ICOT Technical Report TR-208

Guarded Horn Clauses: A Parallel Logic Programming
Language with the Concept of a Guard

Kazunori Ueda

Institute for New Generation Computer Technology
4-28, Mita 1-Chome, Minato-ku, Tokyo 108 Japan

October 1986
Revised: July 1987*

Abstract. This paper defines a parallel logic programming language
called Guarded Horn Clauses (GHC), introducing the ideas that went into
the design of the language. It also points out that GHC can be viewed
as a process description language in which input and output can be de-
scribed naturally by treating the outside world as a process. Relationship
between GHC and logic programming in the original, strict sense is also
discussed. Some familiarity with GHC and/or other parallel logic pro-
gramming languages will be helpful in reading this paper, though it is
not indispensable.

1. Introduction

GHC is a parallel programming language devised from examination of the
basic framework and the practice of logic programming. The most important
characteristic is the simplicity of the language rules and the expressive power
obtained from them. Guard is the only syntactic construct added to the framework
of logic programming. Although its semantics causes loss of completeness which
would be important for GHC as a theorem prover, it provides the language with
a control mechanism that is a prerequisite for a general programming language.

The main purpose of this paper is to describe the language GHC informally
but rigorously, but we will also try to introduce the ideas that went into the design
of the language for better understanding. The original document of GHC is [7], and
the most detailed description of the language is found in [9]. Ueda [10] introduces
GHC through program examples.

2. Design Goals of GHC

GHC was designed as a general parallel programming language based on Horn-
clause logic. By a general parallel programming language we mean a language

* To appear in Programming of Future Generation Computers, M. Nivat and K. Fuchi (eds.),
North-Holland, Amsterdam, 1987.

-1 -

in which we can describe processes and interactions among them. The important
point is that we must be able to handle interacting processes; if we have only to deal
with mutually independent processes, the subtle problems of parallel programming
will not appear, but the language will be less expressive.

The above requirement means that we need some notion of control, which
is in general used for introducing reasonable order among primitive operations
constituting a computation. The order should of course be partial for a paral-
lel programming language. GHC introduced partial order to (atomic pieces of)
unification, a primitive operation in logic programming.

Recalling that a sequential algorithm specifies a total order on primitive op-
erations, a parallel algorithm can be defined as specifying a partial order on them,
and this is just what we intend to express in GHC. In this sense, GHC could be
viewed as a realization of Kowalski’s thesis “algorithm = logic + control” [4].

There may be various ways to achieve our purposes and to obtain a parallel
programming language. Concurrent Prolog [6], PARLOG [2] and GHC share the
above design goals in principle, and they all have guard as a syntactic construct.
The unique feature of GHC is that it uses guard as the only syntactic construct,
as we will describe below.

3. Syntax and Semantics

3.1. Syntax

A GHC program is a set of guarded Horn clauses of the following form:
H :-G,...,G,|By, ..., B,. (m >0, n>0).

where H, G;’s, and B;’s are atomic formulas. H is called a clause head, the G;’s are
called guard goals, and the B;’s are called body goals. The connective *
‘is implied by’, and ¢,” means conjunction. The only difference from an ordinary
Horn clause is that one of the conjunctive operators is replaced by a commitment
operator ‘|’. The part of a clause before ‘|’ is called a guard, and the part after ‘|’
is called a body. Note that the clause head is included in the guard. Declaratively,
the commitment operator denotes conjunction, and the above guarded Horn clause

is read as “H is implied by G4,...,G,, and By,...,B,”.

:=’ means

We use a goal clause of the following form to start a GHC program:
- Bl,---,Bn- (TL>0)
This is just an ordinary Horn clause used in the original framework.

We follow the syntactic convention of DEC-10 Prolog [1] that begins constant,
function and predicate symbols by lowercase letters or symbols and variables by
uppercase letters.

(=) [

One binary predicate, ‘=", is predefined by the language. The predicate ‘=’ is
used for unifying two terms. This predicate is considered as predefined, since it
cannot be defined in the language. However, the reason for this is purely notational
and we need not regard it as the second additional construct, as will be explained
in Section 3.2.

The nullary predicate true is used for denoting an empty set of guard or body
goals explicitly in a program. The use of true is for notational convenience and
is not essential at all. Actually it could be defined as follows:

true :- 1=1 | 1=1.

3.2. Semantics

The semantics of GHC is described in two stages: (i) parallel input resolution
as a basis, and (ii) a restriction to a single environment imposed on it. The
second stage describes the differences between the original framework and GHC
by introducing the semantics of the distinction between guard and body. The first
stage, parallel input resolution, is not specific to GHC, so we first describe it for
a set of ordinary Horn clauses. The description will then be slightly modified for
use as the basis of GHC.

The resolution strategy normally used as the basic framework of logic pro-
gramming is SLD-resolution [5]. However, it is too specific as a framework of
parallel execution of logic programs and this is why we begin with defining paral-
lel input resolution.

We first consider a proof tree constructed from a program P and a goal clause

C defined as follows:

(1) The root represents the goal clause C, and has an outgoing arc for each body
goal.

(2) Each non-root node represents a program clause in P, and has one incoming
arc from its parent node and an outgoing arc for each body goal.

Henceforth we may identify a node with the clause it represents. Note that the
leaves of a tree represent unit clauses.

Each arc A of a proof tree is considered as representing an equation G = H,
where G is the body goal (of the parent node) corresponding to A and H is the
head of the child node C. The goal G is called the caller of C, and G is said to
call C.

The set of all the arcs in a proof tree defines a unification problem. The
answer substitution of a proof tree is the most general unifier of the unification
problem. A proof tree may not have an answer substitution; a proof tree that has

-3 -

an answer substitution is called a non-ordered refutation. Note that there may
be many possible proof trees constructed from a given program and a goal clause,
since any program clause can be a child of a given parent node.

Our purpose is to obtain non-ordered refutations and their answer substitu-
tions for a given program and a goal clause, which is achieved by performing the
following two tasks:

(1) production of possible proof trees, and
(2) solution of the unification problem defined by each proof tree.

The proof procedure may exploit parallelism in the above tasks. Firstly, it may
exploit parallelism in constructing a non-ordered refutation: A proof tree may
be constructed in parallel, the associated unification problem may be solved in
parallel, and these two tasks may be performed in parallel. This proof method is
called parallel input resolution, and the parallelism of this kind is often referred to
as AND-parallelism. The primitive operation in the construction of a proof tree
is to provide a body goal with a renamed program clause, leaving unification of
the goal and the clause head as a separate operation. The primitive operations
in solving a unification problem are those in the unification algorithm employed.
We do not specify a particular unification algorithm, but only request that the
algorithm be correct, that is, it calculates the most general unifier if and only if
the original unification problem has it.

Secondly, the proof procedure may exploit parallelism in getting different non-
ordered refutations. Parallelism of this kind is often referred to as OR-parallelism.

Amending the above framework for GHC requires the following modification.
Firstly, each non-root node representing a guarded Horn clause must have an
outgoing arc for each guard goal as well as for each body goal. Secondly, the
predefined predicate ‘=’ is treated as if there were a unit clause “X = X.” whose
contents are semantically divided into two parts: The predicate name ‘=" and its
arity are treated like the entities in a guard, and the identity of the two arguments
are treated like the entities in a body.

Now we give the semantics of the distinction between guard and body by
restricting the above parallel input resolution.

In the above framework, different proof trees constructed from a given pro-
gram and a goal clause are treated independently. A variable in the goal clause may
be bound to different values in different proof trees, and this is why OR-parallel
Prolog requires implementation of multiple binding environments. Backtracking
in sequential Prolog is also regarded as a sequential implementation of multiple
environments.

On the other hand, GHC treats all proof trees in a single environment rather
than independently. For this purpose, it disallows unification performed in two

— 4 —

proof trees to instantiate corresponding variables to different values, where the
correspondence of entities in different proof trees is defined as follows. Given two
proof trees T and T5 constructed from a given program and a goal clause, we say

(i) that a non-root node in T} and a non-root node in T correspond if they
represent identical program clauses (up to renaming) and their parent nodes
correspond, and

(ii) that the roots of T} and Ty correspond.

Further we say that two variables correspond if they appear in the same position of
the (identical) program clauses represented by corresponding nodes. If correspond-
ing variables are never instantiated differently, it is unnecessary for corresponding
nodes to represent independent program clauses. Therefore, in the following we
assume that corresponding nodes share the program clause they represent.

The purpose of the above single environment restriction is to let any substitu-
tion be common and global throughout the execution of a program and to let it be
determinate and unnecessary to revoke. This restriction forces GHC to abandon
completeness as a proof procedure. However, disallowing nondeterminate bind-
ings greatly simplifies a binding-oriented view of the execution of logic programs
discussed in detail in Section 4.

The simplest way to achieve the single environment restriction is to restrict
resolution so that no bindings may be generated, but it will severely limit the
expressive power of the language. To obey the restriction while letting the language
be still useful, we impose the following rules of suspension:

e Rules of Suspension

(a) Unification invoked directly or indirectly in the guard of a clause C called
by a goal G (i.e., unification of G with the head of C' and any unification
invoked by solving the guard goals of C') cannot instantiate the goal G.

(b) Unification invoked directly or indirectly in the body of a clause C' called
by a goal G cannot instantiate the guard of C' or G until C is selected
for commitment (see below).

A piece of unification that can succeed only by causing such instantiation is
suspended until it can succeed without causing such instantiation (end of the
rules of suspension).

Here, we assume that any substitution (legally) generated by a piece of unification
is applied to the proof trees, instantiating the clauses represented by their nodes.
This means that the equations defined by the proof trees are always getting in-

stantiated.
For the clause defining the predicate ‘=’, the above rules are understood as

follows: Unification between the clause “X = X.” and its caller G (Which does not

-5

necessarily call the predicate ‘=") cannot instantiate G' until this clause is selected
for commitment.

A suspended piece of unification may (but cannot always) be resumed when
some other unification goal running in parallel has instantiated the variable that
caused suspension to some term. For example, if the guard of C tries to unify X
appearing in G with a, the unification suspends due to Rule (a) above. It can be
resumed and succeeds when some other goal instantiates X to a. If the guard of C
tries to unify X and Y both appearing in GG, then the unification can be resumed
and succeeds either when X and Y are unified together and become identical or
when both X and Y are bound to an identical non-variable term.

Another rule we must have is the rule of commitment:
e Rule of Commitment

When some clause C called by a goal G succeeds in solving (see below) its
guard, the clause C tries to be selected for subsequent execution (i.e., proof) of
G. To be selected, C' must first confirm that no other clauses in the program
have been selected for G. If confirmed, C is selected indivisibly, and the
execution of G is said to be committed to the clause C (end of the rule of
commitment).

For the clause defining the predicate ‘=’, the above rule is understood as
follows: When it is confirmed that a goal G calls the binary predicate ‘=’, the
clause “X = X.” tries to be selected for establishing the identity of the arguments
by unifying them.

We say that a part P of a program clause C' called by a goal G or of a goal
clause C succeeds (or is solved) if the proof procedure succeeds in constructing
the part of a proof tree consisting of

(i) the arcs corresponding to the body goals in P,
(ii) the subtrees having the child nodes of those arcs as their roots, and

(iii) if C is a program clause and P contains the head H of C, the arc corresponding
to the unification of G with H

such that

(a) the set of the arcs in it has a most general unifier (under the rule of suspension)
and

(b) the nodes in it all correspond to selected clauses.

As a special case, we say that a goal clause succeeds if the proof procedure succeeds
in constructing a non-ordered refutation whose non-root nodes all correspond to
selected clauses. We do not say that a goal clause succeeds even if the proof

— 6 —

procedure constructs a non-ordered refutation with a non-root node representing
a non-selected clause: We are interested in a proof in which only selected clauses
are involved. The above definition does not introduce the notion of failure. We
could introduce it, but it is not necessary for ordinary applications.

It must be stressed that under the rules stated above, anything can be done in
parallel. To put it precisely, parallel execution is the basic computation strategy
in GHC, whether performed by a parallel computer or simulated by a sequential
computer. Conjunctive goals (i.e., goals in the same proof tree) are solved in
parallel; candidate clauses called by a goal (that belong to different proof trees)
compete in parallel for commitment; unification of a goal with the head of a
candidate clause is done in parallel, both internally and with the execution of
guard goals.

However, it must be even more stressed that we can also execute a set of
operations in a predetermined order as long as it does not affect the result. There
are two possible ways in which pre-ordering of operations makes difference. One is
that sequential execution may suspend forever on a piece of unification which par-
allel execution would sometime make succeed. For example, consider the following
program

p(ok) :- true | true. (3-1)
(Z) :- true | Z=ok. 3-2
a

and a goal clause “:- p(X),q(X).”; and suppose we solve the goal clause sequen-
tially from left to right, moving to the next goal when and only when the previous
goal has succeeded. Then the goal p(X) will suspend (because the the head p(ok)
of Clause (3-1) would otherwise instantiate it) and the execution will result in
deadlock. However, if we solve p(X) and q(X) in parallel, sometime the goal q(X)
will select Clause (3—2). Then the body goal of Clause (3-2) will bind the shared
variable X to ok, and the goal p(X), now instantiated to p(ok), will select Clause
(3-1). This means that sequential execution of conjunctive goals is not a legal
execution strategy in general.

The second possible difference is that sequential execution may be trapped by
infinite computation when parallel execution could avoid it. For example, suppose
we solve candidate clauses for a goal G sequentially, moving to the next clause when
the previous clause turns out to be unselectable forever or when it has to wait for
instantiation of G. Then, if the guard of some clause falls into infinite computation
(i.e., construction of an infinite proof tree) trying to be solved, subsequent clauses
whose guards could be solved and selected will not be executed forever.

In a word, serialization of operations is allowed when and only when it does not
make an execution trapped by unresumable suspension or infinite computation.
For example, we can exploit sequentiality between the guard and the body of
a clause, and between the head and the guard goals of a clause. Serialization

-7 -

may be useful for avoiding scheduling overhead of pseudo-parallel execution and
computation that may not contribute to the success of a top-level goal clause.

The above rules of suspension and commitment guarantee that among pro-
gram clauses called by a goal G, only one that is selected for commitment can
instantiate G (by executing its body goals). Thus only one binding environment
need be managed. The guard of a clause is entirely passive and never instantiates
G. The guard of a clause suspends until G gets enough binding information to
select that clause, and then the body generates bindings back to the caller. This
suspension mechanism is very important because due to the single environment
restriction, commitment can never be revoked and hence must be done deliberately
based on sufficient information.

Unlike an ordinary Horn clause, a guarded Horn clause explicitly specifies
the direction of computation. For instance, a program for concatenating two lists
cannot be used for dividing a list into two. If a program is used against its intended
direction, it simply suspends.

4. GHC as a Process Description Language

It is said that the main purpose of a logic programming system is to com-
pute answer substitutions for a given goal [5], but in the original framework, its
success or failure should be important as well. In GHC, we are more interested in
bindings generated by computation. Most programs are defined so that they will
successfully solve a given goal, and a program that does not succeed for a ‘correct’
goal (due to deadlock or unsuccessful unification) is usually erroneous.

Therefore, it is quite natural to view a GHC program in terms of binding
information and the agents that observe and generate it. Consider the following
program:

gen(N,Ns) :- true | Ns=[N|Ns1], N1:=N+1, gen(N1,Ns1). (4-1)

This clause defines an eager generator of a sequence of integers. Once we generate a
goal gen(1,Xs), Xs will be gradually instantiated and will approximate an infinite
list of integers beginning with 1. This goal generates bindings autonomously, since
the guard of Clause (4-1) called by the top-level and recursive goals can always
succeed immediately. However, if Clause (4-1) is rewritten as follows, the behavior
of the goal will be quite different:

gen(N, [M|Ns1]) :- true | M=N, N1:=N+1, gen(N1,Nsl). (4-2)

Now the goal gen(1,Xs) will suspend as long as no other goal instantiates Xs,
since unifying Xs with [M|Ns1] in the guard would instantiate Xs and violate the
rules of suspension. However, if some conjunctive goal (say p) has instantiated Xs
to [X1]Xs1], then gen(1,Xs), which has now become gen(1, [X1]Xs1]), selects

-8 —

Clause (4-2) and binds X1 to 1. If p has further instantiated Xs1 to [X2|Xs2],
gen(1,Xs) will bind X2 to 2. Thus, the goal gen(1,Xs) cannot create a list
structure by itself, but it fills a given list structure with successive integers. It
can be called a demand-driven (lazy) generator of a sequence of integers, where
instantiating (a sublist of) Xs to the structure [Car|Cdr] can be regarded as a
demand. Note that Clauses (4-1) and (4-2) are equivalent as logical formulae; the
difference comes from whether the second argument of the caller is unified with
the list structure in the guard or in the body.

In general, a goal can be viewed as a process that observes input bindings
and generates output bindings according to them. Observation and generation
of bindings are the basis of computation and communication in our model. The
behavior of a process is defined by program clauses using other processes, possibly
recursively. A program clause can be viewed as a process rewrite rule. Consider
Clause (4-2). Tts guard specifies the conditions for commitment: The predicate
must be ‘gen’ with two arguments and the second argument must have the list
structure [Car|Cdr]. If both conditions are satisfied, this clause can be selected;
and if selected, the original goal is replaced by the three goals M=N, N1:=N+1, and
gen(N1,Ns1). The goal M=N determines the value of the first element of the list,
N1:=N+1 computes the value for the next element, and gen(N1,Ns1) generates the
sublist Ns1 in a similar way on demand. Strictly speaking, the commitment does
not mean that the original goal disappears from a proof tree; the point is that its
function is realized by the three subgoals.

In the GHC framework, interprocess communication is done using shared
variables, but it is quite different from shared-variable communication in proce-
dural languages. The difference comes from the single-assignment (as opposed to
destructive assignment) property of logical variables, which contributes much to
conceptual simplicity. Since we have a natural notion of an undefined value, we
can realize synchronization by letting a process wait until necessary values are
known. No other means need be provided for synchronization. A shared variable
between recursive processes is usually instantiated to a list of data or messages
gradually as computation proceeds, and we call such a shared variable a stream.
That a sequence of data or messages is just a data structure also contributes to the
simplicity. In most procedural languages, sequences of communication messages
are implicit and must be manipulated using a special set of operations.

One might feel it inconvenient that many-to-one communication requires ex-
plicit stream merging defined by the following predicate:

merge([A|Xs],Ys, Zs) :- true Zs=[A|Zs1], merge(Xs,Ys,Zs1).

|
merge (Xs, [AlYs],Zs) :- true | Zs=[A|Zs1], merge(Xs,YVs,Zsl).
merge ([], Ys, Zs) :- true | Zs=YVs.
merge (Xs, 1, Zs) :- true | Zs=Xs.

Many-to-one communication serializes messages from two or more sources, which

-9 —

should involve arbitration on the arrival order of the messages. This means that
any programming language that allows implicit many-to-one communication does
arbitration implicitly. However, since the concept of arbitration does not exist in
the original framework of logic programming, we had to include it in the form of
the commitment operator.

A process can also be viewed as performing data-driven computation in the
sense that it generates output data when necessary input data are available. For
example, the goal N1:=N+1 does nothing until N is instantiated, and binds N1 to
6 when N is bound to 5. Although the predicate ‘:=" will be defined as a system
predicate for reasons of efficiency and convenience, exactly the same behavior can
be obtained using the following clause:

N:=5+1 :- true | N=6.

GHC has a unique feature of uniformity and flexibility as a dataflow lan-
guage. It naturally contains the notion of non-strict data structures. It handles
data-driven and demand-driven computation in the same framework. It separates
static program structures and possibly dynamic process structures. It allows us
to define mutable objects (such as arrays) as processes completely in a declarative
framework.

Finally, we note that the features of GHC listed in this section apply also
to other parallel logic programming languages including PARLOG, Concurrent
Prolog, and Oc [3].

5. Interaction with the Outside World

We pointed out in Section 4 that the main purpose of GHC programs is
to compute binding information. However, observing an answer substitution re-
turned by the system is not the normal way of interacting with a large program.
It may be good for a query language which allows only a very restricted form of
input/output, but is not appropriate for more general input/output required in
interactive programs. It looks like the logic programming counterpart of the post-
mortem dump facilities in conventional operating systems. A method for normal
input/output must be provided separately from it.

In the GHC framework, the most appropriate input/output method is to
include in a goal clause a goal (i.e., a process) modeling the outside world. This is
quite natural because the computer and the outside world always run concurrently.
The outside world includes everything outside the proof procedure; it includes the
operating system that manages and performs physical input/output, peripheral
devices, and a human being in front of the terminal. It is important to note that
the outside world participates in the proof procedure instead of observing it.

— 10 —

Treating the outside world as a process means that we treat interprocess com-
munication and input/output in the same framework. In addition to the concep-
tual simplicity and uniformity, this contributes to the modularity and reusability
of programs. For instance, we can easily redirect a stream of output data to other
processes for further processing.

The specification of the goal modeling the outside world should be defined by
each system. In general, the argument of the goal will represent request messages
to the operating system and actual input/output data. The request messages
will be used for specifying a device, an access method, and so on. There will
be various access methods for input/output, since a method appropriate for one
application may be inappropriate for another. For instance, input data from a
magnetic tape will be best formulated as a stream instantiated in a data-driven
manner, while input data from a terminal may be better formulated as responses
to requests issued by a program. Thus, full-fledged input/output facilities for GHC
may not be very simple, but still it will achieve a certain simplification in that
everything including data-driven and demand-driven input is realized within the
basic framework of the language.

6. GHC as a Logic Programming Language

This section examines GHC as a logic programming language. The opera-
tional semantics of GHC described in Section 3.2 is a sound proof procedure for
a Horn-clause program; if a goal clause “ :- By, ..., B,.” succeeds with an
answer substitution 0, V(B10, ..., B,0) is a logical consequence of the program.
Unfortunately, it is not a complete proof procedure. The incompleteness is due to
the single-environment restriction which means only one solution can be returned.
However, not a few of logic programs we write are deterministic when used in their
intended directions, i.e., each of them is expected to return a single solution which
is not affected by the choice nondeterminism involved in commitment. Moreover,
it is unlikely that one can write a correct and efficient program without thinking
of how the values of variables are determined, whether the program is intended to
return single or multiple solutions. So it is worth noting that as long as we write
a deterministic logic program with a correct specification of the intended data
flow (using the guard/body distinction) and as long as we use it in the intended
direction it expresses, the operational semantics of GHC is complete.

There are two cases where a program cannot apparently be deterministic. One
is where we want to use don’t-care (choice) nondeterminism intentionally. In this
case, the loss of possible solutions due to commitment is just what the programmer
wants to specify, so incompleteness is not a defect. The other case is where we
really want to search all possible solutions, that is, where we don’t want to have
guard and commitment. Ordinary Horn clauses should be a better language for
this purpose, but we can relate these two languages by a translation technique.

— 11 —

Ueda [8] proposed a technique for compiling an exhaustive search program in or-
dinary Horn clauses into a deterministic GHC program. Collecting all solutions
requires the primitives like setof and bagof of DEC-10 Prolog whose semantics
cannot be explained only by the semantics of first-order logic programming. The
above technique compiles away such primitives without introducing any extralog-
ical features, and establishes ordinary Horn clauses as a user language on top of
GHC for simple search problems.

GHC has a greater expressive power as a programming language than the orig-
inal framework, but of course this means that the semantics of GHC is less simple
and that mechanical handling of programs such as program transformation is less
easy. Nevertheless, being based on logic programming is an advantage of GHC: A
program allows declarative reading as a logical formula, and the description of the
semantics is made quite simple using the terms of theorem proving.

GHC has no notion of the order of program clauses or the order of goals
in a clause, except that each clause has a guard and a body. For this reason,
many extralogical built-in predicates of Prolog whose behavior is order- (or time-)
dependent cannot make any sense and are excluded from GHC. Among such pred-
icates are input/output predicates a la Prolog; other examples are predicates like
var and ‘==" used for knowing the ‘current’ state of instantiation. We have found
that GHC encourages programmers to write better logic programs; programmers
never make inadvertent use of extralogical features that often happens in Prolog
programming.

References

[1] Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren,
D. H. D., DECsystem-10 Prolog User’s Manual. Dept. of Artificial Intelligence,
Univ. of Edinburgh, 1983.

[2] Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic. ACM
Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1-49.

[3] Hirata, M., Letter to the editor. Sigplan Notices, Vol. 21, No. 5 (1986),
pp. 16-17.

[4] Kowalski, R., Algorithm = TLogic + Control. Comm. ACM, Vol. 22, No. 7
(1979), pp. 424-436.

[5] Lloyd, J. W. Foundations of Logic Programming. Springer-Verlag, Berlin
Heidelberg New York Tokyo, 1984.

[6] Shapiro, E. Y., A Subset of Concurrent Prolog and Its Interpreter. ICOT
Tech. Report TR-003, Institute for New Generation Computer Technology,
Tokyo, 1983.

— 12 —

7]

8]

[10]

Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, Institute
for New Generation Computer Technology, Tokyo, 1985 (revised in 1986).
Also in Proc. Logic Programming 85, Wada, E. (ed.), Lecture Notes in
Computer Science 221, Springer-Verlag, Berlin Heidelberg New York Tokyo,
1986, pp. 168-179. Also to appear in Concurrent Prolog: Collected Papers,
Vol. 1, Shapiro, E. Y. (ed.), The MIT Press, Cambridge, Mass, 1987.

Ueda, K., Making Exhaustive Search Programs Deterministic. New Genera-
tion Computing, Vol. 5, No. 1 (1987), pp. 29—44.

Ueda, K., Guarded Horn Clauses. Doctoral thesis, Information Engineering
Course, Faculty of Engineering, Univ. of Tokyo, 1986.

Ueda, K., Introduction to Guarded Horn Clauses. ICOT Tech. Report TR-
209, Institute for New Generation Computer Technology, Tokyo, 1986.

— 13 —

