digits and alphabets (case insensitive), surrounded by doublequotes. Examples:
‘2#"1010"’, ‘16#"0D0a"’.

e Character code notation: optional minus sign followed by a sharp sign and a character
enclosed within doubleqoutes. Examples: ‘#"a"’ means the character code of lowercase
letter a.

3.2.2.2 Integer Arithmetics

-Var +Expr [Guard Predicate on builtin]

-Var +Expr [Body Predicate on builtin]
Computes the value of the integer expression Expr, and unifies it with Var. The
following operators are available in the expression.

X+Y Addition.

+ X No operation. X is the result.
X-Y Subtraction.

- X Sign inversion.

X *Y Multiplication.

Chapter 3: Builtin and Library Features 20

X/Y Integer division.

X mod Y Modulo.

\(X) Bit-wise complement.
X/\Y Bit-wise logical AND.
X\/Y Bit-wise logical OR.

X xor Y Bit-wise exclusive OR.
X<y Left shift.

X>vY Logical right shift.

int (X) Conversion from floating point to integer. X is a floating point expression
(see Section 3.2.3.3 [Floating Point Arithmetics|, page 21) and its result
is rounded to an integer value.

Arithmetical overflows are ignored, that is, all the arithmetics are done modulo 2728
or 2760 depending on the C compiler used. C compilers with 32-bit long int give
28-bit KLIC integers and those with 64-bit long int give 60-bit KLIC integers.

This predicate is available in both guards and bodies of clauses.

If any of the operands in the expression are uninstantiated, the computation will be
suspended until they all get instantiated.

Any operands in the expression can be an expression recursively. However, operands
written as a variable in the program should not be instantiated to a compound term
such as ‘3 + 5’. They should be instantiated only to an integer. Otherwise, a type
mismatch error will be generated.

3.2.2.3 Integer Comparison

Comparison of integer data can be made using the predicates described here. More general
comparison predicate is also provided (see Section 3.1.3 [Comparison and Hashing], page 15),
but predicates and methods described here are more efficient when the operands are known
to be integers.

> +X +Y [Guard Predicate on builtin]
>= +X +Y [Guard Predicate on builtin]
=:=+X+Y [Guard Predicate on builtin]
[]

[]

]

=\= +X +Y Guard Predicate on builtin
=< +X +Y Guard Predicate on builtin
< +X +Y [Guard Predicate on builtin

Perform arithmetical comparison of two integer arguments. Use =:= and =\= for

equality and non-equality checks. Each side of the comparison can be an arithmetical
expression. The same set of operators as in := can be used.

3.2.3 Floating Point Numbers

Floating point numbers with precision of 64 bits are provided as generic objects. The
following method and predicate tell whether given data is a floating point number or not.

Chapter 3: Builtin and Library Features 21

float +X [Guard Method on float]
float +X [Guard Predicate on builtin]
Tests whether X is a floating point number.

3.2.3.1 Notation of Floating Point Numbers

Floating point numbers have the following constant notation syntax.
sign integral . fraction e sign exponent
where integral, fraction and exponent are sequence of decimal digits. sign is either +, - or
empty (meaning +). The exponent part, that is, character e, sign and exponent, may be
omitted altogether.
The following are examples of floating point number constants.
3.14159 -6.02e23 1234.5678e-25

3.2.3.2 Creating New Floating Point Numbers

New floating point numbers can be created by the following. Predicates for floating point
arithmetics described in Section 3.2.3.3 [Floating Arith], page 21, also create floating point
numbers as the result of arithmetical operations.

new —Float +Init [Object Creation on float]
A new floating point number is created and unified with Float. The argument Init
should be an integer specifying the value of the floating point number. For example,
‘generic:new(float, F, 3)’ unifies F with 3.0.

3.2.3.3 Floating Point Arithmetics

$:= -Var +Expr [Body Predicate on builtin]
Computes the value of the floating point expression Expr, and unifies it with Var.
The following operators are available in the expression.

X+vY Addition.
X-Y Subtraction.
X*Y Multiplication.
X/ Y Division.
pow(X, Y)

Y to the power of X.

sin(X), cos(X), tan(X)
Trigonometric functions on X.

asin(X), acos(X), atan(X)
Inverse trigonometric functions on X.

sinh(X), cosh(X), tanh(X)
Hyperbolic functions on X.

exp (X) Exponential function.

log(X) Natural logarithm.

Chapter 3: Builtin and Library Features 22

sqrt(X) Square root.
ceil(X) Ceiling function (rounding toward positive infinity).
floor(X) Flooring function (rounding toward negative infinity).

float(X) Conversion from an integer to a floating point number. X is an integer
expression (see Section 3.2.2.2 [Integer Arithmetics|, page 19) and its
result is converted to a floating point number.

This predicate is available in both guards and bodies of clauses.

If any of the operands in the expression are uninstantiated, the computation will
suspend until they all get instantiated.

Any operands in the expression can be an expression recursively. However, operands
written as a variable in the program should not be instantiated to a compound term
such as ‘3.0 + 5.0". They should be instantiated only to a floating point number.
Otherwise, a type mismatch error will be generated.

Operations listed above are also provided as generic methods on floating point number.

add +X +Y -R
subtract +X +Y -R
multiply +X +Y -R
divide +X +Y -R

Body Method on float
Body Method on float
Body Method on float
Body Method on float

pow +X +Y -R Body Method on float
sin +X -R Body Method on float
cos +X -R Body Method on float
tan +X -R Body Method on float

[]

[]

[]

[]

[]

[]

{ %

asin +X -R [Body Method on float]
[Body Method on float]

[]

[]

[]

[]

[]

[|

[]

[]

]

acos +X -R

atan +X -R Body Method on float
sinh +X -R Body Method on float
cosn +X -R Body Method on float
tanh +X -R Body Method on float
exp +X -R Body Method on float
log +X -R Body Method on float
sqrt +X -R Body Method on float
ceil +X -R Body Method on float

floor +X -R [Body Method on float
These methods perform arithmetic operations, specified by the method name, on
given operand(s), and return the result in R.

3.2.3.4 Floating Point Comparison

Comparison of floating point data can be made by the predicates described here. More
general comparison predicate is also provided (see Section 3.1.3 [Comparison and Hashing],
page 15), but predicates and methods described here are more efficient when the operands
are known to be floating point numbers.

$> +X +Y [Guard Predicate on builtin]
$>= +X +Y [Guard Predicate on builtin]

Chapter 3: Builtin and Library Features 23

$=:= +X +Y [Guard Predicate on builtin]
$=\= +X +Y [Guard Predicate on builtin]
$=< +X +Y [Guard Predicate on builtin]
$< +X +Y [Guard Predicate on builtin]

These predicates perform arithmetical comparison of two floating point arguments.
Use =:= and =\= for equality and non-equality checks (although they may not be
much meaningful for floating point numbers). Each side of the comparison can be a
floating point arithmetical expression. The same set of operators as in $:= can be
used.

Bug Caution The current version (1.510) has problems with expressions with operators
in these predicates. Only simple variables and constants can be used.

Comparison of floating point numbers can also be made by the methods described below.

less_than +X +Y [Guard Method on float]
not_greater_than +X +Y [Guard Method on float]
not_less_than +X +Y [Guard Method on float]
greater_than +X +Y [Guard Method on float]
equal +X +Y [Guard Method on float]
not_equal +X +Y [Guard Method on float]

These methods test whether X is less than Y or not, etc.

3.3 Structured Data

Structured data objects consist of zero or more elements.

3.3.1 Functor Structures

Functor structures are structures with given name and one or more elements, which can be
of any type. Functors are conveniently used for representing data structures whose sizes are
known beforehand. Functors correspond to record structures of C-like languages.

3.3.1.1 Notation of Functors

Functor constants can be written by the name of the principal functor, a left parenthesis,
elements separated by commas, and finally a right parenthesis. Functor names have the same
syntax as symbolic atoms. The principal functor name and the following left parenthesis
should not be separated by space characters or any other punctuation symbols. Elements
can be of any type, including variables or functors themselves.

Examples:

f(a, 3) ’a recursive functor structure’ (X, ’child functor’(Y))

3.3.1.2 Operations on Functors

Predicates for manipulation of functor structures are provided as builtin predicates and in
the module functor_table, as listed in this section.

In the current implementation, all the body builtin predicates listed here are actually
implemented as macros expanded to predicates of the module functor_table. This imple-
mentation scheme may be changed in future releases.

Chapter 3: Builtin and Library Features 24

functor +X -Functor -Arity [Guard Predicate on builtin]

functor +X -Functor -Arity [Body Predicate on builtin]
X is a functor with the principal functor whose name being Functor and arity Arity.
These predicates can be used for obtaining the the name and/or the arity of principal
functors. The guard predicate version can also be used for testing that X has the
name Functor and/or the arity Arity. Any instantiated data that are not functor
structures, i.e., atomic data, strings, vectors and so on, have zero as their arities
and themselves as their principal functor names. Note that list structures consist of
functors ./2.

This predicate cannot be used to create a new functor.

arg +Pos +Term -Arg [Guard Predicate on builtin]

arg +Pos +Term -Arg [Body Predicate on builtin]
The Pos-th argument of Term is Arg. Arguments are numbered from 1. The guard
version simply fails if Pos is out of range. As all the data structures except for functor
structures have no arguments, this predicate always fails for them.

new_functor -Functor +Atom +Arity [Body Predicate on builtin]
A functor structure with its principal functor with name Atom and arity Arity is
returned to Functor. Arguments of the created functor are initiated with integer 0.

setarg +Pos +Fnct ’NewE -NewFnct [Body Predicate on builtin]
setarg +Pos +Fnct 7OldE ?NewE -NewFnct [Body Predicate on builtin]
A new functor structure that is different from Fnct with only one argument at Pos is
created and returned to NewFnct. The element with index Pos of NewFnct will be

NewE. For five argument versions, the original argument at Pos will be returned to
OIdE.

=.. -NewFnct +List [Predicate on functor_table]
A new functor structure is created and returned to NewFnct. The name of the
principal functor is specified by the first element of List, which should be a symbolic
atom, and the arguments are specified by the rest of List. If List has only one element,
that element is returned to NewFnct.

This predicate can not be used for decomposing a functor structure to a list.

3.3.2 Lists

Lists are arbitrarily long sequences of any data objects. In KL1, List structures are made
up of functor structures ./2, that is, functor structures with their name . and arity two.
List structures are composed of possibly many of these functor structures (sometimes called
cons cells).

The first element of the cons cell, sometimes called the car of the cell, represents the
first element of the list. The second element, the cdr of the cell, represents the rest of the
list. Termination of the list is indicated by a symbolic atom [] being the cdr.

Whether a given argument is a list or not can be tested by the following guard predicate.
list +X [Guard Predicate on builtin]

Tests whether X is a cons cell. Note that, despite its name, this predicate fails for a
null list [] for a historical reason.

Chapter 3: Builtin and Library Features 25

Incrementally instantiated list structures are conveniently used as message streams.

3.3.2.1 Notation of Lists

As in Lisp, lists of KL1 are constructed using cons data structures, which is actually a
functor structure . /2.

The basic notation for lists is [Car | Cdr], which consists of the first element Car and
the tail of the list Cdr. This means exactly the same as .(Car, Cdr). An empty list is
represented by an atom [].

If Cdr happens to be empty, that is, when the list consists only of one element Car, such
a list can be written as . (Car, [1) or [Car | [1], or, alternatively, as [Car]. That is, the
sequence | []1 at the tail of a list can be ommitted.

Lists with its car being Car and its cdr being a list [Cadr, ...] is [Car | [Cadr,
...1], which can be abbreviated as [Car, Cadr, ...]. For example, a list consisting
of four elements, first, second, third and fourth can be written as [first, second,
third, fourth].

A list consisting of four or more elements, but with the first four elements being first,
second, third and fourth, can be written as [first, second, third, fourth | Rest].
Here, the variable Rest corresponds to the list beginning with the fifth element, or an empty
list if the whole list had only four elements.

Note that, unlike in Ediburgh Prolog, the character sequence , .. can not be used in
place of |.

3.3.2.2 Manipulation of Message Streams

A stream merger is a process that takes multiple message streams represented as lists of
messages as input, and passes all the messages from all the input streams to a single output
stream also represented as a list.

The output consists of all the messages in the inputs with duplicates preserved. When
two messages are ordered in one of the input streams, their order is also preserved in the
output. When messages are from different input streams, their order in the output is
unpredictable. The order may differ in one execution of the same program from another.
The behavior of mergers is thus nondeterministic.

For example, when there are two input streams [1, 2, 3] and [a, b, c], the output
can be something like [1, 2, a, b, 3, c] or [1, a, 2, b, c, 3], but will never be [1, a,
3, b, c, 2].

A binary (two-input) stream merger can be defined in KL1 as follows.

merge([M|In1], In2, Out) :- Out=[M|0utT], merge(Inl, In2, OutT).
merge(Inl, [M|In2], Out) :- Out=[M|0utT], merge(Inl, In2, OutT).
merge([], In2, Out) :- Out=In2.
merge(Inil, [], Out) :- Out=Inl.

e The first clause forwards one message coming from the first input stream to the output
stream. The first input stream is the first argument and the output stream is the third
argument of the predicate. It then calls the predicate merge/3 recursively for repetitive
execution.

e The second clause does the same for the second input stream.

Chapter 3: Builtin and Library Features 26

e The third clause is used when the first input stream has no more messages in it. In
this case, the second input stream is directly connected to the output. As there are no
more messages to merge from the first input stream, the result of the merging should
be the same as the second input stream.

e The fourth clause provides the corresponding feature when the second input stream
has no more messages in it.

When messages come from both the first and the second at the same time, either the
first or the second clause is arbitrarily chosen. This is the source of the nondeterminacy of
the merger.

Although binary mergers are easy to define in KL1, defining a merger with arbitrarily
many input streams is not so easy. It is also desirable to add new input streams dynamically,
which makes it still harder. Also, mergers are used quite frequently in KL1 programs and
thus should be quite efficient. Thus, the KLIC system provides a merger as one of its
standard feature.

A new merger can be created by the following pseudo-predicate.

new ?Input ?Output [Object Creation on merge]
A new merger with single input stream is created. Its input stream is Input and its
output is Output.

The merger process created by the above pseudo-predicate does not actually start any
merging immediately after its creation. It only forwards the messages from Input to Output,
without changing the order.

To add a new input stream to a merger, unify the input with a vector whose elements
are input streams. For example, if you need a binary merger, do the following.

generic:new(merge, Input, Output),
Input = {In1, In2}

This means the same as the following.
generic:new(merge, {Inl1, In2}, Output)

After doing the above, the merger will merge messages from two input streams, Inl and
In2, to the output stream Qutput.

Input streams to a merger can be added not only immediately after its creation but at
any time on demand. Two more input streams are added, for example, by the following.

In2 = {In24, In2B, In2C}
After this, the merger will have four input streams, Inl, In2A, In2B and In2C.

When one of the input streams is no longer needed, that input stream can be simply
closed, by unifying it with an atom []J.

The size of the vector unified with an input stream can be arbitrarily large or small.
When it has only one element, the number of input streams will not be changed. When the
vector has no elements, unifying with it has the same effect as closing the stream.

The output stream will be closed, i.e., the tail of the output list is unified with [], when
all the input streams have been closed.

Chapter 3: Builtin and Library Features 27

Here are some clues in using the merger.

e Messages merged can be a data structure containing unbound variables. Such messages
are sometimes called incomplete messages. Incomplete messages are convenient for
constructing a server-client process structure. Giving values to variables in messages
can be used for communicating backwards from the server to the client.

e Merging may look deterministic on sequential implementations. Do never rely on it. It
will become really nondeterministic on parallel implementations.

3.3.3 Vectors

Vectors are fixed-length one-dimensional array of KL1 data. The length of a vector is
determined on its creation. Elements can be any KL1 data and can even be left undefined
when the data structure is created.

Elements are indexed by an integer beginning from 0. For example, a vector with 3
elements has elements numbered 0, 1 and 2.

3.3.3.1 Notation of Vectors

Vectors can be denoted by a comma-separated list of elements in a pair of curly braces.
{1, a, £f(®), X }

A null vector (vectors with no elements at all) is denoted only by a pair of curly braces.

{}

Note that curly braces are used in a way completely different from Edinburgh Prolog,
where {} means an atom and {. ..} means a functor structure {}((...)).

3.3.3.2 Creating New Vectors

In addition to the notation described above, vectors can be dynamically created during
program execution. The following predicate can be used to create a new vector.

new - Vector +Init [Object Creation on vector]
new_vector -Vector +Init [Body Predicate on builtin]
A new vector is created and returned to Vector.

If the argument Init is an integer, it sepcifies the number of elements. The elements
are initialized with integer O in this case. For example, ‘generic:new(vector, V,
2)’ creates a vector ‘{0, 0}’ and returned it to V.

If Init is a list, the newly created vector is initiated by the elements of the list.
Naturally, the number of elements of the vector becomes the same as the length of
the list. For example, ‘generic:new(vector, V, [a, b, c])’ creates a vector {a, b,
c} and unifies it with V.

3.3.3.3 Predicates on Vectors

vector +Vector -Length [Guard Method on vector]
size +Vector -Length [Body Method on vector]
vector +Vector -Length [Guard Predicate on builtin]

Tests whether Vector is a vector object (if called in guard) and returns the number
of elements in Length.

Chapter 3: Builtin and Library Features 28

element +Vector +Index -FElement [Guard Method on vector]
element +Vector +Index -Element [Body Method on vector]
vector_element +Vector +Index -Element [Guard Predicate on builtin]
vector_element +Vector +Index -Element [Body Predicate on builtin]

An element with index Index of the vector Vector is unified with Element. The index
is zero origin.

set_element +Original +Index ?NewElement -New [Body Method on vector]
set_vector_element +Original +Index [Body Predicate on builtin]
?NewElement —New
A new vector is unified with New. The new vector has the same elements as the
Original, except that the Index’th element is updated to NewElement. The original
vector is left untouched. The index is zero origin.

set_element +Original +Index 7Element [Body Method on vector]
?NewElement -New
set_vector_element +Original +Index ?Element [Body Predicate on builtin]

?NewFElement - New
A new vector is unified with New. The new vector has the same elements as the
Original, except that the Index’th element is updated to NewElement. The original
vector is left untouched. The index is zero origin. The original Index’th element is
returned to Element.

split +Original +At -Lower -Upper [Body Method on vector]
The vector Original is split at the index position At and the resultant two vectors are
unified with Lower and Upper. At has to be a non-negative integer less than or equal
to the size of the original vector. Lower will have elements with indices between 0
and At-1, inclusive. Elements with indices between At and up will be included in
Upper.

join +Lower +Upper -Joined [Body Method on vector]
Two vectors Lower and Upper are concatenated together to make a new vector Joined.

In KLIC, creating a new vector differing with an existing one by only a single element
is implemented with constant time and space overhead, regardless of the size of the vector,
by using multiversion array representation.

3.3.4 Strings

Strings are one dimensional arrays of integers in restricted range. The current version
provides only strings of 8-bit elements which has elements of the range 0 through 255.
They are convenient for representing character strings. Strings with elements of different
sizes are planned in future.

Unlike in Edinburgh Prolog, strings are not notational convention for lists of character
codes. They are of its own data type.

3.3.4.1 Notation of Strings

In KLIC, character string constants should be denoted by sequence of characters surrounded
by a pair of doublequotes, as follows.

"A string of the characters written here"

Chapter 3: Builtin and Library Features 29

The following escape sequences (a la ANSI C) are used to specify doublequotes, back-
slashes and control codes as string elements.

\a Bell.

\b Backspace.

\t Tab.

\n Newline.

\v Vertical tab.

\f Formfeed.

\r Carriage return.

\’ Singlequote.

\" Doublequote.

\7? Question mark.

\\ Backslash. Two consecutive backslach characters specifies a single backslash in
the string.

\ooo Code specified by the octal number ooo. Up to three octal digits are recognized.

\xhh Code specified by the hexadecimal number hh. Arbitrarily many hexadecimal

digits may be used.

\newline The backslash character along with the newline code immediately following it
are ignored. This sequence results in no characters at all in the string.
Example:
"The character \’\"\’ (doublequote)"
The above example is understood as a string containing the following characters.
The character ’"’ (doublequote)

Strings should not contain newlines nor doublequotes directly. A standard way for
including newlines within a string is to end the line with ‘\n\’. By this, a new line code is
inserted by the sequence ‘\n’ and the actual newline in the source code following the second
‘\’” is ignored.

Unlike in Edinburgh Prolog, character strings are not lists of character codes.

3.3.4.2 Creating New Strings

In addition to the constant strings described above, strings can be dynamically created
during execution. The following predicate can be used to create a new string.

new -String +Init +ElemSize [Object Creation on string]

new_string -String +Init +ElemSize [Body Predicate on builtin]
A new string is created and unified with String. The last argument ElemSize specifies
the bit width of the elements. As only 8-bit strings are available in the current version,
this should be 8.

Chapter 3: Builtin and Library Features 30

When the argument Init is an integer, it sepcifies the number of elements. In
this case, the elements are initialized with integer 0 (null code). For example,
‘generic:new(string, S, 3, 8)’ creates ‘"\0\0O\0" .

If Init is a list of integers, the newly created string is initiated by the elements of the
list. Naturally, the number of elements of the string becomes the same as the length of
the list. In this case, list elements should have values that fits in the given bit width;
between 0 and 255 in case of 8-bit strings. For example, ‘generic:new(string, S,
[0’a, 0’b, 0°c], 8)’ creates ‘"abc"’.

3.3.4.3 Predicates on Strings

string +String -Length -FElemSize [Guard Method on string]
string +String -Length -FElemSize [Body Method on string]
string +String -Length -FElemSize [Guard Predicate on builtin]

Tests whether String is a string object (if called in guard). The number of elements
of String is returned in Length and the element size (which is always 8 in the current
version) is returned in ElemSize.

size +String -Length [Body Method on string]
Returns the number of elements of String in Length.

element_size +String —-ElemSize [Body Method on string]
Returns the the element size of String in ElemSize.

element +String +Index -Element [Guard Method on string]

element +String +Index —Element [Body Method on string]

string_element +String +Index -FElement [Guard Predicate on builtin]

string_element +String +Index -Element [Body Predicate on builtin]

An element with index Index of the string String is unified with Element. The index
is zero origin.

less_than +Stringl +String2 [Guard Method on string)

string_less_than +Stringl +String2 [Guard Predicate on builtin]
Succeeds only when Stringl is less than String2 in lexicographical order.

not_less_than +Stringl +String2 [Guard Method on string]

string_not_less_than +Stringl +String?2 [Guard Predicate on builtin]
Succeeds only when Stringl is not less than String2 in lexicographical order.

set_element +Original +Index +Element - New [Body Method on string]

set_string_element +Original +Index +Element [Body Predicate on builtin]

-New

A new string is unified with New. The new string has the same elements as the
Original, except that the Index’th element is updated to Element. The original string
is left untouched. The index is zero origin.

split +Original +At -Lower -Upper [Body Method on string]
The string Original is split at the index position At and the resultant two strings are
unified with Lower and Upper. At has to be a non-negative integer less than or equal
to the size of the original string. Lower will have elements with indices between 0 and
At-1, inclusive. Elements with indices between At and up will be included in Upper.

Chapter 3: Builtin and Library Features 31

join +Lower +Upper -Joined [Body Method on string]

Two strings Lower and Upper are concatenated together to make a new string Joined.

search_character +String +Start +End +Char [Body Method on string]
-Where

search_character +String +Start +End +Char [Body Predicate on builtin]
-Where

The character Char is searched for in String, beginning from the position Start and
ending before End. If such a character is found, its index is unified with Where. If
not, Where is unified with -1. The indices are zero origin.

In KLIC, creating a new string differing with only one element from the original is
implemented with constant time and space overhead, regardless of the size of the string, by
using multiversion array representation.

3.4 Handling Program Code as Data

KLIC allows higher order manipulation of executable code as data objects. Program mod-
ules are treated as module data objects and individual predicates are treated as predicate
data objects.

3.4.1 Modules

Program modules are treated as data through generic data objects of type module.

new -Module +ModuleName [Object Creation on module]
Creates a new object Module corresponding to the program module specified by
ModuleName as a symbolic atom. If the specified module is not defined, the symbolic
atom itself is returned to Module. See Section 2.6.1 [Creating Objects], page 8, for
the format of object creation goals.

module +Module [Guard Method on module]
Tests whether Module is a module object or not.

name +Module -ModuleName [Body Method on module]
The module name of Module is returned to ModuleName as a symbolic atom.

3.4.2 Predicates

Predicates in programs are treated as data through generic data objects of type predicate.

Predicate type data can be either denoted as a constant or created dynamically in
runtime. Due to limitations of the features of host systems, dynamic creation may not be
supported on some host systems.

The syntax of a predicate constant is as follows.
predicate#(module: predicate/arity)

Where module and predicate should be module and predicate name atoms and arity should
be an integer (the number of arguments of the predicate). For example:

predicate#(main:main/0) predicate#(quicksort:partition/4)

are valid predicate constants in programs.

Chapter 3: Builtin and Library Features 32

Note that predicate constants are recognized by the KLIC compiler and not by the
KLIC parser (see Section 3.6.2 [Input and Output with Prolog-like Interface], page 39).
Thus, the notation described above means a usual data structure when simply read in using
the Prolog-like I/O streams.

new -Predicate +Module +PredName +Arity [Object Creation on predicate]
Creates a new object Predicate corresponding to the predicate specified by Mod-
ule (a module object), PredName (a symbolic atom) and Arity (an integer). See
Section 2.6.1 [Creating Objects|, page 8, for the format of object creation goals.

predicate +Predicate [Guard Method on predicate]
Tests whether Predicate is a predicate object or not.

arity +Predicate -Arity [Guard Method on predicate]
arity +Predicate - Arity [Body Method on predicate]
The arity of the predicate Predicate is returned to Arity.

apply +Predicate +ArgVec [Body Method on predicate]
Calls the predicate specified by a predicate object Predicate with arguments specified
by ArgVec. ArgVec should be a vector of arguments to be passed to Predicate. Thus,
the size of the vector should match with the arity of the predicate.

call +Predicate +Args. . . [Body Method on predicate]
Calls the predicate specified by a predicate object Predicate with arguments speci-
fied by Args.... The number of the arguments should match with the arity of the
predicate.

module +Predicate -Module [Body Method on predicate]
The program module that Predicate belongs to is returned to Module as a module
data object.

name +Predicate -Name [Body Method on predicate]
The name of the predicate Predicate is returned to Name as a symbolic atom.

3.5 Unix Interface

The module named unix makes features of the host operating system (Unix, typically)
available to KL.1 programs.

Almost all of the features are available as messages to a stream obtained by a predicate
unix/1 provided by the module unix. Some features are provided directly by predicates of
the module.

3.5.1 Obtaining Unix Interface Stream
The module "unix" interfaces other programs through message streams. The stream can

be obtained by calling the following predicate.

unix 7Stream [Predicate on unix]|
A message stream corresponding to the Unix interface is returned to Stream.

Chapter 3: Builtin and Library Features 33

Most of the features of the Unix interface are not provided as predicates, because no
ordering is guaranteed between predicate calls.

If the Unix interface were provided as predicates, for example:
unix:cd("a", 0),
unix:cd("b", 0),
unix:system("mkdir 1s", 0)

may list the directory a but may possibly list b or even some other directory before doing
any cd, depending on the execution order. On the other hand:

unix:unix([cd("a", 0),
Cd("b" R O) s
system("1s", 0)])

will surely try two cd and 1s in this order, as what decides the order is not the order of

execution but the order of the elements in a list structure.

On parallel implementations, KLIC consists of multiple processes. The process in which
the unix stream is obtained will be the process where all the messages are handled. For
example, cd(Path) message will change working directory of that single process and none
of others.

If you obtain two or more message streams, there will be no automatic synchronization
between messages sent to different streams.

3.5.2 Opening Streams for Input and Output Operations

The following messages to the Unix stream open a Unix I/O stream. Messages to be
sent to the resulting Unix I/O streams (not the Unix stream stream itself) for actually
performing I/O are described in separate places: See Section 3.6.1 [Input and Output with
C-like Interface], page 37, and Section 3.6.2 [Input and Output with Prolog-like Interface],
page 39.

The following is a KLIC program for saying hello to the world.

main :- unix:unix([stdout(R)]), check_and_write(R).

check_and_write(normal(R)) :- R = [fwrite("hello world\n")].

stdin -Result [Message on unix strean]
stdout -Result [Message on unix streamn]
stderr -Result [Message on unix streamn]

These messages open a stream associated with process’s standard input, standard
output and standard error file respectively, and return normal (Stream) to Result.

read_open +Path -Result [Message on unix streamn)]

write_open +Path -Result [Message on unix stream]

append_open +Path -Result [Message on unix stream)]

update_open +Path -Result [Message on unix streamn]
These messages open the file named by the string Path, and return normal (Stream)
to Result. The opening mode is input, output, append or input/output, respectively.
If opening of the file fails, abnormal is returned instead.

Chapter 3: Builtin and Library Features 34

3.5.3 Using Sockets

Unix- and Internet-protocol sockets can be obtained using the following messages to the
Unix stream. Only sockets of SOCK_STREAM type are provided.

connect +Spec —Result [Message on unix streamn]
Creates a socket and connects it to socket specified by Spec and returns
normal (Stream) to Result. Spec should have either of the following formats.

unix (Path)
A unix domain socket with the pathname Pathis opened.

inet (HostName, Port)
An internet domain socket of the host specified by a string HostName
and port number Port is opened.

inet ({B1, B2, B3, B4}, Port)
An internet domain socket is opened. The host is specified by the internet
address B1 through B4 is opened.

The obtained stream handles both input and output messages.

bind +Spec -Result [Message on unix streamn)]
Creates a socket and binds it to a name specified by Spec. The format of Spec is the
same for the message connect except that HostName should be omitted for internet
domain sockets. What is returned to Result is normal (Stream) but this Stream is a
bound socket stream and does not directly handle I/O messages. Rather, it expects
accept messages to obtain I/O message streams. When the bound socket stream
obtained is closed and the socket type is unix, the named socket specified by Path in
Spec will be unlinked.

accept -Result [Message on bound socket]
Accepts a connection to the socket and returns normal (Stream) to Result, where
Stream is an 1/O message stream for both input and output messages.

Sockets provide asynchronous I/O, that is, waiting for a connection or acceptance of a
connection will not block other processes in the KLIC system. Trying to read or write to
sockets with buffers empty or full respectively will not block the whole computation. Such
I/0 operations will be postponed until immediate operations become possible.

Limitations: When an operation on a socket is postponed, all the remaining operations
to be done on the socket are also postponed until the completion of the postponed operation.
This is problematic when both input and output has to be polled. The problem is planned
to be solved in a future release.

Limitations on Linux:Asynchronous I/O operations do not work on Linux (at least with
Slackware 1.2.0) with the current version.

3.5.4 Files and Directories
The following message to the unix stream handles files and directories.

cd +Path -Result [Message on unix streamn)]
Changes the working directory to Path. If successful, 0 is returned to Result; other-
wise, -1 is returned. Corresponds to chdir system call.

Chapter 3: Builtin and Library Features 35

unlink +Path -Result [Message on unix streamn)]
Removes the directory entry specified by Path. If successful, 0 is retuned to Result;
otherwise, -1 is returned. Corresponds to unlink system call.

mktemp +Template -Filename [Message on unix stream]
Makes a unique file name from the given Template and returns it to Filename. Corre-
sponds to the C library routine mktemp. Unlike the library routine, the template does
not have to have six trailing X characters. If a unique file name cannot be created
somehow, a null string is returned to Filename.

access +Path +Mode -Result [Message on unix streamn]
Checks accessibility of the file with pathname Path with the mode Mode is validate,
and returns the result to Result. Corresponds to the C library routine access. If the
file is accessible, 0 is returned; otherwise, -1 is returned. Mode is an integer, with
the bits of the following meaning.

4 read permission
2 write permission
1 execute permission
0 test existence
chmod +Path +Mode -Result [Message on unix streamn]

Changes the permission mode of the file with pathname Path to Mode. Corresponds
to the system call chmod. If changing the mode is successful, 0 is returned to Result;
otherwise, -1 is returned. Mode is an integer with standard Unix permission bits.

umask -OldMask [Message on unix strean]

umask -OldMask +NewMask [Message on unix streamn]
Returns the current file creation mask to OldMask. With two arguments, sets the file
creation mask to NewMask. Corresponds to the umask system call.

3.5.5 Handling Signal Interrupts

Unix signals can be converted to a list of integers using the following message to the unix
stream.

signal_stream +Signal -Result [Message on unix stream]
Unix signals specified by Signal (an integer value) will become caught and reported.
The argument Result will become normal (Stream) and whenever a signal of the
specified kind is detected, that signal number is sent to Stream. For example, if
signal 2 (SIGINT in BSD and SVR4, at least) is detected, Stream becomes [2|Rest].
Further signals are reported to Rest.

Limitations: Signals may be ignored when they occur more than twice before the same kind
of signal is detected, due to limitations of Unix.

Chapter 3: Builtin and Library Features 36

3.5.6 Miscellaneous Messages to the Unix Stream

Various features of Unix are provided by sending the fllowing messages to the unix stream.

system +Command -Result [Message on unix strean]
Executes Command (a string) in a newly created subshell, and returns its exit code
to Result. Corresponds to the system system call.

getenv +Name - Value [Message on unix streamn)]
Returns the value of the environment variable with the name Name to Value. Corre-
sponds to the library routine getenv. If such a environment variable does not exist,
integer O is returned to Value.

putenv +String -Result [Message on unix stream]
The first argument String should be of form Name = Value. Adds or updates the
environment variable Name with the value Value. Corresponds to the library routine
putenv. If addition or updating is successful, 0 is returned to Result. Otherwise,
non-zero integer value is returned.

kill +Pid +Sig -Result [Message on unix streamn)]
Sends the signal Sig to a process or a group of processes specified by Pid, and returns
0 on success or -1 on failure to Result.

fork -Pid [Message on unix stream]
Forks a new process which is a copy of the current process. Corresponds to the
fork system call. If a child process is successfully created, the process ID of the child
process is returned to Pid in the parent process, and 0 is returned in the child process.

fork_with_pipes -Result [Message on unix strean]
Creates pipes and fork a new process. The new process is a copy of the current
process. In the parent process, Result is unified with parent (Pid, In, Out), where
Pid is the process ID of the newly created process. In the newly create child process,
Result is unified with child(In, Out). In and Out are Unix I/O streams to pipes;
parent’s Out is an output stream connected to child’s In, which is an input stream:;
child’s Out is connected to parent’s In.

3.5.7 Predicate Interface

Some of the Unix interface are provided as predicates defined in the module unix.

argc -Argc [Predicate on unix]
Number of command line arguments not used by the KLIC system is returned to
Argc. Such arguments start from the first argument not beginning with - or after --
in the command line.

argv -ArgList [Predicate on unix|
Command line arguments nod used by the KLIC system is returned to ArgList as a
list of strings.

exit +ExitCode [Predicate on unix|
Terminates the process immediately with the exit code ExitCode.

Chapter 3: Builtin and Library Features 37

times -Utime -Stime -CUtime -CStime [Predicate on unix]
Returns process times in milliseconds. Utime is user time and Stime is system time.
CUtime and CStime are those for children processes.

Note that when HZ (clock ticks per second) is not defined in some standard places,
the system assumes 60.

3.6 Input and Output

KLIC provides two different sets of I/O operations. One is similar to those available from
C language and the other is similar to those available from Prolog language.

C-like features are in a lower level and provide better performance both in speed and
code size. However, during prototyping and debugging phases, the Prolog-like higher-level
interface, allowing 1/O of data structures directly, might be beneficial.

3.6.1 Input and Output with C-like Interface

Input and output operations with interface similar to those available in language C are
described in this section.

Such interface are provided as messages to streams to open files, sockets, pipes &c, which
are obtained by various messages to the Unix stream. See Section 3.5.2 [Opening Streams
for Input and Output Operations], page 33.

3.6.1.1 Common Messages with C-like Interface

The following messages are available for both input and output streams for C-like I/0.

feof -Result [Message on C-like I/0]
Returns 1 to Result if the stream is at the end of the file; otherwise 0. Corresponds
to the library routine feof.

fseek +Offset +Ptrname -Result [Message on C-like I/0]
Changes the position of the stream according to the offset and pointer name given
as Offset and Ptrname, respectively. The offset is specified as a signed integer by
Offset. When Ptrname is 0, the offset is from the beginning of the file; when 1, from
the current position; when 2, from the end of file. If successful, 0 is returned Result;
otherwise -1.

Note that, due to the range restriction of integer values, this message may not be able
to move to arbitrary positions in a very large file (larger than 128MB, on systems
with 32-bit long integers).

ftell -Result [Message on C-1like I/0]
Returns the offset of the current byte position to Result.
Note that, due to the range restriction of integer values, the obtained position may
be incorrect for a very large file (larger than 128MB, on systems with 32-bit long
integers).

fclose -Result [Message on C-1like I/0]
Closes the stream. Returns 0 to Result if successful; -1 otherwise. No messages
except for sync/1 should be sent to a stream after closing.

Chapter 3: Builtin and Library Features 38

sync -Result [Message on C-1like I/0]
Returns 0 to Result. Useful in making sure that all the preceding messages have
already been processed.

3.6.1.2 Input Messages with C-like Interface

The following messages are available for input streams for C-like I/0.

getc -C [Message on C-like I/0]
Reads one byte from the stream and returns it to C. At the end of file, -1 is returned.

ungetc +C [Message on C-like I/0]
Pushes back one byte C to the stream.

fread +Max -String [Message on C-1like I/0]
Reads in at most Max bytes from the stream and returns the data as a byte string to
String. Only up to 4,096 bytes can be handled in the current implementation. Note
that the length of the resultant string may be smaller than the given maximum. This
may happen at the end of the file for normal files and at any time for pipes or sockets.

linecount -Count [Message on C-like I/0]
Returns to Count the number of newline characters encountered so far. Within the
first line of a file, it returns 0, as no newlines have been encountered yet. Conventional
one-origin line numbers can be computed by adding one to this.

This line counting can be confused when fseek/2 messages are used.

3.6.1.3 Output Messages with C-like Interface

The following messages are available for output streams for C-like 1/0.

putc +C [Message on C-1like I/0]
Writes one byte C to the stream.

Number [Message on C-1like I/0]
Writes one byte Number to the stream. This is synonymous to putc (Number).

fwrite +String -Result [Message on C-1like I/0]
Writes out the contents of the byte string String to the stream and returns number
of bytes actually written to Result. Note that the number of bytes actually written
may be smaller than the length of String.

fwrite +String [Message on C-1like I/0]
Writes out the contents of the byte string String to the stream. Unlike the fwrite
message with Result argument, it waits for all the bytes in String to be output. This
may be undesirable for streams that require unpredictable time period for output,
such as internet sockets and pipes.

fflush -Result [Message on C-1like I/0]
Flushes any output remaining on the stream. Returns 0 to Result if successful; -1
otherwise.

Chapter 3: Builtin and Library Features 39

3.6.2 Input and Output with Prolog-like Interface

Unix interface streams with features to handle Prolog-like terms based on a operator prece-
dence grammar can be obtained by the following predicate of module klicio.

The syntax of terms of KLIC is very close to that of Edinburgh Prolog but with subtle
differences. See Section 3.2.1.1 [Notation of Atoms|, page 17, Section 3.2.2.1 [Notation of
Integers]|, page 19, Section 3.2.3.1 [Notation of Floats|, page 21, Section 3.3.1.1 [Notation
of Functors|, page 23, Section 3.3.2.1 [Notation of Lists|, page 25, Section 3.3.3.1 [Notation
of Vectors|, page 27, and Section 3.3.4.1 [Notation of Strings], page 28, for details.

3.6.2.1 Opening Prolog-like I/O Streams

klicio 7Stream [Predicate on klicio]
A message stream corresponding to the Prolog-like term interface is returned to
Stream. The obtained stream works the similar to a unix interface stream, which is
used in turn to obtain message streams for actual I/O. I/O streams obtained through
this stream accepts messages for Prolog-like term I1/O described in this section in
addition to ordinary C-like I/O messages.

This klicio stream is provided separately so that programs without the need of
Prolog-like term I/O can be executable without modules for parsing and unparsing,
as these modules have non-negligible sizes.

stdin -Result [Message on klicio stream
stdout -Result [Message on klicio stream|
stderr -Result [Message on klicio stream
read_open +Path -Result [Message on klicio stream
write_open +Path -Result [Message on klicio stream|
append_open +Path -Result [Message on klicio stream
update_open +Path -Result [Message on klicio stream
These messages open Prolog-like I/O streams. Messages to be sent to the resulting
Prolog-like I/O streams (not the klicio stream itself) for actually performing I/O
are described below.

These messages work exactly the same as the corresponding messages for unix
streams, except that returned I/O streams understand messages for Prolog-like term
I/O in addition to the messages for C-like I/O streams.

Prolog-like I/O streams are associated with operator definitions. Different operator
definitions may be associated with each stream. Thus, adding or removing an operator
to one stream will not affect operators used in other streams. Immediately after
creation, each stream has a default set of operators.

3.6.2.2 Common Messages with Prolog-like Interface

The following messages for C-like I/O streams can be used for Prolog-like I/O streams.

feof -Result [Message on Prolog-like I/0]
fseek +Offset +Ptrname -Result [Message on Prolog-like I/0]
ftell -Result [Message on Prolog-like I/0]
fclose -Result [Message on Prolog-like I/0]

Chapter 3: Builtin and Library Features 40

sync -Result [Message on Prolog-like I/0]
See Section 3.6.1.1 [Common Messages with C-like Interface], page 37, for details.

addop +Op +Type +Prec [Message on Prolog-like I/0]
Adds an operator Op of type Type with precedence Prec.

rmop +Op +Type [Message on Prolog-like I/0]
Removes an operator Op of type Type.

3.6.2.3 Input Messages with Prolog-like Interface

gett —Term [Message on Prolog-like I/0]
Reads in a KLIC syntax term from the associated input stream to Term. On parsing
errors, a message is output to stderr and another term is read in. At the end of the
file, it returns an atom end_of _file.

getwt —-Result [Message on Prolog-like I/0]
Reads in a KLIC syntax term from the associated input stream and returns the result
to Result. Result will have the form normal (WrappedTerm) if parsing completes
without errors. Here, WrappedTerm is a ground term representation of the term read
in, where variables are represented as a ground term with the information on their
names. On parsing errors, a message is output to stderr and another term is read
in. At the end of file, it returns normal (end_of_file).

See Section 3.6.2.5 [Wrapped Terms|, page 41, for manipulation of wrapped terms.

The following messages for C-like I/O streams can also be used for Prolog-like 1/0O
streams.

getc -C [Message on Prolog-like I/0]
ungetc +C [Message on Prolog-like I/0]
fread +Max -String [Message on Prolog-like I/0]
linecount -Count [Message on Prolog-like I/0]

See Section 3.6.1.2 [Input Msgs (C style)], page 38, for details.

3.6.2.4 Output Messages with Prolog-like Interface

putt +Term [Message on Prolog-like I/0]
puttq +Term [Message on Prolog-like I/0]
putwt +WrappedTerm [Message on Prolog-like I/0]
putwtq +WrappedTerm [Message on Prolog-like I/0]

A term Term or a wrapped term WrappedTerm is written out to the associated output

stream.

Messages without the character q are supposed to omit two quotes around symbolic
atoms even when they are required to be correctly read in again. However, currently
they work exactly the same as the messages with q.

With the current version, the output format is meant only to be machine-readable
and not so readable for humans. That is, no operators are used and all atoms are
enclosed within parentheses.

See Section 3.6.2.5 [Wrapped Terms], page 41, for manpulation of wrapped terms.

Chapter 3: Builtin and Library Features 41

The following messages for C-like I/O streams can also be used for Prolog-like I/O
streams.

putc +C [Message on Prolog-like I/0]
Number [Message on Prolog-like I/0]
fwrite +String -Result [Message on Prolog-like I/0]
fwrite +String [Message on Prolog-like I/0]
fflush -Result [Message on Prolog-like I/0]

See Section 3.6.1.3 [Output Messages with C-like Interface|, page 38, for details.

Note that a period to end a term is not written out by these messages. Thus, writing
out a period and a space or a newline character is usually required for the output to be
read in again. The following goal sequence opens the file named /tmp/foo.bar, waits full
instantiation of the variable X, and then outputs the value in a Prolog-like format followed
by a period and a newline.

klicio:klicio([write_open("/tmp/foo.bar", normal(S))]),
S = [putt(X), putc(0’.), nl].

nl [Message on Prolog-like I/0]
Outputs a newline code. This is synonymous to sending a message putc(10) to the
same stream.

Note that Prolog-like I/O streams also accept all the messages accepted by C-like I/O
such as putc/1 or getc/1 (see Section 3.6.1 [Input and Output with C-like Interface],
page 37).

3.6.2.5 Wrapped Terms

To allow metalevel manipulation of terms including variables, KLIC provides a data repre-
sentation called wrapped term. A wrapped term is a ground term without any variables in
it. A wrapped term has one of the following forms.

variable (VarName)
a variable with its name string VarName

atom(Atom)
a symbolic atom Atom

integer (Int)
an integer Int

floating_point(Float)
a floating point number Float

list([Carl|Cdr])
a cons cell consisting of Car and Cdr, which are wrapped terms recursively

functor(Functor(Arg, ...)
a functor structure; its arguments (Arg, etc) are wrapped terms recursively

vector ({Elem, ...})
a vector; its elements (Elem, etc) are wrapped terms recursively

Chapter 3: Builtin and Library Features 42

string(Str)
a string Str

unknown (Term)
some unknown data; wrapping may be inprecise in this case

For example, the wrapped representation of a term:
f(a, X, {3, ["abc"|X]}, 3.14)
is the following.

functor (f(atom(a),
variable("X"),
vector ({integer(3), list([string("abc") |variable("X")1)}),
floating_point(3.14))).

The following predicate convert wrapped terms to normal terms.

unwrap -Wrapped ?Term [Predicate on variable]
Converts a wrapped term Wrapped to a normal term Term.

Wrapped terms are normally obtained as a result of input operations (see Section 3.6.2.3
[Input Messages with Prolog-like Interface|, page 40). Wrapped terms can also be con-
structed by usual user programs, as they are nothing more than a usual KL1 term. The
following predicate that converts normal terms to wrapped terms may also be useful in
certain cases.

wrap ’Term -Wrapped [Predicate on variable]
Converts a normal term Term to a wrapped term Wrapped.

In the current version, all variables are given the same name _. Thus, by wrapping a
term and then unwrapping its result, all the variables in the original term will become
references to the same variable. This is a bug and is planned to be fixed in a future
version.

When Term contains multiple references of a same variable, computation on-going
concurrently may instantiate the variable. In such cases, this predicate may yield a
wrapped term in which two original occurrences of the same variable are converted
differently; one as a variable and another as a non-variable term. This is an inherent
problem of the specification of this predicate and probably will never be fixed. Thus,
applying this predicate to non-ground terms should be restricted to certain metalevel
programs, such as debugging utilities.

3.7 Controlling System Behavior

The following predicates are provided in the module system_control.

postmortem +Module +Goal -Result [Predicate on system_control]
Registers postmortem processing after normal or abnormal termination of the main
program. Goal should be a functor structure specifying the predicate and arguments
of the postmortem processing goal. Module should be a symbolic atom specifying the
module of the postmortem processing predicate. Only a single goal can be specified;
comma-separated sequences of goals are not allowed.

Chapter 3: Builtin and Library Features 43

When the registration is done, Result is unified with []. Waiting for this will prevent
further processing to be executed before the completion of the registration.

If this predicate is called many times, the last registration will be effective.

gc —Before - After [Predicate on system_control]
Requests garbage collection and returns the heap size in words before and after the
garbage collection to Before and After respectively. The size of a word is the same
as the size of type long of the C language system used in the installation.

In parallel implementations, only garbage collection for local storage is requested.
Requesting of global garbage collection is not available.

3.8 Timer

KLIC provides real-time timers. Although Unix provides only one timer per process, KLIC
virtualizes the mechanism and provides as many timers as needed.

Implementations on host systems where real-time timers are not available do not provide
the feature.

Time values (both times and time intervals) are represented by a term of the form
time(Day, Sec, Usec), where Day, Sec and Usec are non-negative integers representing
days, seconds and microseconds. Sec should be less than 86,000 (one day) and Usec should
be less than 1,000,000 (one second).

The following predicates are provided in the module timer.

get_time_of_day -Time [Predicate on timer]
The current time expressed in seconds and microseconds since midnight of January
1, 1970 GMT is returned to Time.

The time obtained is that of when a goal of this predicate is actually executed. Note
that ordering of goal execution is up to the KLIC system. The time reported is only
guaranteed to be the time between two observable events: when the parent goal of
this goal is reduced, and when the value of Time is inspected.

Note also that the reported time is what is returned by the underlying operating
system of the worker task. On a distributed system, clocks of constituting systems
may not agree completely.

add Timel Time2 -Time [Predicate on timer]
sub Timel Time2 -Time [Predicate on timer]
Computes sum and difference of two time values, respectively.

compare Timel Time2 -Result [Predicate on timer]
Compares two time values Timel and Time2 and returns the result in Result. The
result is < if Timel is smaller than (or before) Time2, = if they are the same, > if
Timel is larger than (or after) Time2.

instantiate_at Time -Var [Predicate on timer]
instantiate_after Interval -Var [Predicate on timer]
Unifies Var with a symbolic atom [] at the time specified. The former predicate does
this at the specified time, while the latter does this after the specified time interval. If
the specified time has already passed, the variable may be instantiated immediately.

Chapter 3: Builtin and Library Features 44

Note that instantiation may be delayed arbitrarily long. Reasonable implementations
should have short delays.

instantiate_every Interval Stop -Var [Predicate on timer]
Incrementally instantiate Var with a list of symbolic atom []. The first element is
instantiated after the time interval specified, the second after time twice the specified
value, etc. It will be repeated forever unless the argument Stop becomes instantiated,
on that occasion, the list will be terminated.

Note that instantiation may be delayed arbitrarily long. Reasonable implementations
should have short delays.

3.9 Random Number Generator

Pseudo-random numbers can be generated using the object class random_numbers. This
random number generator is based on nrand48. The random number genrator feature is
not availble if nrand48 is not on the host system.

new -Randoms Range [Object Creation on random_numbers]

new -Randoms Range Seed [Object Creation on random_numbers)|
An infinitely long list of pseudo-random integers ranging between 0 and Range - 1,
inclusive, is returned to Randoms. Range should be a positive integer. The optional
argument, Seed specifies the seed for random number generation. The list elements
are guaranteed to be the same if the same seed is given.

Note that, although the list is virtually infinite, elements are computed lazily on
demand as programs incrementally inspect their values.

45

4 Using KLIC

This chapter describes how to use the KLIC system.

4.1 Compiling Programs with KLIC

After proper installation, KL1 programs can be compiled into C program and then to
executables by the command k1lic. klic is a compiler driver that allows various options.

4.1.1 Command for Compilation

By simply running k1ic command with the name of KL1 program source file with the trail-
ing .k11 as an argument, that program will be compiled into C and then to an executable
format.

For example, to compile XXX.k11, type in:
% klic XXX.k11

The compilation result will be found in a.out. If you want the compilation result to be
named YYY, do the following.

% klic -o YYY XXX.k11

If your program is divided into several files, say XXX.k11, YYY.k11 and ZZZ.k11, you
can compile and link them together by the following.

% klic XXX.k11 YYY.k11 ZZZ.k11

It is also possible to separately compile several KL1 source files and link them afterwards.
To avoid linkage errors, you have to stop before linkage by giving the -c flag, as follows.

% klic -c¢ XXX.k11
% klic -c YYY.kl1
% klic -c ZZZ.kl1

Finally, you have to link all of them together by the following.
% klic XXX.o YYY.o ZZZ.o
See See Section 4.1.2 [Compiler Options], page 45, for details of compilation flags.

If you want to link program pieces written directly in C, say CCC.c and DDD.c, with
pieces written in KL1, XXX.k11 and YYY.k11, simply do the following.

% klic CCC.c DDD.c XXX.k11 YYY.kl1

The order of files specified does not matter. C functions can be invoked from within
inline-expanded codes (see Section 2.10 [Inline C Code], page 12).

4.1.2 Compiler Options

Options available for the compilation command klic are listed below.

-C Stop after generating relocatable object and don’t link the program.
-C Stop after translation into C.
-d Don’t try any compilation (dry run). Implies -v.

-D database_manager
Use the specified database manager program.

Chapter 4: Using KLIC 46

-g Debug flag passed to the C compiler.

-1 directory
Use the additional include directory specified for C compilation.

-K klic_compiler
Use the speicfied KL1 to C translator program.

-1 library
Use the additional library specified for linking.

-L directory
Use the additional directory specified to be searched for -1.

-o file Use the file name for the generated executable file.

-0level Use the specified optimization level. When a non-zero optimization level is
specified, some additional optimization flags may be also passed to the C com-
piler. Such Additional optimization flags are system dependent and determined
on KLIC system installation procedure.

For this option, no spaces are allowed between -0 and level.

-P parallel
Run subtasks (C compilers &c) in parallel. At most parallel subtasks are forked
at a time.

-R Do recompilation regardless of file dates.

-S Stop after generating assembly code output.

-n Link with the non-debugging version of the runtime library. By default, the

debugging version is used.

-v Run in verbose mode. All the commands executed through the compielr driver
will be output to standard error.

-xdirectory
Use database file k1ic.db in the specified directory and also place atom.c,
funct.c and predicates.c and their corresponding objects in the same direc-
tory. This flag is useful when programs to be linked together are distributed to
multiple directories.

-Xdirectory
Initiate the database file k1ic.db from the database initiation file k1icdb.init
under the specified directory, when the database file does not exist yet. It
defaults to the default library directory.

The following environment variables can change the default behavior of the compiler.
Options given at compilation time supersede the environment variable values.

KLIC_LIBRARY
Directory for runtime libraries. Superseded by the -X option.

KLIC_DBINIT
Directory for initial database. Defaults to the directory for runtime libraries.

Chapter 4: Using KLIC 47

KLIC_COMPILER
KL1 to C translator program. Superseded by the -K option.

KLIC_DBMAKER
Database manager program. Superseded by the -D option.

KLIC_INCLUDE
Additional include directory for C compilation. Superseded by the -I option.

KLIC_CC C compiler to be used.

KLIC_CC_OPTIONS
Additional option flags for the C compiler.

KLIC_LD Linker to be used.

KLIC_LD_OPTIONS
Additional option flags for the linker.

4.1.3 How KLIC Compiler Works

Understanding how KL1 programs are compiled and executed may help understanding the
usage of KLIC in further depth.

The system consists of the following three modules.

e KLIC compiler
e KLIC database manager
e KLIC runtime system

KL1 programs are compiled using the KLIC compiler into C programs. It also generates
files FILE.ext containing information on atoms and functors used in the program. The
information in .ext files for programs to be linked together is merged together later by the
database manager, into files atom.h, funct.h, atom.c, funct.c and predicates.c.

The object C program is then compiled by a C compiler, with headers provided by the
KLIC runtime system, atom.h and funct.h. The files atom.c, funct.c and predicates.c
are also compiled, and linked together with the runtime system (predicates.c is linked
only with debugging runtime).

Compilation, database management and linkage are governed by a driver program named
klic. This program klic plays a role similar to cc and make combined. cc controls the C
preprocessor, the C compiler kernel and the linker; k1ic controls the KL1-to-C compiler, the
C compiler, the KL.1 program database manager and the linker. make selectively executes
compilation only when needed by examining the file dates; k1ic works similarly.

4.2 Running Programs Compiled with KLIC

You can simply run the compiled excutable. If you compiled your program into the file
a.out, you simply give the file name ./a.out to the shell you are using.

The predicate main with no arguments in the module main will be the initial goal to be
executed (see Section 2.5 [Initial Goal|, page 7).

Chapter 4: Using KLIC 48

4.2.1 Runtime Switches for Programs Compiled with KLIC
The following options are available on running the compiled executable.

-h size Specifies initial heap size in words. As copying garbage collection is used,
memory size actually used for heap will be twice this size. The size can be
specified directly (such as 2097152) or with a postfix k or m (as 2048k or 2m)
to specify units of 2710 or 2720 words. The default heap size is determined by
the macro HEAPSIZE, which is 24k in the original distribution. The length of
one word is the same as the length of the type long int in C, that depends
on the hardware and the C compiler you use. The heap size will be increased
automatically according to options -H and -a.

-H size Specifies maximum heap size in words. Automatic heap expansion mechanism
will never try to expand the heap above the size specified by this option. The
default value is infinite.

-a ratio Specifies threashold active cell ratio as a floating point number. If the ratio of
the space occupied by active (non-garbage) cells in the heap space is above this
threshold, the heap size will be doubled in the next garbage collection, as far
as the size doesn’t exceed the maximum size specified by the -H option. The
default value is 0.5.

-g Specifies that time required for garbage collection is to be measured. As garbage
collection will not take long for small heap sizes, the measurement overhead can
be more than that. Thus, by default, garbage collection timing is disabled.

-s Specifies suspension statistics. After execution of the program, suspended pred-
icates and numbers of their suspensions are reported. This option is available
when the debugging version of the runtime library is linked, which is the default
setting (see Section 4.1.2 [Compiler Options], page 45).

-t Specifies to start execution with tracing (see Section 4.3 [Tracing Program Ex-
ecution], page 48). Tracing is only possible when the debugging version of the
runtime library is linked, which is the default setting. The non-debugging ver-
sion of the runtime library can be specified by compilation time options (see
Section 4.1.2 [Compiler Options]|, page 45).

When all the ready goals have been executed, the program will stop. If there remain
any goals awaiting for input data and if the program is linked with the debugging runtime
library, it will try to detect which goal is problematic and report such a goal. Otherwise,
if the linked library is a non-debugging version, only the number of such remaining goals is
reported.

4.3 Tracing Program Execution
KLIC provides a debugging tracer with spying (break point) feature.

4.3.1 Preparation for Traced Execution

To use the tracing feature, you have to link your program with the debugging version of
the runtime library. The debugging version is used by default, but when you give the -n
option to the compilation command klic, tracing will not be available.

Chapter 4: Using KLIC 49

If you already have compiled and linked the program with the -n option, you don’t have
to recompile the program from scratch; running the command klic again without the -n
option will only link the object with the debugging version of the runtime library, which
takes much shorter time.

To trace execution of a program, simply run your program with -t option (see Sec-
tion 4.2.1 [Runtime Switches for Programs Compiled with KLIC], page 48).

4.3.2 Trace Ports

Execution of KL1 programs proceeds as follows.
1. The initial goal main:main is put into a pool of goals to be executed.
2. One goal is taken from the goal pool (CALL).
3. The goal is matched against the program clauses.
4

. If any of the clauses matches the goal, the goal is reduced into subgoals and they are
put back to the goal pool (REDUCE).

If no clause matches the goal, then the whole computation will be aborted (FAIL).

ot

6. If values of goal arguments or their substructures are not defined and thus it is not
possible yet to decide whether some clauses will match the goal or not, the goal is put
into another goal pool awaiting for required values (SUSPEND).

7. If there still remain some goals in the goal pool, loop back to the step 2.

Execution of a goal can be traced on four of the above listed points, numbered 2, 4, 5
and 6. Such points of interest are called trace ports and referenced as CALL, REDUCE, FAIL
and SUSPEND ports, respectively.

Those who are accustomed to the four-port trace model of Prolog may wonder why
two other ports of Prolog, EXIT and REDO are missing. The REDO port does not exist
because KL1 programs do not backtrack. The EXIT port is not traced for two reasons.
First, keeping track of all the goal-subgoal hierarchy is much more costly for a concurrent
language such as KL1 than for sequential languages such as Prolog. Many different subtrees
of the hierarchy may run interleaving each other, because of the data-flow synchronization
feature. The other reason is that, KL1 programs are often written as a set of communicating
processes each defined as a goal calling the same predicate in a tail-recursive fashion. Such
processes (sometimes called perpetual processes) will almost never finish and detecting their
termination is not as meaningful as in Prolog.

4.3.3 Format of Trace Display

Below is our sample program for explanation here.

:— module main.
main :- nrev([1,2],X), builtin:print(X).

nrev([], R) :- R = [].
nrev([W|X], R) :- nrev(X, XR), append(XR, [W], R).

append([], Y, 2) :- Z =Y.
append([WIX], Y, WZ) :- WZ = [W|Z], append(X, Y, Z).

Chapter 4: Using KLIC 50

Listed below is output of a full trace of execution of the sample program.

[EY

CALL:main:main?
REDU:main:main :-
0:+nrev([1,2],_4)
1:+builtin:print(_4)7
CALL:main:nrev([1,2],_4)7
REDU:main:nrev([1,2],_4) :-
0:+nrev([2],_D)
1:+append(_D, [1],_4)7
CALL:main:nrev([2],_D)?
REDU:main:nrev([2],_D) :-
O:+nrev([],_18)
1:+append(_18,[2],_D)7?
CALL:main:nrev([],_18)7
REDU:main:nrev(([], []1)?
CALL:main:append([], [2],_D)?
REDU:main:append([], [2],[2])7
CALL:main:append([2],[1],_4)7
REDU:main:append([2], [1],[2|_1F]) :-
O:+append([], [1],_1F)7
CALL:main:append([], [1],_1F)?
REDU:main:append([], [1],[1]1)7?
3 CALL:builtin:print([2,1])7
[2,1]
3 REDU:builtin:print([2,1])7?

As this program does not make any suspensions nor failures, all the trace outputs here
are either at the call or the reduce port (marked as REDU).

O 00 00 U1 O NNOOO NP PO PEPNDDNDWND-

The first line of the above is the trace of the call port of the initial goal main:main.
1 CALL:main:main?
All the traced goals are given a unique identifier (an integer value) to distinguish them

among themselves. The number 1 in the first column here is the identifier of the initial
goal.

The initial goal matches the first clause defined in the program and thus reduced into
subgoals as defined in the program clause. This reduction is traced as follows.

1 REDU:main:main :-

2 0O:+nrev([1,2],_4)

3 1l:+builtin:print(_4)7
This shows that the original goal main:main with ID 1 has been reduced into two new goals,
main:nrev([1, 2], _4) and builtin:print(_4), with IDs 2 and 3 respectively.

The numbers 0 and 1 following the IDs 2 and 3 of the two new goals are sequential
numbers for the subgoals generated by the reduction. They are used by some tracer com-
mands to identify which subgoal to apply the command to. Unlike unique goal IDs that
have global meaning, these subgoal numbers are meaningful only at this specific port.

Next comes :, which means the subgoal is an ordinary subgoal of the parent goal. There
are other possibilities here. The character * means that the goal following it is also a

Chapter 4: Using KLIC 51

subgoal, but is given a priority different from the parent. The priority is displayed in a
pseudo-pragma format. The character ! means that the goal following it is not actually a
subgoal reduced from the parent goal, but is a goal awaiting for some variable value which
has just waken up as this reduction gave some concrete value to the variable. The character
similarly indicates a goal waken up, but with a priority different from the parent.

Then comes either + or -. + means that the subgoal will be traced if you simply continue
the execution, and - means it will not. This can be changed by giving some tracer commands
described below. In the example above, all of the subgoals have + as all goals are traced.

Then the module name, a colon character, and the predicate name of the subgoal are
displayed. The module name for predicates defined in the same module as the predicate of
the parent goal is omitted with the colon for brevity. In the above example, the subgoal
calling nrev (that is main) does not have its module name displayed, as it is the same as
the parent goal main:main.

Finally comes the argument list in parentheses separated by commas. The second ar-
gument of nrev and the only argument of print is _4, which corresponds to a variable
corresponding to X in the source program. As variables are newly allocated for all incarna-
tion of predicate clauses, and as two or more variables can be unified together, displaying
their original names in the source program is not meaningful. They are given unique names
such as _4.

Actually, this number 4 is related to the physical memory address of the variable. It will
thus change completely by garbage collections. However, as garbage collections are not so
frequent, the address information is still quite useful for debugging.

The trace output stops after displaying all the subgoals and a question mark. Here, you
can input one of the trace commands described below.

4.3.4 Trace Controlling Commands

Tracing can be controlled at each leashed port (see Section 4.3.6 [Controlling Trace Ports],
page 53). Tracing can be controlled for the traced goal as a whole or, at the reduce port,
for each of the newly created subgoal. The default of whether or not to trace goals of each
predicate can also be set.

4.3.4.1 Controlling Tracing of the Traced Goal

The following commands are available for controlling program execution.

Continue: c or simply RET
Continues stepping execution. Subgoal marked as - are not traced even in
stepping mode.

Leap: 1 Continues execution without tracing until a spy point is encountered. See
Section 4.3.5 [Spying], page 53, for details.

Skip: s Continues execution of the traced goal and all subgoals thereof without tracing
them at all. Even spy points are neglected.

Abort: a Aborts whole execution of the program.

These commands do not take any arguments.

Chapter 4: Using KLIC 52

4.3.4.2 Controlling Tracing of Newly Created Subgoals

Tracing of each subgoal (displayed as + or =) can be changed by the following commands.

Trace: + subgoal_number . . .
Switches on the trace of the specified subgoal(s). Multiple subgoal numbers
separated by spaces can be specified. If no subgoal numbers are given, all the
subgoals become traced.

No Trace: - subgoal_number . ..
Switches off the trace of the specified subgoal(s). Multiple subgoal numbers
separated by spaces can be specified. If no subgoal numbers are given, all the
subgoals become untraced.

Toggle Trace: subgoal_number . . .
Toggles the trace switch of the specified subgoal(s). Multiple subgoal numbers
separated by spaces can be specified.

4.3.4.3 Changing Default Trace of Predicates

By default, all the subgoals of a goal will have trace switch on (+) initially at the reduce
port. This default setting can be changed predicate by predicate using commands described
in this section, so that predicates you are not interested in will not be traced by default.

In what follows, command arguments <predicate> has one of the following format.

Module:Predicate/Arity
Specifies explicitly and exactly one predicate. For example, main:nrev/2.

Module:Predicate
Specifies all the predicates within a module with different arities.

Module: Specifies all the predicates defined in a module. Note that a colon is required
after the module name to distinguish it from a predicate name.

Predicate/Arity
Specifies the predicate defined in the same module as the predicate of the cur-
rently traced goal with the given name and arity.

Predicate
Specifies all the predicates defined in the same module as the predicate of the
currently traced goal with the given name.

Listed below are commands to change the default for given predicates.

No Trace Default: n Predicate . . .
Sets the default trace for the predicate(s) to be off. If no predicates are given
as argument, the predicate of the traced goal is considered to be specified.

Trace Default: t Predicate . . .
Sets the default trace for the predicate(s) to be on. If no predicates are given
as argument, the predicate of the traced goal is considered to be specified.

Chapter 4: Using KLIC 53

4.3.5 Spying

It is often the case that only some specific predicates are of interest for debugging. In such
cases, ports for such predicates can be specified as the spy points. You can let program
run without tracing until some spy point is encountered, using the leap (1) command. See
Section 4.3.4.1 [Controlling Tracing of the Traced Goal], page 51, for details.

Commands described in this section set or reset such spy points.
Spy: S Predicate . . .

Makes the predicate(s) spied. If no predicates are given as argument, the pred-
icate of the traced goal is spied.

No Spy: N Predicate . ..
Resets the spy point on the predicate(s). If no predicates are given as argument,
the spy point on the predicate of the traced goal is reset.

4.3.6 Controlling Trace Ports

The four trace ports can be selectively enabled and disabled. Disabled ports will not be
traced at all.

In addition, for each port, you can specify whether to stop and wait for command input.
Ports where execution stops and waits for commands are said to be leashed. On ports
enabled but not leashed, the trace output will be displayed but execution continues as if
the continue command (carriage return) was input immediately. For spied predicates, even
unleashed ports will be leashed.

Commands described in this section is for controlling such attributes of ports. They take
port names as their arguments, specified as one of the following ways.

Call: c, call
Reduce: r, redu, reduce
Suspend: s, susp, suspend
Fail: f, fail
All ports: a, all
Listed below are the commands for controlling ports.

Enable Port: E port . ..
Enables the specified port(s).

Disable Port: D port . ..
Disables the specified port(s).

Leash Port: L port . ..
Leashes the specified port(s).

Unleash Port: U port . ..
Unleashes the specified port(s).

Chapter 4: Using KLIC 54

4.3.7 Display Control Commands

Sometimes, full information of the traced goals is not desirable, as too much information is
only harmful for understanding the program behavior. Thus, commands in this section are
provided for controlling the amount of information displayed on trace ports.

The amount of display is controlled by a combination of the following options.

e By limiting display depth: Arguments of structures below depth limit are displayed in
the following abbreviated way.

f(a,b,c,d,e) — £(C..)
[a,b,c,d,e] — [..]

e By limiting display length: Argument lists of structures or character strings longer
than the length limit are displayed in the following abbreviated way.

f(a,b,c,d,e) — f(a,b,c,..)
[a,b,c,d,e] — [a,b,c,..]
"abcde" — "abc.."

e By specifying a subterm to be displayed: Only a part of the traced goal can be specified
for display.

The following commands can be used to control the options.

Set Print Depth: pd depth
Sets depth limit of displaying data structures to depth. With no argument,
prints the current depth limit value.

Set Print Length: pl length
Sets length limit of displaying data structures to length. With no argument,
prints the current length limit value.

Toggle Verbose Print: pv
Toggles verbose printing mode switch. In verbose printing mode, variables with
goals awaiting for its value are displayed with the information of the goal.

Set Subterm: =~ N

Reset Subterm:~
Sets the N-th subterm of the traced goal to be inspected. With 0 specified as
N, the subterm goes up one level. With N omitted, subterm inspection is reset.
For list structures, 1 means car and 2 means cdr.

With subterm specification, only the subterm of the traced goal is displayed
after the information of which subterm is inspected. An example follows.

10 CALL: foo:bar(f(a,g(..),[..1))7 "1

10 CALL: ~1 f(a,g(b,c),[d,el)? "2

10 CALL: "1°2 g(b,c)? "0

10 CALL: "1 f(a,g(b,c),[d,el)? ~3

10 CALL: ~1°3 [d,e]l? "2

10 CALL: ~1°372 [e]? ~

10 CALL: foo:bar(f(a,g(..),[..1))7
At reduce ports, subgoals created by the reduction are not displayed when
subterm display is specified; only the specified subterm of the parent goal is

Chapter 4: Using KLIC 55

displayed. With the current version, vector elements cannot be specified as
subterms.

The initial setting of depth and length limits are 3 and 7, respectively. Verbose print
mode is initially switched off.

4.3.8 Dumping Goals

It is desirable sometimes to dump all the goals in the system as a last resort. The following
commands do it.

Dump Ready Queue: Q
Displays all the goals in the ready queue (goal pool) with their priorities.

Dump Suspended (Waiting) Goals: W
Displays all the suspended goals in the system with their priorities.

4.3.9 Miscellaneous Commands

Status Query: =
Displays tracer status information, such as follows.
port: Call Susp Redu Fail
enabled: + + + +
leashed: + + + +
print terse; depth = 3; length =7

List Modules: 1m

Lists all the modules of the currently executed program.

List Predicates: 1p
Lists all the predicates and their default trace status of the currently executed
program.

Queue: Q Lists the contents of the ready queue (goal pool).

Help: 7 orh
Lists all the commands and their terse description available at the current port.

4.3.10 Detecting Perpetual Suspensions

When some goals are awaiting for instantiation of a variable that will never be instantiated
by any other goals, such goals will never proceed. This situation is called perpetual sus-
pension. Perpetual suspension is detected by the garbage collector of KLIC. Thus, during
program execution, garbage collections may find perpetual suspensions.

The system keeps track of the number of suspended goals. When there exist no goals
ready for running and there are suspended goals remaining, the system will try garbage
collection to detect perpetual suspensions.

Perpetual suspensions are reported as follows.

Il Perpetual Suspention Detected !!!
3 PSUS: Module:Predicate(Args...)?

The same command set as at a fail port is available here.

Chapter 4: Using KLIC 56

4.4 Installation
Installation of KLIC should be fairly easy.

Host-dependent and preference-based customizations are made by running a configura-
tion script provided with the distribution. Then make all should compile the whole system.
You can make sure that the system has been compiled without problems by running make
tests. Then you can install the system by make install.

4.4.1 Configuration

First thing to do in installation of KLIC is to configure the KLIC system depending on the
host computer system and your preference.

Go to the root directory of the distribution (referred to as ROOT in what follows). Then,
run the configuration script there by a command ./Configure. The script will search for
available software tools in your system and ask your preferences.

The default shell programs on some Unix systems based on BSD 4.2 do not understand
some of the constructs used in this configuration script. In such a case, obtain a modern
shell (such as GNU bash) and let it execute the script, as follows.

% bash Configure

If you have built the system before and rebuilding it in the same directory, it will ask
whether the same values you specified the last time should be used as default values.

The next question it asks (or the first, if it is the first time to build the system) is
whether to configure also for parallel implementations. If you want to install only the
sequential system, please answer no to the question. See relevant sections (see Section 4.5
[Distributed KLIC], page 57, and see Section 4.6 [Shared-Memory KLIC]|, page 59), for
further details of configuraion of parallel versions of the system.

The configuration script will make three files.

ROOT/Makefile
RO0OT/include/klic/config.h
ROOT/config.sh

The last one records the specified options for reconfiguration.

The configuration script asks about the parallelism used in the installation procedure.
You can specify non-zero parallelism here to speed up the procedure if you are installing your
system on a lightly loaded multiprocessor system. Do not use parallel execution features of
the make program.

4.4.2 Compiling the KLIC system

After configuring the system, typing in make all should compile the whole KLIC system,
including the KL1 to C compiler and the runtime libraries.

4.4.3 Testing the Compilation

After system compilation is finished, you are recommended to test whether the compilation
went without problems. To do that, type in make tests in the root directory of the distri-
bution (not in its subdirectory test). This will compile and run several KL1 test programs
and compares the output with the expected output.

Chapter 4: Using KLIC 57

4.4.4 Installing the Objects

After compilation, typing in make install will install the compiler, header files and runtime
libraries to directories specified on configuration (see Section 4.4.1 [Configuration], page 56).

4.4.5 Cleaning Up the Installation Directory

After installation has been done, typing in make distclean will delete all the files not
included in the distribution.

Normal users should not try make realclean, which will delete C program source files
generated from KL1. A working KL1 to C compiler will be needed to regenerate the C
program source files.

4.4.6 When Something Goes Wrong

When the installation procedure went wrong because of misconfiguration, you had better
start all over again from the configuration step (see Section 4.4.1 [Configuration], page 56).
The configuraion script will ask you whether to clean up the system for reconfiguration.
Please answer affirmative then.

Dependency rules written in Makefiles are inappropriate for using parallel make fea-
tures provided by some versions of make. The compilation procedure of KLIC relies on the
fact that contents of atom and functor databases are monotonically increasing. Dependen-
cies on them are intentionally omitted to avoid redundant recompilation. Use the parallel
compilation feature of the compiler driver klic that understands the mechanism instead.
Parallelism used during installation procedure is specified at the configuration step (see
Section 4.4.1 [Configuration], page 56).

If you think the problem is due to the distributed code, please report your problem to
the following address.

klic-bugs@icot.or.jp
Including information on your host system (hardware and operating system), your con-

figuration (contents of the file config.sh), and log of your installation would be of great
help in analysing your problems.

4.5 Distributed Memory Parallel Implementation of KLIC

A version of the distributed parallel implementation of KLIC is included in this KLIC dis-
tribution. The distributed implementation is based on PVM 3.3. Implementations on other
portable parallel processing libraries, such as MPI, and those on system-specific interprocess
communication libraries have also been done, but not yet integrated into this distribution.

Although it is based on PVM, the current version does not support heterogeneous config-
uration: It does not work with systems consisting of processors with multiple architectures
or running different operating systems. Currently, we don’t have any plans to support
heterogenous systems.

4.5.1 Installation of Distributed KLIC

To install the PVM version of the distributed KLIC, you have to first answer affirmatively
to the question from the configuration script asking whether to configure for parallel imple-
mentations and then affirmatively again to to the question asking whether to configure for

Chapter 4: Using KLIC 58

the distributed KLIC. Then it will ask for several questions on which directories the PVM
system is installed and which PVM library is to be used, if several of them are available.

The following will be asked.
e Root directory of the pvm system
e The keyword for architecture of the system (SUN4MP, for example)
e The name of the PVM library (pvm3, for example)
The current version has problems with PVM implementations which does not use daemon
processes. For example, on shared-memory multiprocessor Sparc systems running Solaris

2, the library pvm3 does not work. Use pvm3s that use sockets instead of shared-memory
for interprocess communication.

The rest of the installation procedure is the same as the procedure without the dis-
tributed KLIC system.

The distributed KLIC system runs exactly the same as its sequential version when the
option for distributed processing (-dp) is not specified on compilation.

4.5.2 Compiling Programs for Distributed KLIC

Compilation procedure is almost the same for the sequential version except that the follow-
ing option is available.

-dp Specifies compilation for the distributed KLIC system. Without this option,
the compiled object code will run only sequentially.

4.5.3 Running Programs of Distributed KLIC
4.5.3.1 Setting Up PVM

Before executing programs compiled for distributed execution, the PVM system has to be
running on your system. The following set up will be required.

e The following environment variables should be set properly.
PVM_ROOT The root directory of the PVM system installed on your system.
PVM_ARCH The keyword specifying the architecture of the system.

They should be the same as what you specified on installation of the KLIC system.

e The PVM demon should be running. The demon can be started by invoking the PVM
console, which is in $PVM_ROOT/1ib/$PVM_ARCH/pvm. It would be convenient to keep
a window for this console.

For other setting parameters and details of operation of PVM console, please consult its
own manual.

4.5.3.2 Runtime Options for Distributed KLIC

The following options are available when running programs in the distributed KLIC system,
in addition to those available for the sequential version.

-p N Specifies the number of workers (Unix processes) for running the program.

Chapter 4: Using KLIC 59

-e Specifies eager transfer mode. Normally, KLIC transfers data structures be-
tween processors on demands. Thus, nested data structures are transferred one
level at a time. In the eager transfer mode, nested structures are sent at a time
as far as they are already defined. This makes the execution more efficient for
some programs, but may degrade the performance for others.

-E Level Specifies how many level of nested data structures are to be transferred at each
communication.

-1 MicroSec
Specifies interval between interprocessor communication polling. Whether such
polling is needed and which value to be appropriate depend on host systems
and implementations of the physical communication layer. In most cases, its
default value of 10000 is appropriate.

-n Specifies printing out of some runtime statistics on interprocess communication.

-notimer Specifies not to use timer-driven communication polling. Whether such polling
is mandatory depends on implementation of the physical communication layer.

-relsp Specifies that relative path should be used for the executable file on spawning
worker tasks.

-S Specifies not to notify receiver processes of communication packets by sending
singals. On some implementations, this may speed up program execution by
eliminating signal sending overheads.

4.5.3.3 Known Bugs of Distributed KLIC

e Atoms and functors newly registered during program execution may not be handled
properly.

e Specification of spying (see Section 4.3.5 [Spying], page 53) is effective only within the
computation node where it is specified.

4.6 Shared-Memory Implementation of KLIC

A version of the shared-memory parallel implementation of KLIC is included in this KLIC
distribution. The implementation contains hardware, operating system, and C compiler
dependent parts. The version included is for Sparc-based systems running SunOS 5.3 and
Alpha-based systems running DEC OSF /1. Gnu CC should be used for their compilation.

4.6.1 Installation of Shared-Memory KLIC

To install the shared-memory parallel version of KLIC, you have to first answer affirmatively
to the question from the configuration script asking whether to configure shared-memory
parallel implementation.

The rest of the installation procedure is the same as the procedure without the shared-
memory KLIC system.

The shared-memory KLIC system runs exactly the same as its sequential version when
the option for shared-memory parallel processing (-shm) is not specified on compilation.

Chapter 4: Using KLIC 60

4.6.2 Compiling Programs for Shared-Memory KLIC

Compilation procedure is almost the same for the sequential version except that the follow-
ing option is available.

-shm Specifies compilation for the shared-memory KLIC system. Without this op-
tion, the compiled object code will run only sequentially.

4.6.3 Running Programs of Shared-Memory KLIC
4.6.3.1 Runtime Options for Shared-MemoryKLIC

The following options are available when running programs in the shared-memory KLIC
system, in addition to those available for the sequential version.

-p N Specifies the number of workers (Unix processes) for running the program.
-D Reports process numbers of children workers. Maybe useful for lower level
debugging.

-S Size Specifies the size of the shared heap. In the current implementation, shared
heap is allocated at the initiation and will never be expanded.

4.6.3.2 Known Bugs of Shared-Memory KLIC

e The tracer may not work correctly.

Data Type Index

floating point number
functor

I

Integero

11T =
MOdULE. ..ottt e

P

predicate........ il

S

string

v

vector

61

62

Predicate, Method and Message Index

$

$:=onbuiltin..........., 21
$<onbuiltin...........oooiiiiiiiiiii, 23
$=:=onbuiltin............. ... 22
$=<onbuiltin................................ 23
$=\=onbuiltin................... 23
$>onbuiltin.............. i 22
$>=onbuiltin......... 22
c=onbuiltin........ .. 19
<

<onbuiltin......... ...t 20
=onbuiltin........ ... i 15
=..on functor_table............cciiiii.. 24
=:=onbuiltin............ ... i, 20
=<onbuiltin.....oiiiiiiii 20
=\=onbuiltin............ 20
>

Sonbuiltin.........ooo i 20
>S=onbuiltin. ... 20

Q@

@<onbuiltin.......... ..o 16
@=<onbuiltin............., 16
@ onbuiltin............iiiiiiiii i 16
@>=onbuiltin.........cvviiiiiiiiiniinn., 16

\

\=onbuiltin.............coiiiiiiiiiii 16

A

accept on bound socket 34
accessonunix stream................... ..., 35
acosonfloatoiiiiiiiiL 22
add on float ... 22
addon timer il 43
addop on Prolog-like I/0..................... 40
append_open on klicio stream................ 39
append_open on unix stream................... 33
apply on predicate 32
argonbuiltin.................. ... 24
AYZC ON UNIX & tvvteenns 36
argv On Unix ...l 36
arity on predicatel 32
asinon floatoooiiiiiiii i 22
atanon floatl 22
atomon builtin...................o 18
atom_number on atom_table 18
atomicon builtin............... L 17

B

bind on unix stream..................., 34

C

call on predicate.......................... ... 32
cdonunix stream............ooieiiiiiiaann.. 34
ceilonfloatcooiiiiiiiiiinnn... 22
chmod on unix stream................ ..., 35
compare on builtin........................... 15
compare on timer.............l 43
connect on unix stream....................... 34
coson floatoiiiiiiiii 22
cosnon floatiiiiiiiiiiii.. 22
current_node on builtin...................... 16
current_priority on builtin................. 16

D

divideon float..........coviiiiiiniinennn.n. 22

E

element on string.......................... 3, 30
element On VveCtoOr.......coiviiinininnnnn 28
element_size on string....................... 30
equalonfloat............... il 23
exit on unixXovi e 36

exponfloatl 22

Predicate, Method and Message Index

F

fcloseon C-1like I/0...... ... 37
fclose on Prolog-like I/0.................... 39
feof on C-1ike I/0............coiiiiiiinn... 37
feof on Prolog-like I/0............ccuvn... 39
fflushon C-like I/0.......coviriieneinnnnn... 38
fflush on Prolog-like I/0.................... 41
float on builtin..............o ... 21
floatonfloat............ooiiiiiiiii... 21
flooronfloat...........cooiiiiiiiiiii.t 22
fork on unix stream........................... 36
fork_with_pipes on unix stream.............. 36
fread on C-like I/0..........ooiin... 38
fread on Prolog-like I/0.............c..o... 40
fseek on C-1like I/0......oviuiiiinninnnannn. 37
fseek on Prolog-like I/0...............ounn. 39
ftell on C-1like I/0.....oouvuiiiinnniennnnnn. 37
ftell on Prolog-like I/0..............cou... 39
functor on builtinot 24
furite on C-1ike I/0...... ... 38
fwrite on Prolog-like I/0.................... 41

G

gc on system_control 43
get_atom_name on atom_table................. 18
get_atom_string on atom_table............... 18
get_time_of_day on timer..................... 43
getcon C-like I/0.........oovvviiniiniinnn.. 38
getc on Prolog-like I/0...................... 40
getenv on unix stream............... 36
gett on Prolog-like I/0...................... 40
getwt on Prolog-like I/0..................... 40
greater_than on float........................ 23

H

hashonbuiltin.............. iiia... 16

I

instantiate_afteron timer.................. 43
instantiate_aton timer...................... 43
instantiate_every on timer.................. 44
integer on builtin.............. 19
intern on atom_table 18

J

joinonstring........... ool 31
joinonvector............... ...l 28

K

killonunix stream..............couvuenenn... 36
klicioonklicio.........coviiviiiinienon... 39

63
L
less_thanon float 23
less_thanonstring.................coouun. 30
linecount on C-1like I/0........ 38
linecount on Prolog-like I/0................ 40
listonbuiltin............ ... i, 24
logon floatcoviiniiiiiiiiia 22
M
make_atom on atom_table...................... 18
mktemp on unix stream........................ 35
module onmodule..........ooiiiiiiiiiii, 31
module on predicate 32
multiply on float..................... 22
N
name onmodule....... ... i il 31
name on predicate............. ...l 32
newon float ... 21
NEeW ON METEE ..o tttee e it aiiee e 26
newonmodule, 31
new on predicate.............l 32
new on random_NUMDETS ovvvrneneenennnnnnn. 44
newonstring............. ...l 29
NeW ON VECEOT ... vttt 27
new_functor on builtin............... 24
new_string on builtin........................ 29
new_vector on builtin........................ 27
nl on Prolog-like I/0........................ 41
not_equal on float 23
not_greater_than on float 23
not_less_thanon float....................... 23
not_less_thanon string...................... 30
Number on C-like I/0........ocuiieiiinnnnn... 38
Number on Prolog-like I/0...........ccouuun.. 41
P
postmortem on system_control................ 42
powon floatl 22
predicate on predicate................ 32
putcon C-1like I/0...............ccooona... 4, 38
putc on Prolog-like I/0.........cccvuuuuen... 41
putenv on unix stream........................ 36
putt on Prolog-like I/0.................o.... 40
puttq on Prolog-like I/0.............ccouu... 40
putwt on Prolog-like I/0..................... 40
putwtq on Prolog-like I/0.................... 40
R
read_open on klicio stream................... 39
read_open on unix stream..................... 33

rmop on Prolog-like I/0..........c..cuven... 40

Predicate, Method and Message Index

S

search_character on builtin................. 31
search_character on string 31
set_element on string................. 30
set_element onvector 28
set_string_element on builtin............... 30
set_vector_element on builtin............... 28
setarg on builtin............ oL 24
signal_stream on unix stream................ 35
sinon floatt 22
sinhon floatoiiiiiniiiniinn... 22
sizeonstring....................l 30
SiZe ON VeCtOr ...ttt 27
splitonstring........... il 30
splitonvector..............oooiiiiiiiiii, 28
sqrton float i 22
stderr on klicio stream...................... 39
stderr on unix stream 33
stdinon kliciostream....................... 39
stdinon unix stream.......................... 33
stdout on kliciostream...................... 39
stdout onunix stream........................ 33
string on builtin.......... ool 30
stringon string............l 30
string_element on builtin................. 3, 30
string_less_than on builtin................. 30
string_not_less_than on builtin............ 30
subon timer 43
subtracton float...................ouiunn.... 22
sync on C-like I/0.......... ..o .. 38
sync on Prolog-like I/0...................... 39
system on unix stream........................ 36

64
T
tanon float i 22
tanhon floatcooviiiiiineiniinenn.. 22
times ON UNiX ...ttt 37
U
umask on unix stream.................... oL, 35
unbound on builtin 16
ungetc on C-like I/0...........oovuiiiinnn... 38
ungetc on Prolog-like I/0.................... 40
UNIX ON UNIX ..ot i 32
unlink on unix stream........................ 35
unwrap on variable 42
update_open on klicio stream................ 39
update_open on unix stream................... 33
A%
vectoron builtin............................. 27
VeCtOor ON VeCtOTr ... oottt it ie e 27
vector_element on builtin................... 28
W
waitonbuiltin............ i, 15
wrap on variable............ ..o, 42
write_open on klicio stream................. 39

write_open on unix stream.................... 33

Module Index

A

atom_table........... .. 18
functor_table 23

G

generic (pseudomodule) 7

65

K

KLACi0. it 39

S

system_control ..., 42
UNIX . oot 32

Concept Index

A

aborting i i 36
accumulator L o 11
alternatively o i 9
argument mode 4
argument pair............ .. oo 9
argument pair nameoooia 10
arithmetics on floating points 21
arithmetics on integers......................... 19
ATTAY « v 27
asynchronous I/O....................... ... 34
atom 17
atomicdata........... . .o 17

body.....oooi 5
body method i 8
break point 53
bug report 4

CAT « ettt et et e 24
CAT ettt 24
ceiling 22
character code i il 19
character input it 38
character output............ ... oL, 38
character string 28
chdir ... 34
ClasS . v 3
clause 5,6
clause preference............ ... o il 9
closingafile................ it 37
command line arguments....................... 36
[€70)11 o129 110 & NN 15
comparison of strings 30
comparison on floating points.................. 22
comparison on integers.................... ... 20
compilation........... ... i 45
concurrent logic programming language.......... 5
configurationl 56, 57, 59
conscell 24
converting integer to floating point............. 21
copyright 1
(70153 54 T N 21
creating generic objects il 8
creation of floating point numbers.............. 21
creation of vectors ool 27
C o 12, 37

66

D

debugging 48
decrementc..iiiiiii e 11
depth limit of trace display..................... 54
dictionary order........... ... ittt 30
difference list ... 11
directory......... ... i 34
distributed KLICot 57
distribution.......... ... i 1
Adump . ..o 55

endoffile.............oo 37
environment varialble 36
eXECULION . .ot 5
exit code. 36
expanded pair ... 10
exponential 21

file. .o 34
floating point arithmetics 21
floating point comparison 22
floating point conversion from an integer 21
floating point notation 21
floating point number........... L 20
flooring ... 22
flushing changes 37
forking processes...........cooeiiiiiiini... 36
functor ... 23
functor notation i 23

G

garbage collection.............. ol 42
generic method oL 3,7
generic object i 7
GHC . 5
oAl . 7
goal pool ... 55
guard. ... 5
guard method........... i 8

H

hashing........ i 15
header file 12
higher order i i 31

hyperbolic function 21

Concept Index

I

T/ O 37
ICOT Free Software.............ccoiiiiiiiin. 1
INCTEMENt . .ot i i 11
initial goal 7
inline.......oiii i 12
INPub. ..o 37, 38
input argument oo 4
installation o i 56
Integer..........oo i 19
integer arithmetics.......................... ... 19
integer comparisSon.............coovviiieeannn. 20
integer to floating point conversion............. 21
interprocess communication 4
INterrupt. ... 35
interval timer i, 43

length limit of trace display 54
lnkage. ..o 45
Linux.....ooooiiiiiii i 34
LSt oo 24
logarithm 21

mailing list........ 4
AN . ¢ttt 7
METGING . oottt et e e 25
INESSAZE .« v v v vttt ettt 4
message sending ... 11
message Stream, 25
method........... 3,7
module ... 6

N

negation i 6
new release 4
mil. 24
notation of lists. ... 25

object creation......... oL 8
[0 013 4 N 33, 39
operating system................oiiiiiiiii.n. 32
operations on functors 23
operator precedence grammar 39
otherwise ... 6
output..... ... 37

67
P
paired argument............ .. il 9, 10
parallel processing..............., 57, 59
POTt . e 49, 53
postmortem processing......................... 42
predicate ... 3,6
preference of clauses ...l 9
principal functor il 16, 23
PrioTity. ..o 8, 16
process forking......... i 36
93 07 =1 o's LA 31
PVM . 56, 57
R
random number........ o oo 44
reading in.......... ... i i 38
ready qUEUE.oouuiiutiii i 55
real number....... 20
record structure............ ..., 23
rounding. . ..ot 22
TUNNING . ..o 47
S
SEEK L 37
shared-memory KLIC........... 59
shell command............ o 36
signal. ... 35
signal sending............. oL 36
SINE . vt 21
Sy« et 53
SQUATE TOOt « .ttt et e 22
standard input oo 33, 39
standard order............. ... it 15
standard output............. ... ool 33, 39
SEAIo. .. 33
stream.......... ... 25
string. ... 28
string input.......... 38
string output 38
structure o 23
SUbtErm . ..o 54
suspended goal......... il 55
symbol 17
symbolic atom oL 17
synchronization............ o L 37
T
tangent ... 21
time . ..o 43
timer 43
trace display 54
Tracing. ..o 48
trigonometric function, 21

Concept Index

U

unbound......... 16
unification i 1
Unix interface.............. 3
unlinko 35
UPAAte. .. e et e 11

A%

wrapped term......... . . oo

writing out

68

