
ICOT Te
hni
al Report TR-208

Guarded Horn Clauses: A Parallel Logi
 Programming

Language with the Con
ept of a Guard

Kazunori Ueda

Institute for New Generation Computer Te
hnology

4-28, Mita 1-Chome, Minato-ku, Tokyo 108 Japan

O
tober 1986

Revised: July 1987*

Abstra
t. This paper de�nes a parallel logi
 programming language

alled Guarded Horn Clauses (GHC), introdu
ing the ideas that went into

the design of the language. It also points out that GHC
an be viewed

as a pro
ess des
ription language in whi
h input and output
an be de-

s
ribed naturally by treating the outside world as a pro
ess. Relationship

between GHC and logi
 programming in the original, stri
t sense is also

dis
ussed. Some familiarity with GHC and/or other parallel logi
 pro-

gramming languages will be helpful in reading this paper, though it is

not indispensable.

1. Introdu
tion

GHC is a parallel programming language devised from examination of the

basi
 framework and the pra
ti
e of logi
 programming. The most important

hara
teristi
 is the simpli
ity of the language rules and the expressive power

obtained from them. Guard is the only synta
ti

onstru
t added to the framework

of logi
 programming. Although its semanti
s
auses loss of
ompleteness whi
h

would be important for GHC as a theorem prover, it provides the language with

a
ontrol me
hanism that is a prerequisite for a general programming language.

The main purpose of this paper is to des
ribe the language GHC informally

but rigorously, but we will also try to introdu
e the ideas that went into the design

of the language for better understanding. The original do
ument of GHC is [7℄, and

the most detailed des
ription of the language is found in [9℄. Ueda [10℄ introdu
es

GHC through program examples.

2. Design Goals of GHC

GHC was designed as a general parallel programming language based on Horn-

lause logi
. By a general parallel programming language we mean a language

* To appear in Programming of Future Generation Computers, M. Nivat and K. Fu
hi (eds.),

North-Holland, Amsterdam, 1987.

{ 1 {

in whi
h we
an des
ribe pro
esses and intera
tions among them. The important

point is that we must be able to handle intera
ting pro
esses; if we have only to deal

with mutually independent pro
esses, the subtle problems of parallel programming

will not appear, but the language will be less expressive.

The above requirement means that we need some notion of
ontrol, whi
h

is in general used for introdu
ing reasonable order among primitive operations

onstituting a
omputation. The order should of
ourse be partial for a paral-

lel programming language. GHC introdu
ed partial order to (atomi
 pie
es of)

uni�
ation, a primitive operation in logi
 programming.

Re
alling that a sequential algorithm spe
i�es a total order on primitive op-

erations, a parallel algorithm
an be de�ned as spe
ifying a partial order on them,

and this is just what we intend to express in GHC. In this sense, GHC
ould be

viewed as a realization of Kowalski's thesis \algorithm = logi
 +
ontrol" [4℄.

There may be various ways to a
hieve our purposes and to obtain a parallel

programming language. Con
urrent Prolog [6℄, PARLOG [2℄ and GHC share the

above design goals in prin
iple, and they all have guard as a synta
ti

onstru
t.

The unique feature of GHC is that it uses guard as the only synta
ti

onstru
t,

as we will des
ribe below.

3. Syntax and Semanti
s

3.1. Syntax

A GHC program is a set of guarded Horn
lauses of the following form:

H :- G

1

, : : :,G

m

|B

1

, : : :,B

n

. (m > 0; n > 0):

whereH, G

i

's, and B

i

's are atomi
 formulas. H is
alled a
lause head, the G

i

's are

alled guard goals, and the B

i

's are
alled body goals. The
onne
tive `:-' means

`is implied by', and `,' means
onjun
tion. The only di�eren
e from an ordinary

Horn
lause is that one of the
onjun
tive operators is repla
ed by a
ommitment

operator `|'. The part of a
lause before `|' is
alled a guard, and the part after `|'

is
alled a body. Note that the
lause head is in
luded in the guard. De
laratively,

the
ommitment operator denotes
onjun
tion, and the above guarded Horn
lause

is read as \H is implied by G

1

; : : : ; G

m

and B

1

; : : : ; B

n

".

We use a goal
lause of the following form to start a GHC program:

:- B

1

, : : :, B

n

. (n > 0):

This is just an ordinary Horn
lause used in the original framework.

We follow the synta
ti

onvention of DEC-10 Prolog [1℄ that begins
onstant,

fun
tion and predi
ate symbols by lower
ase letters or symbols and variables by

upper
ase letters.

{ 2 {

One binary predi
ate, `=', is prede�ned by the language. The predi
ate `=' is

used for unifying two terms. This predi
ate is
onsidered as prede�ned, sin
e it

annot be de�ned in the language. However, the reason for this is purely notational

and we need not regard it as the se
ond additional
onstru
t, as will be explained

in Se
tion 3.2.

The nullary predi
ate true is used for denoting an empty set of guard or body

goals expli
itly in a program. The use of true is for notational
onvenien
e and

is not essential at all. A
tually it
ould be de�ned as follows:

true :- 1=1 | 1=1.

3.2. Semanti
s

The semanti
s of GHC is des
ribed in two stages: (i) parallel input resolution

as a basis, and (ii) a restri
tion to a single environment imposed on it. The

se
ond stage des
ribes the di�eren
es between the original framework and GHC

by introdu
ing the semanti
s of the distin
tion between guard and body. The �rst

stage, parallel input resolution, is not spe
i�
 to GHC, so we �rst des
ribe it for

a set of ordinary Horn
lauses. The des
ription will then be slightly modi�ed for

use as the basis of GHC.

The resolution strategy normally used as the basi
 framework of logi
 pro-

gramming is SLD-resolution [5℄. However, it is too spe
i�
 as a framework of

parallel exe
ution of logi
 programs and this is why we begin with de�ning paral-

lel input resolution.

We �rst
onsider a proof tree
onstru
ted from a program P and a goal
lause

C de�ned as follows:

(1) The root represents the goal
lause C, and has an outgoing ar
 for ea
h body

goal.

(2) Ea
h non-root node represents a program
lause in P , and has one in
oming

ar
 from its parent node and an outgoing ar
 for ea
h body goal.

Hen
eforth we may identify a node with the
lause it represents. Note that the

leaves of a tree represent unit
lauses.

Ea
h ar
 A of a proof tree is
onsidered as representing an equation G = H,

where G is the body goal (of the parent node)
orresponding to A and H is the

head of the
hild node C. The goal G is
alled the
aller of C, and G is said to

all C.

The set of all the ar
s in a proof tree de�nes a uni�
ation problem. The

answer substitution of a proof tree is the most general uni�er of the uni�
ation

problem. A proof tree may not have an answer substitution; a proof tree that has

{ 3 {

an answer substitution is
alled a non-ordered refutation. Note that there may

be many possible proof trees
onstru
ted from a given program and a goal
lause,

sin
e any program
lause
an be a
hild of a given parent node.

Our purpose is to obtain non-ordered refutations and their answer substitu-

tions for a given program and a goal
lause, whi
h is a
hieved by performing the

following two tasks:

(1) produ
tion of possible proof trees, and

(2) solution of the uni�
ation problem de�ned by ea
h proof tree.

The proof pro
edure may exploit parallelism in the above tasks. Firstly, it may

exploit parallelism in
onstru
ting a non-ordered refutation: A proof tree may

be
onstru
ted in parallel, the asso
iated uni�
ation problem may be solved in

parallel, and these two tasks may be performed in parallel. This proof method is

alled parallel input resolution, and the parallelism of this kind is often referred to

as AND-parallelism. The primitive operation in the
onstru
tion of a proof tree

is to provide a body goal with a renamed program
lause, leaving uni�
ation of

the goal and the
lause head as a separate operation. The primitive operations

in solving a uni�
ation problem are those in the uni�
ation algorithm employed.

We do not spe
ify a parti
ular uni�
ation algorithm, but only request that the

algorithm be
orre
t, that is, it
al
ulates the most general uni�er if and only if

the original uni�
ation problem has it.

Se
ondly, the proof pro
edure may exploit parallelism in getting di�erent non-

ordered refutations. Parallelism of this kind is often referred to as OR-parallelism.

Amending the above framework for GHC requires the following modi�
ation.

Firstly, ea
h non-root node representing a guarded Horn
lause must have an

outgoing ar
 for ea
h guard goal as well as for ea
h body goal. Se
ondly, the

prede�ned predi
ate `=' is treated as if there were a unit
lause \X = X." whose

ontents are semanti
ally divided into two parts: The predi
ate name `=' and its

arity are treated like the entities in a guard, and the identity of the two arguments

are treated like the entities in a body.

Now we give the semanti
s of the distin
tion between guard and body by

restri
ting the above parallel input resolution.

In the above framework, di�erent proof trees
onstru
ted from a given pro-

gram and a goal
lause are treated independently. A variable in the goal
lause may

be bound to di�erent values in di�erent proof trees, and this is why OR-parallel

Prolog requires implementation of multiple binding environments. Ba
ktra
king

in sequential Prolog is also regarded as a sequential implementation of multiple

environments.

On the other hand, GHC treats all proof trees in a single environment rather

than independently. For this purpose, it disallows uni�
ation performed in two

{ 4 {

proof trees to instantiate
orresponding variables to di�erent values, where the

orresponden
e of entities in di�erent proof trees is de�ned as follows. Given two

proof trees T

1

and T

2

onstru
ted from a given program and a goal
lause, we say

(i) that a non-root node in T

1

and a non-root node in T

2

orrespond if they

represent identi
al program
lauses (up to renaming) and their parent nodes

orrespond, and

(ii) that the roots of T

1

and T

2

orrespond.

Further we say that two variables
orrespond if they appear in the same position of

the (identi
al) program
lauses represented by
orresponding nodes. If
orrespond-

ing variables are never instantiated di�erently, it is unne
essary for
orresponding

nodes to represent independent program
lauses. Therefore, in the following we

assume that
orresponding nodes share the program
lause they represent.

The purpose of the above single environment restri
tion is to let any substitu-

tion be
ommon and global throughout the exe
ution of a program and to let it be

determinate and unne
essary to revoke. This restri
tion for
es GHC to abandon

ompleteness as a proof pro
edure. However, disallowing nondeterminate bind-

ings greatly simpli�es a binding-oriented view of the exe
ution of logi
 programs

dis
ussed in detail in Se
tion 4.

The simplest way to a
hieve the single environment restri
tion is to restri
t

resolution so that no bindings may be generated, but it will severely limit the

expressive power of the language. To obey the restri
tion while letting the language

be still useful, we impose the following rules of suspension:

� Rules of Suspension

(a) Uni�
ation invoked dire
tly or indire
tly in the guard of a
lause C
alled

by a goal G (i.e., uni�
ation of G with the head of C and any uni�
ation

invoked by solving the guard goals of C)
annot instantiate the goal G.

(b) Uni�
ation invoked dire
tly or indire
tly in the body of a
lause C
alled

by a goal G
annot instantiate the guard of C or G until C is sele
ted

for
ommitment (see below).

A pie
e of uni�
ation that
an su

eed only by
ausing su
h instantiation is

suspended until it
an su

eed without
ausing su
h instantiation (end of the

rules of suspension).

Here, we assume that any substitution (legally) generated by a pie
e of uni�
ation

is applied to the proof trees, instantiating the
lauses represented by their nodes.

This means that the equations de�ned by the proof trees are always getting in-

stantiated.

For the
lause de�ning the predi
ate `=', the above rules are understood as

follows: Uni�
ation between the
lause \X = X." and its
aller G (whi
h does not

{ 5 {

ne
essarily
all the predi
ate `=')
annot instantiate G until this
lause is sele
ted

for
ommitment.

A suspended pie
e of uni�
ation may (but
annot always) be resumed when

some other uni�
ation goal running in parallel has instantiated the variable that

aused suspension to some term. For example, if the guard of C tries to unify X

appearing in G with a, the uni�
ation suspends due to Rule (a) above. It
an be

resumed and su

eeds when some other goal instantiates X to a. If the guard of C

tries to unify X and Y both appearing in G, then the uni�
ation
an be resumed

and su

eeds either when X and Y are uni�ed together and be
ome identi
al or

when both X and Y are bound to an identi
al non-variable term.

Another rule we must have is the rule of
ommitment:

� Rule of Commitment

When some
lause C
alled by a goal G su

eeds in solving (see below) its

guard, the
lause C tries to be sele
ted for subsequent exe
ution (i.e., proof) of

G. To be sele
ted, C must �rst
on�rm that no other
lauses in the program

have been sele
ted for G. If
on�rmed, C is sele
ted indivisibly, and the

exe
ution of G is said to be
ommitted to the
lause C (end of the rule of

ommitment).

For the
lause de�ning the predi
ate `=', the above rule is understood as

follows: When it is
on�rmed that a goal G
alls the binary predi
ate `=', the

lause \X = X." tries to be sele
ted for establishing the identity of the arguments

by unifying them.

We say that a part P of a program
lause C
alled by a goal G or of a goal

lause C su

eeds (or is solved) if the proof pro
edure su

eeds in
onstru
ting

the part of a proof tree
onsisting of

(i) the ar
s
orresponding to the body goals in P ,

(ii) the subtrees having the
hild nodes of those ar
s as their roots, and

(iii) if C is a program
lause and P
ontains the headH of C, the ar

orresponding

to the uni�
ation of G with H

su
h that

(a) the set of the ar
s in it has a most general uni�er (under the rule of suspension)

and

(b) the nodes in it all
orrespond to sele
ted
lauses.

As a spe
ial
ase, we say that a goal
lause su

eeds if the proof pro
edure su

eeds

in
onstru
ting a non-ordered refutation whose non-root nodes all
orrespond to

sele
ted
lauses. We do not say that a goal
lause su

eeds even if the proof

{ 6 {

pro
edure
onstru
ts a non-ordered refutation with a non-root node representing

a non-sele
ted
lause: We are interested in a proof in whi
h only sele
ted
lauses

are involved. The above de�nition does not introdu
e the notion of failure. We

ould introdu
e it, but it is not ne
essary for ordinary appli
ations.

It must be stressed that under the rules stated above, anything
an be done in

parallel. To put it pre
isely, parallel exe
ution is the basi

omputation strategy

in GHC, whether performed by a parallel
omputer or simulated by a sequential

omputer. Conjun
tive goals (i.e., goals in the same proof tree) are solved in

parallel;
andidate
lauses
alled by a goal (that belong to di�erent proof trees)

ompete in parallel for
ommitment; uni�
ation of a goal with the head of a

andidate
lause is done in parallel, both internally and with the exe
ution of

guard goals.

However, it must be even more stressed that we
an also exe
ute a set of

operations in a predetermined order as long as it does not a�e
t the result. There

are two possible ways in whi
h pre-ordering of operations makes di�eren
e. One is

that sequential exe
ution may suspend forever on a pie
e of uni�
ation whi
h par-

allel exe
ution would sometime make su

eed. For example,
onsider the following

program

p(ok) :- true | true. (3{1)

q(Z) :- true | Z=ok. (3{2)

and a goal
lause \:- p(X),q(X)."; and suppose we solve the goal
lause sequen-

tially from left to right, moving to the next goal when and only when the previous

goal has su

eeded. Then the goal p(X) will suspend (be
ause the the head p(ok)

of Clause (3{1) would otherwise instantiate it) and the exe
ution will result in

deadlo
k. However, if we solve p(X) and q(X) in parallel, sometime the goal q(X)

will sele
t Clause (3{2). Then the body goal of Clause (3{2) will bind the shared

variable X to ok, and the goal p(X), now instantiated to p(ok), will sele
t Clause

(3{1). This means that sequential exe
ution of
onjun
tive goals is not a legal

exe
ution strategy in general.

The se
ond possible di�eren
e is that sequential exe
ution may be trapped by

in�nite
omputation when parallel exe
ution
ould avoid it. For example, suppose

we solve
andidate
lauses for a goalG sequentially, moving to the next
lause when

the previous
lause turns out to be unsele
table forever or when it has to wait for

instantiation of G. Then, if the guard of some
lause falls into in�nite
omputation

(i.e.,
onstru
tion of an in�nite proof tree) trying to be solved, subsequent
lauses

whose guards
ould be solved and sele
ted will not be exe
uted forever.

In a word, serialization of operations is allowed when and only when it does not

make an exe
ution trapped by unresumable suspension or in�nite
omputation.

For example, we
an exploit sequentiality between the guard and the body of

a
lause, and between the head and the guard goals of a
lause. Serialization

{ 7 {

may be useful for avoiding s
heduling overhead of pseudo-parallel exe
ution and

omputation that may not
ontribute to the su

ess of a top-level goal
lause.

The above rules of suspension and
ommitment guarantee that among pro-

gram
lauses
alled by a goal G, only one that is sele
ted for
ommitment
an

instantiate G (by exe
uting its body goals). Thus only one binding environment

need be managed. The guard of a
lause is entirely passive and never instantiates

G. The guard of a
lause suspends until G gets enough binding information to

sele
t that
lause, and then the body generates bindings ba
k to the
aller. This

suspension me
hanism is very important be
ause due to the single environment

restri
tion,
ommitment
an never be revoked and hen
e must be done deliberately

based on suÆ
ient information.

Unlike an ordinary Horn
lause, a guarded Horn
lause expli
itly spe
i�es

the dire
tion of
omputation. For instan
e, a program for
on
atenating two lists

annot be used for dividing a list into two. If a program is used against its intended

dire
tion, it simply suspends.

4. GHC as a Pro
ess Des
ription Language

It is said that the main purpose of a logi
 programming system is to
om-

pute answer substitutions for a given goal [5℄, but in the original framework, its

su

ess or failure should be important as well. In GHC, we are more interested in

bindings generated by
omputation. Most programs are de�ned so that they will

su

essfully solve a given goal, and a program that does not su

eed for a `
orre
t'

goal (due to deadlo
k or unsu

essful uni�
ation) is usually erroneous.

Therefore, it is quite natural to view a GHC program in terms of binding

information and the agents that observe and generate it. Consider the following

program:

gen(N,Ns) :- true | Ns=[N|Ns1℄, N1:=N+1, gen(N1,Ns1). (4{1)

This
lause de�nes an eager generator of a sequen
e of integers. On
e we generate a

goal gen(1,Xs), Xs will be gradually instantiated and will approximate an in�nite

list of integers beginning with 1. This goal generates bindings autonomously, sin
e

the guard of Clause (4{1)
alled by the top-level and re
ursive goals
an always

su

eed immediately. However, if Clause (4{1) is rewritten as follows, the behavior

of the goal will be quite di�erent:

gen(N,[M|Ns1℄) :- true | M=N, N1:=N+1, gen(N1,Ns1). (4{2)

Now the goal gen(1,Xs) will suspend as long as no other goal instantiates Xs,

sin
e unifying Xs with [M|Ns1℄ in the guard would instantiate Xs and violate the

rules of suspension. However, if some
onjun
tive goal (say p) has instantiated Xs

to [X1|Xs1℄, then gen(1,Xs), whi
h has now be
ome gen(1,[X1|Xs1℄), sele
ts

{ 8 {

Clause (4{2) and binds X1 to 1. If p has further instantiated Xs1 to [X2|Xs2℄,

gen(1,Xs) will bind X2 to 2. Thus, the goal gen(1,Xs)
annot
reate a list

stru
ture by itself, but it �lls a given list stru
ture with su

essive integers. It

an be
alled a demand-driven (lazy) generator of a sequen
e of integers, where

instantiating (a sublist of) Xs to the stru
ture [Car|Cdr℄
an be regarded as a

demand. Note that Clauses (4{1) and (4{2) are equivalent as logi
al formulae; the

di�eren
e
omes from whether the se
ond argument of the
aller is uni�ed with

the list stru
ture in the guard or in the body.

In general, a goal
an be viewed as a pro
ess that observes input bindings

and generates output bindings a

ording to them. Observation and generation

of bindings are the basis of
omputation and
ommuni
ation in our model. The

behavior of a pro
ess is de�ned by program
lauses using other pro
esses, possibly

re
ursively. A program
lause
an be viewed as a pro
ess rewrite rule. Consider

Clause (4{2). Its guard spe
i�es the
onditions for
ommitment: The predi
ate

must be `gen' with two arguments and the se
ond argument must have the list

stru
ture [Car|Cdr℄. If both
onditions are satis�ed, this
lause
an be sele
ted;

and if sele
ted, the original goal is repla
ed by the three goals M=N, N1:=N+1, and

gen(N1,Ns1). The goal M=N determines the value of the �rst element of the list,

N1:=N+1
omputes the value for the next element, and gen(N1,Ns1) generates the

sublist Ns1 in a similar way on demand. Stri
tly speaking, the
ommitment does

not mean that the original goal disappears from a proof tree; the point is that its

fun
tion is realized by the three subgoals.

In the GHC framework, interpro
ess
ommuni
ation is done using shared

variables, but it is quite di�erent from shared-variable
ommuni
ation in pro
e-

dural languages. The di�eren
e
omes from the single-assignment (as opposed to

destru
tive assignment) property of logi
al variables, whi
h
ontributes mu
h to

on
eptual simpli
ity. Sin
e we have a natural notion of an unde�ned value, we

an realize syn
hronization by letting a pro
ess wait until ne
essary values are

known. No other means need be provided for syn
hronization. A shared variable

between re
ursive pro
esses is usually instantiated to a list of data or messages

gradually as
omputation pro
eeds, and we
all su
h a shared variable a stream.

That a sequen
e of data or messages is just a data stru
ture also
ontributes to the

simpli
ity. In most pro
edural languages, sequen
es of
ommuni
ation messages

are impli
it and must be manipulated using a spe
ial set of operations.

One might feel it in
onvenient that many-to-one
ommuni
ation requires ex-

pli
it stream merging de�ned by the following predi
ate:

merge([A|Xs℄,Ys, Zs) :- true | Zs=[A|Zs1℄, merge(Xs,Ys,Zs1).

merge(Xs, [A|Ys℄,Zs) :- true | Zs=[A|Zs1℄, merge(Xs,Ys,Zs1).

merge([℄, Ys, Zs) :- true | Zs=Ys.

merge(Xs, [℄, Zs) :- true | Zs=Xs.

Many-to-one
ommuni
ation serializes messages from two or more sour
es, whi
h

{ 9 {

should involve arbitration on the arrival order of the messages. This means that

any programming language that allows impli
it many-to-one
ommuni
ation does

arbitration impli
itly. However, sin
e the
on
ept of arbitration does not exist in

the original framework of logi
 programming, we had to in
lude it in the form of

the
ommitment operator.

A pro
ess
an also be viewed as performing data-driven
omputation in the

sense that it generates output data when ne
essary input data are available. For

example, the goal N1:=N+1 does nothing until N is instantiated, and binds N1 to

6 when N is bound to 5. Although the predi
ate `:=' will be de�ned as a system

predi
ate for reasons of eÆ
ien
y and
onvenien
e, exa
tly the same behavior
an

be obtained using the following
lause:

N:=5+1 :- true | N=6.

GHC has a unique feature of uniformity and
exibility as a data
ow lan-

guage. It naturally
ontains the notion of non-stri
t data stru
tures. It handles

data-driven and demand-driven
omputation in the same framework. It separates

stati
 program stru
tures and possibly dynami
 pro
ess stru
tures. It allows us

to de�ne mutable obje
ts (su
h as arrays) as pro
esses
ompletely in a de
larative

framework.

Finally, we note that the features of GHC listed in this se
tion apply also

to other parallel logi
 programming languages in
luding PARLOG, Con
urrent

Prolog, and O
 [3℄.

5. Intera
tion with the Outside World

We pointed out in Se
tion 4 that the main purpose of GHC programs is

to
ompute binding information. However, observing an answer substitution re-

turned by the system is not the normal way of intera
ting with a large program.

It may be good for a query language whi
h allows only a very restri
ted form of

input/output, but is not appropriate for more general input/output required in

intera
tive programs. It looks like the logi
 programming
ounterpart of the post-

mortem dump fa
ilities in
onventional operating systems. A method for normal

input/output must be provided separately from it.

In the GHC framework, the most appropriate input/output method is to

in
lude in a goal
lause a goal (i.e., a pro
ess) modeling the outside world. This is

quite natural be
ause the
omputer and the outside world always run
on
urrently.

The outside world in
ludes everything outside the proof pro
edure; it in
ludes the

operating system that manages and performs physi
al input/output, peripheral

devi
es, and a human being in front of the terminal. It is important to note that

the outside world parti
ipates in the proof pro
edure instead of observing it.

{ 10 {

Treating the outside world as a pro
ess means that we treat interpro
ess
om-

muni
ation and input/output in the same framework. In addition to the
on
ep-

tual simpli
ity and uniformity, this
ontributes to the modularity and reusability

of programs. For instan
e, we
an easily redire
t a stream of output data to other

pro
esses for further pro
essing.

The spe
i�
ation of the goal modeling the outside world should be de�ned by

ea
h system. In general, the argument of the goal will represent request messages

to the operating system and a
tual input/output data. The request messages

will be used for spe
ifying a devi
e, an a

ess method, and so on. There will

be various a

ess methods for input/output, sin
e a method appropriate for one

appli
ation may be inappropriate for another. For instan
e, input data from a

magneti
 tape will be best formulated as a stream instantiated in a data-driven

manner, while input data from a terminal may be better formulated as responses

to requests issued by a program. Thus, full-
edged input/output fa
ilities for GHC

may not be very simple, but still it will a
hieve a
ertain simpli�
ation in that

everything in
luding data-driven and demand-driven input is realized within the

basi
 framework of the language.

6. GHC as a Logi
 Programming Language

This se
tion examines GHC as a logi
 programming language. The opera-

tional semanti
s of GHC des
ribed in Se
tion 3.2 is a sound proof pro
edure for

a Horn-
lause program; if a goal
lause \ :- B

1

, : : :, B

n

." su

eeds with an

answer substitution �, 8(B

1

�, : : :,B

n

�) is a logi
al
onsequen
e of the program.

Unfortunately, it is not a
omplete proof pro
edure. The in
ompleteness is due to

the single-environment restri
tion whi
h means only one solution
an be returned.

However, not a few of logi
 programs we write are deterministi
 when used in their

intended dire
tions, i.e., ea
h of them is expe
ted to return a single solution whi
h

is not a�e
ted by the
hoi
e nondeterminism involved in
ommitment. Moreover,

it is unlikely that one
an write a
orre
t and eÆ
ient program without thinking

of how the values of variables are determined, whether the program is intended to

return single or multiple solutions. So it is worth noting that as long as we write

a deterministi
 logi
 program with a
orre
t spe
i�
ation of the intended data

ow (using the guard/body distin
tion) and as long as we use it in the intended

dire
tion it expresses, the operational semanti
s of GHC is
omplete.

There are two
ases where a program
annot apparently be deterministi
. One

is where we want to use don't-
are (
hoi
e) nondeterminism intentionally. In this

ase, the loss of possible solutions due to
ommitment is just what the programmer

wants to spe
ify, so in
ompleteness is not a defe
t. The other
ase is where we

really want to sear
h all possible solutions, that is, where we don't want to have

guard and
ommitment. Ordinary Horn
lauses should be a better language for

this purpose, but we
an relate these two languages by a translation te
hnique.

{ 11 {

Ueda [8℄ proposed a te
hnique for
ompiling an exhaustive sear
h program in or-

dinary Horn
lauses into a deterministi
 GHC program. Colle
ting all solutions

requires the primitives like setof and bagof of DEC-10 Prolog whose semanti
s

annot be explained only by the semanti
s of �rst-order logi
 programming. The

above te
hnique
ompiles away su
h primitives without introdu
ing any extralog-

i
al features, and establishes ordinary Horn
lauses as a user language on top of

GHC for simple sear
h problems.

GHC has a greater expressive power as a programming language than the orig-

inal framework, but of
ourse this means that the semanti
s of GHC is less simple

and that me
hani
al handling of programs su
h as program transformation is less

easy. Nevertheless, being based on logi
 programming is an advantage of GHC: A

program allows de
larative reading as a logi
al formula, and the des
ription of the

semanti
s is made quite simple using the terms of theorem proving.

GHC has no notion of the order of program
lauses or the order of goals

in a
lause, ex
ept that ea
h
lause has a guard and a body. For this reason,

many extralogi
al built-in predi
ates of Prolog whose behavior is order- (or time-)

dependent
annot make any sense and are ex
luded from GHC. Among su
h pred-

i
ates are input/output predi
ates �a la Prolog; other examples are predi
ates like

var and `==' used for knowing the `
urrent' state of instantiation. We have found

that GHC en
ourages programmers to write better logi
 programs; programmers

never make inadvertent use of extralogi
al features that often happens in Prolog

programming.

Referen
es

[1℄ Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren,

D. H. D., DECsystem-10 Prolog User's Manual. Dept. of Arti�
ial Intelligen
e,

Univ. of Edinburgh, 1983.

[2℄ Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logi
. ACM

Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1{49.

[3℄ Hirata, M., Letter to the editor. Sigplan Noti
es, Vol. 21, No. 5 (1986),

pp. 16{17.

[4℄ Kowalski, R., Algorithm = Logi
 + Control. Comm. ACM, Vol. 22, No. 7

(1979), pp. 424{436.

[5℄ Lloyd, J. W. Foundations of Logi
 Programming. Springer-Verlag, Berlin

Heidelberg New York Tokyo, 1984.

[6℄ Shapiro, E. Y., A Subset of Con
urrent Prolog and Its Interpreter. ICOT

Te
h. Report TR-003, Institute for New Generation Computer Te
hnology,

Tokyo, 1983.

{ 12 {

[7℄ Ueda, K., Guarded Horn Clauses. ICOT Te
h. Report TR-103, Institute

for New Generation Computer Te
hnology, Tokyo, 1985 (revised in 1986).

Also in Pro
. Logi
 Programming '85, Wada, E. (ed.), Le
ture Notes in

Computer S
ien
e 221, Springer-Verlag, Berlin Heidelberg New York Tokyo,

1986, pp. 168{179. Also to appear in Con
urrent Prolog: Colle
ted Papers,

Vol. 1, Shapiro, E. Y. (ed.), The MIT Press, Cambridge, Mass, 1987.

[8℄ Ueda, K., Making Exhaustive Sear
h Programs Deterministi
. New Genera-

tion Computing, Vol. 5, No. 1 (1987), pp. 29{44.

[9℄ Ueda, K., Guarded Horn Clauses. Do
toral thesis, Information Engineering

Course, Fa
ulty of Engineering, Univ. of Tokyo, 1986.

[10℄ Ueda, K., Introdu
tion to Guarded Horn Clauses. ICOT Te
h. Report TR-

209, Institute for New Generation Computer Te
hnology, Tokyo, 1986.

{ 13 {

