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Abstra
t. This paper de�nes a parallel logi
 programming language


alled Guarded Horn Clauses (GHC), introdu
ing the ideas that went into

the design of the language. It also points out that GHC 
an be viewed

as a pro
ess des
ription language in whi
h input and output 
an be de-

s
ribed naturally by treating the outside world as a pro
ess. Relationship

between GHC and logi
 programming in the original, stri
t sense is also

dis
ussed. Some familiarity with GHC and/or other parallel logi
 pro-

gramming languages will be helpful in reading this paper, though it is

not indispensable.

1. Introdu
tion

GHC is a parallel programming language devised from examination of the

basi
 framework and the pra
ti
e of logi
 programming. The most important


hara
teristi
 is the simpli
ity of the language rules and the expressive power

obtained from them. Guard is the only synta
ti
 
onstru
t added to the framework

of logi
 programming. Although its semanti
s 
auses loss of 
ompleteness whi
h

would be important for GHC as a theorem prover, it provides the language with

a 
ontrol me
hanism that is a prerequisite for a general programming language.

The main purpose of this paper is to des
ribe the language GHC informally

but rigorously, but we will also try to introdu
e the ideas that went into the design

of the language for better understanding. The original do
ument of GHC is [7℄, and

the most detailed des
ription of the language is found in [9℄. Ueda [10℄ introdu
es

GHC through program examples.

2. Design Goals of GHC

GHC was designed as a general parallel programming language based on Horn-


lause logi
. By a general parallel programming language we mean a language

* To appear in Programming of Future Generation Computers, M. Nivat and K. Fu
hi (eds.),

North-Holland, Amsterdam, 1987.
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in whi
h we 
an des
ribe pro
esses and intera
tions among them. The important

point is that we must be able to handle intera
ting pro
esses; if we have only to deal

with mutually independent pro
esses, the subtle problems of parallel programming

will not appear, but the language will be less expressive.

The above requirement means that we need some notion of 
ontrol, whi
h

is in general used for introdu
ing reasonable order among primitive operations


onstituting a 
omputation. The order should of 
ourse be partial for a paral-

lel programming language. GHC introdu
ed partial order to (atomi
 pie
es of)

uni�
ation, a primitive operation in logi
 programming.

Re
alling that a sequential algorithm spe
i�es a total order on primitive op-

erations, a parallel algorithm 
an be de�ned as spe
ifying a partial order on them,

and this is just what we intend to express in GHC. In this sense, GHC 
ould be

viewed as a realization of Kowalski's thesis \algorithm = logi
 + 
ontrol" [4℄.

There may be various ways to a
hieve our purposes and to obtain a parallel

programming language. Con
urrent Prolog [6℄, PARLOG [2℄ and GHC share the

above design goals in prin
iple, and they all have guard as a synta
ti
 
onstru
t.

The unique feature of GHC is that it uses guard as the only synta
ti
 
onstru
t,

as we will des
ribe below.

3. Syntax and Semanti
s

3.1. Syntax

A GHC program is a set of guarded Horn 
lauses of the following form:

H :- G

1

, : : :,G

m

|B

1

, : : :,B

n

. (m > 0; n > 0):

whereH, G

i

's, and B

i

's are atomi
 formulas. H is 
alled a 
lause head, the G

i

's are


alled guard goals, and the B

i

's are 
alled body goals. The 
onne
tive `:-' means

`is implied by', and `,' means 
onjun
tion. The only di�eren
e from an ordinary

Horn 
lause is that one of the 
onjun
tive operators is repla
ed by a 
ommitment

operator `|'. The part of a 
lause before `|' is 
alled a guard, and the part after `|'

is 
alled a body. Note that the 
lause head is in
luded in the guard. De
laratively,

the 
ommitment operator denotes 
onjun
tion, and the above guarded Horn 
lause

is read as \H is implied by G

1

; : : : ; G

m

and B

1

; : : : ; B

n

".

We use a goal 
lause of the following form to start a GHC program:

:- B

1

, : : :, B

n

. (n > 0):

This is just an ordinary Horn 
lause used in the original framework.

We follow the synta
ti
 
onvention of DEC-10 Prolog [1℄ that begins 
onstant,

fun
tion and predi
ate symbols by lower
ase letters or symbols and variables by

upper
ase letters.
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One binary predi
ate, `=', is prede�ned by the language. The predi
ate `=' is

used for unifying two terms. This predi
ate is 
onsidered as prede�ned, sin
e it


annot be de�ned in the language. However, the reason for this is purely notational

and we need not regard it as the se
ond additional 
onstru
t, as will be explained

in Se
tion 3.2.

The nullary predi
ate true is used for denoting an empty set of guard or body

goals expli
itly in a program. The use of true is for notational 
onvenien
e and

is not essential at all. A
tually it 
ould be de�ned as follows:

true :- 1=1 | 1=1.

3.2. Semanti
s

The semanti
s of GHC is des
ribed in two stages: (i) parallel input resolution

as a basis, and (ii) a restri
tion to a single environment imposed on it. The

se
ond stage des
ribes the di�eren
es between the original framework and GHC

by introdu
ing the semanti
s of the distin
tion between guard and body. The �rst

stage, parallel input resolution, is not spe
i�
 to GHC, so we �rst des
ribe it for

a set of ordinary Horn 
lauses. The des
ription will then be slightly modi�ed for

use as the basis of GHC.

The resolution strategy normally used as the basi
 framework of logi
 pro-

gramming is SLD-resolution [5℄. However, it is too spe
i�
 as a framework of

parallel exe
ution of logi
 programs and this is why we begin with de�ning paral-

lel input resolution.

We �rst 
onsider a proof tree 
onstru
ted from a program P and a goal 
lause

C de�ned as follows:

(1) The root represents the goal 
lause C, and has an outgoing ar
 for ea
h body

goal.

(2) Ea
h non-root node represents a program 
lause in P , and has one in
oming

ar
 from its parent node and an outgoing ar
 for ea
h body goal.

Hen
eforth we may identify a node with the 
lause it represents. Note that the

leaves of a tree represent unit 
lauses.

Ea
h ar
 A of a proof tree is 
onsidered as representing an equation G = H,

where G is the body goal (of the parent node) 
orresponding to A and H is the

head of the 
hild node C. The goal G is 
alled the 
aller of C, and G is said to


all C.

The set of all the ar
s in a proof tree de�nes a uni�
ation problem. The

answer substitution of a proof tree is the most general uni�er of the uni�
ation

problem. A proof tree may not have an answer substitution; a proof tree that has
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an answer substitution is 
alled a non-ordered refutation. Note that there may

be many possible proof trees 
onstru
ted from a given program and a goal 
lause,

sin
e any program 
lause 
an be a 
hild of a given parent node.

Our purpose is to obtain non-ordered refutations and their answer substitu-

tions for a given program and a goal 
lause, whi
h is a
hieved by performing the

following two tasks:

(1) produ
tion of possible proof trees, and

(2) solution of the uni�
ation problem de�ned by ea
h proof tree.

The proof pro
edure may exploit parallelism in the above tasks. Firstly, it may

exploit parallelism in 
onstru
ting a non-ordered refutation: A proof tree may

be 
onstru
ted in parallel, the asso
iated uni�
ation problem may be solved in

parallel, and these two tasks may be performed in parallel. This proof method is


alled parallel input resolution, and the parallelism of this kind is often referred to

as AND-parallelism. The primitive operation in the 
onstru
tion of a proof tree

is to provide a body goal with a renamed program 
lause, leaving uni�
ation of

the goal and the 
lause head as a separate operation. The primitive operations

in solving a uni�
ation problem are those in the uni�
ation algorithm employed.

We do not spe
ify a parti
ular uni�
ation algorithm, but only request that the

algorithm be 
orre
t, that is, it 
al
ulates the most general uni�er if and only if

the original uni�
ation problem has it.

Se
ondly, the proof pro
edure may exploit parallelism in getting di�erent non-

ordered refutations. Parallelism of this kind is often referred to as OR-parallelism.

Amending the above framework for GHC requires the following modi�
ation.

Firstly, ea
h non-root node representing a guarded Horn 
lause must have an

outgoing ar
 for ea
h guard goal as well as for ea
h body goal. Se
ondly, the

prede�ned predi
ate `=' is treated as if there were a unit 
lause \X = X." whose


ontents are semanti
ally divided into two parts: The predi
ate name `=' and its

arity are treated like the entities in a guard, and the identity of the two arguments

are treated like the entities in a body.

Now we give the semanti
s of the distin
tion between guard and body by

restri
ting the above parallel input resolution.

In the above framework, di�erent proof trees 
onstru
ted from a given pro-

gram and a goal 
lause are treated independently. A variable in the goal 
lause may

be bound to di�erent values in di�erent proof trees, and this is why OR-parallel

Prolog requires implementation of multiple binding environments. Ba
ktra
king

in sequential Prolog is also regarded as a sequential implementation of multiple

environments.

On the other hand, GHC treats all proof trees in a single environment rather

than independently. For this purpose, it disallows uni�
ation performed in two
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proof trees to instantiate 
orresponding variables to di�erent values, where the


orresponden
e of entities in di�erent proof trees is de�ned as follows. Given two

proof trees T

1

and T

2


onstru
ted from a given program and a goal 
lause, we say

(i) that a non-root node in T

1

and a non-root node in T

2


orrespond if they

represent identi
al program 
lauses (up to renaming) and their parent nodes


orrespond, and

(ii) that the roots of T

1

and T

2


orrespond.

Further we say that two variables 
orrespond if they appear in the same position of

the (identi
al) program 
lauses represented by 
orresponding nodes. If 
orrespond-

ing variables are never instantiated di�erently, it is unne
essary for 
orresponding

nodes to represent independent program 
lauses. Therefore, in the following we

assume that 
orresponding nodes share the program 
lause they represent.

The purpose of the above single environment restri
tion is to let any substitu-

tion be 
ommon and global throughout the exe
ution of a program and to let it be

determinate and unne
essary to revoke. This restri
tion for
es GHC to abandon


ompleteness as a proof pro
edure. However, disallowing nondeterminate bind-

ings greatly simpli�es a binding-oriented view of the exe
ution of logi
 programs

dis
ussed in detail in Se
tion 4.

The simplest way to a
hieve the single environment restri
tion is to restri
t

resolution so that no bindings may be generated, but it will severely limit the

expressive power of the language. To obey the restri
tion while letting the language

be still useful, we impose the following rules of suspension:

� Rules of Suspension

(a) Uni�
ation invoked dire
tly or indire
tly in the guard of a 
lause C 
alled

by a goal G (i.e., uni�
ation of G with the head of C and any uni�
ation

invoked by solving the guard goals of C) 
annot instantiate the goal G.

(b) Uni�
ation invoked dire
tly or indire
tly in the body of a 
lause C 
alled

by a goal G 
annot instantiate the guard of C or G until C is sele
ted

for 
ommitment (see below).

A pie
e of uni�
ation that 
an su

eed only by 
ausing su
h instantiation is

suspended until it 
an su

eed without 
ausing su
h instantiation (end of the

rules of suspension).

Here, we assume that any substitution (legally) generated by a pie
e of uni�
ation

is applied to the proof trees, instantiating the 
lauses represented by their nodes.

This means that the equations de�ned by the proof trees are always getting in-

stantiated.

For the 
lause de�ning the predi
ate `=', the above rules are understood as

follows: Uni�
ation between the 
lause \X = X." and its 
aller G (whi
h does not
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ne
essarily 
all the predi
ate `=') 
annot instantiate G until this 
lause is sele
ted

for 
ommitment.

A suspended pie
e of uni�
ation may (but 
annot always) be resumed when

some other uni�
ation goal running in parallel has instantiated the variable that


aused suspension to some term. For example, if the guard of C tries to unify X

appearing in G with a, the uni�
ation suspends due to Rule (a) above. It 
an be

resumed and su

eeds when some other goal instantiates X to a. If the guard of C

tries to unify X and Y both appearing in G, then the uni�
ation 
an be resumed

and su

eeds either when X and Y are uni�ed together and be
ome identi
al or

when both X and Y are bound to an identi
al non-variable term.

Another rule we must have is the rule of 
ommitment:

� Rule of Commitment

When some 
lause C 
alled by a goal G su

eeds in solving (see below) its

guard, the 
lause C tries to be sele
ted for subsequent exe
ution (i.e., proof) of

G. To be sele
ted, C must �rst 
on�rm that no other 
lauses in the program

have been sele
ted for G. If 
on�rmed, C is sele
ted indivisibly, and the

exe
ution of G is said to be 
ommitted to the 
lause C (end of the rule of


ommitment).

For the 
lause de�ning the predi
ate `=', the above rule is understood as

follows: When it is 
on�rmed that a goal G 
alls the binary predi
ate `=', the


lause \X = X." tries to be sele
ted for establishing the identity of the arguments

by unifying them.

We say that a part P of a program 
lause C 
alled by a goal G or of a goal


lause C su

eeds (or is solved) if the proof pro
edure su

eeds in 
onstru
ting

the part of a proof tree 
onsisting of

(i) the ar
s 
orresponding to the body goals in P ,

(ii) the subtrees having the 
hild nodes of those ar
s as their roots, and

(iii) if C is a program 
lause and P 
ontains the headH of C, the ar
 
orresponding

to the uni�
ation of G with H

su
h that

(a) the set of the ar
s in it has a most general uni�er (under the rule of suspension)

and

(b) the nodes in it all 
orrespond to sele
ted 
lauses.

As a spe
ial 
ase, we say that a goal 
lause su

eeds if the proof pro
edure su

eeds

in 
onstru
ting a non-ordered refutation whose non-root nodes all 
orrespond to

sele
ted 
lauses. We do not say that a goal 
lause su

eeds even if the proof
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pro
edure 
onstru
ts a non-ordered refutation with a non-root node representing

a non-sele
ted 
lause: We are interested in a proof in whi
h only sele
ted 
lauses

are involved. The above de�nition does not introdu
e the notion of failure. We


ould introdu
e it, but it is not ne
essary for ordinary appli
ations.

It must be stressed that under the rules stated above, anything 
an be done in

parallel. To put it pre
isely, parallel exe
ution is the basi
 
omputation strategy

in GHC, whether performed by a parallel 
omputer or simulated by a sequential


omputer. Conjun
tive goals (i.e., goals in the same proof tree) are solved in

parallel; 
andidate 
lauses 
alled by a goal (that belong to di�erent proof trees)


ompete in parallel for 
ommitment; uni�
ation of a goal with the head of a


andidate 
lause is done in parallel, both internally and with the exe
ution of

guard goals.

However, it must be even more stressed that we 
an also exe
ute a set of

operations in a predetermined order as long as it does not a�e
t the result. There

are two possible ways in whi
h pre-ordering of operations makes di�eren
e. One is

that sequential exe
ution may suspend forever on a pie
e of uni�
ation whi
h par-

allel exe
ution would sometime make su

eed. For example, 
onsider the following

program

p(ok) :- true | true. (3{1)

q(Z) :- true | Z=ok. (3{2)

and a goal 
lause \:- p(X),q(X)."; and suppose we solve the goal 
lause sequen-

tially from left to right, moving to the next goal when and only when the previous

goal has su

eeded. Then the goal p(X) will suspend (be
ause the the head p(ok)

of Clause (3{1) would otherwise instantiate it) and the exe
ution will result in

deadlo
k. However, if we solve p(X) and q(X) in parallel, sometime the goal q(X)

will sele
t Clause (3{2). Then the body goal of Clause (3{2) will bind the shared

variable X to ok, and the goal p(X), now instantiated to p(ok), will sele
t Clause

(3{1). This means that sequential exe
ution of 
onjun
tive goals is not a legal

exe
ution strategy in general.

The se
ond possible di�eren
e is that sequential exe
ution may be trapped by

in�nite 
omputation when parallel exe
ution 
ould avoid it. For example, suppose

we solve 
andidate 
lauses for a goalG sequentially, moving to the next 
lause when

the previous 
lause turns out to be unsele
table forever or when it has to wait for

instantiation of G. Then, if the guard of some 
lause falls into in�nite 
omputation

(i.e., 
onstru
tion of an in�nite proof tree) trying to be solved, subsequent 
lauses

whose guards 
ould be solved and sele
ted will not be exe
uted forever.

In a word, serialization of operations is allowed when and only when it does not

make an exe
ution trapped by unresumable suspension or in�nite 
omputation.

For example, we 
an exploit sequentiality between the guard and the body of

a 
lause, and between the head and the guard goals of a 
lause. Serialization
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may be useful for avoiding s
heduling overhead of pseudo-parallel exe
ution and


omputation that may not 
ontribute to the su

ess of a top-level goal 
lause.

The above rules of suspension and 
ommitment guarantee that among pro-

gram 
lauses 
alled by a goal G, only one that is sele
ted for 
ommitment 
an

instantiate G (by exe
uting its body goals). Thus only one binding environment

need be managed. The guard of a 
lause is entirely passive and never instantiates

G. The guard of a 
lause suspends until G gets enough binding information to

sele
t that 
lause, and then the body generates bindings ba
k to the 
aller. This

suspension me
hanism is very important be
ause due to the single environment

restri
tion, 
ommitment 
an never be revoked and hen
e must be done deliberately

based on suÆ
ient information.

Unlike an ordinary Horn 
lause, a guarded Horn 
lause expli
itly spe
i�es

the dire
tion of 
omputation. For instan
e, a program for 
on
atenating two lists


annot be used for dividing a list into two. If a program is used against its intended

dire
tion, it simply suspends.

4. GHC as a Pro
ess Des
ription Language

It is said that the main purpose of a logi
 programming system is to 
om-

pute answer substitutions for a given goal [5℄, but in the original framework, its

su

ess or failure should be important as well. In GHC, we are more interested in

bindings generated by 
omputation. Most programs are de�ned so that they will

su

essfully solve a given goal, and a program that does not su

eed for a `
orre
t'

goal (due to deadlo
k or unsu

essful uni�
ation) is usually erroneous.

Therefore, it is quite natural to view a GHC program in terms of binding

information and the agents that observe and generate it. Consider the following

program:

gen(N,Ns) :- true | Ns=[N|Ns1℄, N1:=N+1, gen(N1,Ns1). (4{1)

This 
lause de�nes an eager generator of a sequen
e of integers. On
e we generate a

goal gen(1,Xs), Xs will be gradually instantiated and will approximate an in�nite

list of integers beginning with 1. This goal generates bindings autonomously, sin
e

the guard of Clause (4{1) 
alled by the top-level and re
ursive goals 
an always

su

eed immediately. However, if Clause (4{1) is rewritten as follows, the behavior

of the goal will be quite di�erent:

gen(N,[M|Ns1℄) :- true | M=N, N1:=N+1, gen(N1,Ns1). (4{2)

Now the goal gen(1,Xs) will suspend as long as no other goal instantiates Xs,

sin
e unifying Xs with [M|Ns1℄ in the guard would instantiate Xs and violate the

rules of suspension. However, if some 
onjun
tive goal (say p) has instantiated Xs

to [X1|Xs1℄, then gen(1,Xs), whi
h has now be
ome gen(1,[X1|Xs1℄), sele
ts
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Clause (4{2) and binds X1 to 1. If p has further instantiated Xs1 to [X2|Xs2℄,

gen(1,Xs) will bind X2 to 2. Thus, the goal gen(1,Xs) 
annot 
reate a list

stru
ture by itself, but it �lls a given list stru
ture with su

essive integers. It


an be 
alled a demand-driven (lazy) generator of a sequen
e of integers, where

instantiating (a sublist of) Xs to the stru
ture [Car|Cdr℄ 
an be regarded as a

demand. Note that Clauses (4{1) and (4{2) are equivalent as logi
al formulae; the

di�eren
e 
omes from whether the se
ond argument of the 
aller is uni�ed with

the list stru
ture in the guard or in the body.

In general, a goal 
an be viewed as a pro
ess that observes input bindings

and generates output bindings a

ording to them. Observation and generation

of bindings are the basis of 
omputation and 
ommuni
ation in our model. The

behavior of a pro
ess is de�ned by program 
lauses using other pro
esses, possibly

re
ursively. A program 
lause 
an be viewed as a pro
ess rewrite rule. Consider

Clause (4{2). Its guard spe
i�es the 
onditions for 
ommitment: The predi
ate

must be `gen' with two arguments and the se
ond argument must have the list

stru
ture [Car|Cdr℄. If both 
onditions are satis�ed, this 
lause 
an be sele
ted;

and if sele
ted, the original goal is repla
ed by the three goals M=N, N1:=N+1, and

gen(N1,Ns1). The goal M=N determines the value of the �rst element of the list,

N1:=N+1 
omputes the value for the next element, and gen(N1,Ns1) generates the

sublist Ns1 in a similar way on demand. Stri
tly speaking, the 
ommitment does

not mean that the original goal disappears from a proof tree; the point is that its

fun
tion is realized by the three subgoals.

In the GHC framework, interpro
ess 
ommuni
ation is done using shared

variables, but it is quite di�erent from shared-variable 
ommuni
ation in pro
e-

dural languages. The di�eren
e 
omes from the single-assignment (as opposed to

destru
tive assignment) property of logi
al variables, whi
h 
ontributes mu
h to


on
eptual simpli
ity. Sin
e we have a natural notion of an unde�ned value, we


an realize syn
hronization by letting a pro
ess wait until ne
essary values are

known. No other means need be provided for syn
hronization. A shared variable

between re
ursive pro
esses is usually instantiated to a list of data or messages

gradually as 
omputation pro
eeds, and we 
all su
h a shared variable a stream.

That a sequen
e of data or messages is just a data stru
ture also 
ontributes to the

simpli
ity. In most pro
edural languages, sequen
es of 
ommuni
ation messages

are impli
it and must be manipulated using a spe
ial set of operations.

One might feel it in
onvenient that many-to-one 
ommuni
ation requires ex-

pli
it stream merging de�ned by the following predi
ate:

merge([A|Xs℄,Ys, Zs) :- true | Zs=[A|Zs1℄, merge(Xs,Ys,Zs1).

merge(Xs, [A|Ys℄,Zs) :- true | Zs=[A|Zs1℄, merge(Xs,Ys,Zs1).

merge([℄, Ys, Zs) :- true | Zs=Ys.

merge(Xs, [℄, Zs) :- true | Zs=Xs.

Many-to-one 
ommuni
ation serializes messages from two or more sour
es, whi
h
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should involve arbitration on the arrival order of the messages. This means that

any programming language that allows impli
it many-to-one 
ommuni
ation does

arbitration impli
itly. However, sin
e the 
on
ept of arbitration does not exist in

the original framework of logi
 programming, we had to in
lude it in the form of

the 
ommitment operator.

A pro
ess 
an also be viewed as performing data-driven 
omputation in the

sense that it generates output data when ne
essary input data are available. For

example, the goal N1:=N+1 does nothing until N is instantiated, and binds N1 to

6 when N is bound to 5. Although the predi
ate `:=' will be de�ned as a system

predi
ate for reasons of eÆ
ien
y and 
onvenien
e, exa
tly the same behavior 
an

be obtained using the following 
lause:

N:=5+1 :- true | N=6.

GHC has a unique feature of uniformity and 
exibility as a data
ow lan-

guage. It naturally 
ontains the notion of non-stri
t data stru
tures. It handles

data-driven and demand-driven 
omputation in the same framework. It separates

stati
 program stru
tures and possibly dynami
 pro
ess stru
tures. It allows us

to de�ne mutable obje
ts (su
h as arrays) as pro
esses 
ompletely in a de
larative

framework.

Finally, we note that the features of GHC listed in this se
tion apply also

to other parallel logi
 programming languages in
luding PARLOG, Con
urrent

Prolog, and O
 [3℄.

5. Intera
tion with the Outside World

We pointed out in Se
tion 4 that the main purpose of GHC programs is

to 
ompute binding information. However, observing an answer substitution re-

turned by the system is not the normal way of intera
ting with a large program.

It may be good for a query language whi
h allows only a very restri
ted form of

input/output, but is not appropriate for more general input/output required in

intera
tive programs. It looks like the logi
 programming 
ounterpart of the post-

mortem dump fa
ilities in 
onventional operating systems. A method for normal

input/output must be provided separately from it.

In the GHC framework, the most appropriate input/output method is to

in
lude in a goal 
lause a goal (i.e., a pro
ess) modeling the outside world. This is

quite natural be
ause the 
omputer and the outside world always run 
on
urrently.

The outside world in
ludes everything outside the proof pro
edure; it in
ludes the

operating system that manages and performs physi
al input/output, peripheral

devi
es, and a human being in front of the terminal. It is important to note that

the outside world parti
ipates in the proof pro
edure instead of observing it.
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Treating the outside world as a pro
ess means that we treat interpro
ess 
om-

muni
ation and input/output in the same framework. In addition to the 
on
ep-

tual simpli
ity and uniformity, this 
ontributes to the modularity and reusability

of programs. For instan
e, we 
an easily redire
t a stream of output data to other

pro
esses for further pro
essing.

The spe
i�
ation of the goal modeling the outside world should be de�ned by

ea
h system. In general, the argument of the goal will represent request messages

to the operating system and a
tual input/output data. The request messages

will be used for spe
ifying a devi
e, an a

ess method, and so on. There will

be various a

ess methods for input/output, sin
e a method appropriate for one

appli
ation may be inappropriate for another. For instan
e, input data from a

magneti
 tape will be best formulated as a stream instantiated in a data-driven

manner, while input data from a terminal may be better formulated as responses

to requests issued by a program. Thus, full-
edged input/output fa
ilities for GHC

may not be very simple, but still it will a
hieve a 
ertain simpli�
ation in that

everything in
luding data-driven and demand-driven input is realized within the

basi
 framework of the language.

6. GHC as a Logi
 Programming Language

This se
tion examines GHC as a logi
 programming language. The opera-

tional semanti
s of GHC des
ribed in Se
tion 3.2 is a sound proof pro
edure for

a Horn-
lause program; if a goal 
lause \ :- B

1

, : : :, B

n

." su

eeds with an

answer substitution �, 8(B

1

�, : : :,B

n

�) is a logi
al 
onsequen
e of the program.

Unfortunately, it is not a 
omplete proof pro
edure. The in
ompleteness is due to

the single-environment restri
tion whi
h means only one solution 
an be returned.

However, not a few of logi
 programs we write are deterministi
 when used in their

intended dire
tions, i.e., ea
h of them is expe
ted to return a single solution whi
h

is not a�e
ted by the 
hoi
e nondeterminism involved in 
ommitment. Moreover,

it is unlikely that one 
an write a 
orre
t and eÆ
ient program without thinking

of how the values of variables are determined, whether the program is intended to

return single or multiple solutions. So it is worth noting that as long as we write

a deterministi
 logi
 program with a 
orre
t spe
i�
ation of the intended data


ow (using the guard/body distin
tion) and as long as we use it in the intended

dire
tion it expresses, the operational semanti
s of GHC is 
omplete.

There are two 
ases where a program 
annot apparently be deterministi
. One

is where we want to use don't-
are (
hoi
e) nondeterminism intentionally. In this


ase, the loss of possible solutions due to 
ommitment is just what the programmer

wants to spe
ify, so in
ompleteness is not a defe
t. The other 
ase is where we

really want to sear
h all possible solutions, that is, where we don't want to have

guard and 
ommitment. Ordinary Horn 
lauses should be a better language for

this purpose, but we 
an relate these two languages by a translation te
hnique.
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Ueda [8℄ proposed a te
hnique for 
ompiling an exhaustive sear
h program in or-

dinary Horn 
lauses into a deterministi
 GHC program. Colle
ting all solutions

requires the primitives like setof and bagof of DEC-10 Prolog whose semanti
s


annot be explained only by the semanti
s of �rst-order logi
 programming. The

above te
hnique 
ompiles away su
h primitives without introdu
ing any extralog-

i
al features, and establishes ordinary Horn 
lauses as a user language on top of

GHC for simple sear
h problems.

GHC has a greater expressive power as a programming language than the orig-

inal framework, but of 
ourse this means that the semanti
s of GHC is less simple

and that me
hani
al handling of programs su
h as program transformation is less

easy. Nevertheless, being based on logi
 programming is an advantage of GHC: A

program allows de
larative reading as a logi
al formula, and the des
ription of the

semanti
s is made quite simple using the terms of theorem proving.

GHC has no notion of the order of program 
lauses or the order of goals

in a 
lause, ex
ept that ea
h 
lause has a guard and a body. For this reason,

many extralogi
al built-in predi
ates of Prolog whose behavior is order- (or time-)

dependent 
annot make any sense and are ex
luded from GHC. Among su
h pred-

i
ates are input/output predi
ates �a la Prolog; other examples are predi
ates like

var and `==' used for knowing the `
urrent' state of instantiation. We have found

that GHC en
ourages programmers to write better logi
 programs; programmers

never make inadvertent use of extralogi
al features that often happens in Prolog

programming.
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