
ICOT Tehnial Report TR-208

Guarded Horn Clauses: A Parallel Logi Programming

Language with the Conept of a Guard

Kazunori Ueda

Institute for New Generation Computer Tehnology

4-28, Mita 1-Chome, Minato-ku, Tokyo 108 Japan

Otober 1986

Revised: July 1987*

Abstrat. This paper de�nes a parallel logi programming language

alled Guarded Horn Clauses (GHC), introduing the ideas that went into

the design of the language. It also points out that GHC an be viewed

as a proess desription language in whih input and output an be de-

sribed naturally by treating the outside world as a proess. Relationship

between GHC and logi programming in the original, strit sense is also

disussed. Some familiarity with GHC and/or other parallel logi pro-

gramming languages will be helpful in reading this paper, though it is

not indispensable.

1. Introdution

GHC is a parallel programming language devised from examination of the

basi framework and the pratie of logi programming. The most important

harateristi is the simpliity of the language rules and the expressive power

obtained from them. Guard is the only syntati onstrut added to the framework

of logi programming. Although its semantis auses loss of ompleteness whih

would be important for GHC as a theorem prover, it provides the language with

a ontrol mehanism that is a prerequisite for a general programming language.

The main purpose of this paper is to desribe the language GHC informally

but rigorously, but we will also try to introdue the ideas that went into the design

of the language for better understanding. The original doument of GHC is [7℄, and

the most detailed desription of the language is found in [9℄. Ueda [10℄ introdues

GHC through program examples.

2. Design Goals of GHC

GHC was designed as a general parallel programming language based on Horn-

lause logi. By a general parallel programming language we mean a language

* To appear in Programming of Future Generation Computers, M. Nivat and K. Fuhi (eds.),

North-Holland, Amsterdam, 1987.

{ 1 {

in whih we an desribe proesses and interations among them. The important

point is that we must be able to handle interating proesses; if we have only to deal

with mutually independent proesses, the subtle problems of parallel programming

will not appear, but the language will be less expressive.

The above requirement means that we need some notion of ontrol, whih

is in general used for introduing reasonable order among primitive operations

onstituting a omputation. The order should of ourse be partial for a paral-

lel programming language. GHC introdued partial order to (atomi piees of)

uni�ation, a primitive operation in logi programming.

Realling that a sequential algorithm spei�es a total order on primitive op-

erations, a parallel algorithm an be de�ned as speifying a partial order on them,

and this is just what we intend to express in GHC. In this sense, GHC ould be

viewed as a realization of Kowalski's thesis \algorithm = logi + ontrol" [4℄.

There may be various ways to ahieve our purposes and to obtain a parallel

programming language. Conurrent Prolog [6℄, PARLOG [2℄ and GHC share the

above design goals in priniple, and they all have guard as a syntati onstrut.

The unique feature of GHC is that it uses guard as the only syntati onstrut,

as we will desribe below.

3. Syntax and Semantis

3.1. Syntax

A GHC program is a set of guarded Horn lauses of the following form:

H :- G

1

, : : :,G

m

|B

1

, : : :,B

n

. (m > 0; n > 0):

whereH, G

i

's, and B

i

's are atomi formulas. H is alled a lause head, the G

i

's are

alled guard goals, and the B

i

's are alled body goals. The onnetive `:-' means

`is implied by', and `,' means onjuntion. The only di�erene from an ordinary

Horn lause is that one of the onjuntive operators is replaed by a ommitment

operator `|'. The part of a lause before `|' is alled a guard, and the part after `|'

is alled a body. Note that the lause head is inluded in the guard. Delaratively,

the ommitment operator denotes onjuntion, and the above guarded Horn lause

is read as \H is implied by G

1

; : : : ; G

m

and B

1

; : : : ; B

n

".

We use a goal lause of the following form to start a GHC program:

:- B

1

, : : :, B

n

. (n > 0):

This is just an ordinary Horn lause used in the original framework.

We follow the syntati onvention of DEC-10 Prolog [1℄ that begins onstant,

funtion and prediate symbols by lowerase letters or symbols and variables by

upperase letters.

{ 2 {

One binary prediate, `=', is prede�ned by the language. The prediate `=' is

used for unifying two terms. This prediate is onsidered as prede�ned, sine it

annot be de�ned in the language. However, the reason for this is purely notational

and we need not regard it as the seond additional onstrut, as will be explained

in Setion 3.2.

The nullary prediate true is used for denoting an empty set of guard or body

goals expliitly in a program. The use of true is for notational onveniene and

is not essential at all. Atually it ould be de�ned as follows:

true :- 1=1 | 1=1.

3.2. Semantis

The semantis of GHC is desribed in two stages: (i) parallel input resolution

as a basis, and (ii) a restrition to a single environment imposed on it. The

seond stage desribes the di�erenes between the original framework and GHC

by introduing the semantis of the distintion between guard and body. The �rst

stage, parallel input resolution, is not spei� to GHC, so we �rst desribe it for

a set of ordinary Horn lauses. The desription will then be slightly modi�ed for

use as the basis of GHC.

The resolution strategy normally used as the basi framework of logi pro-

gramming is SLD-resolution [5℄. However, it is too spei� as a framework of

parallel exeution of logi programs and this is why we begin with de�ning paral-

lel input resolution.

We �rst onsider a proof tree onstruted from a program P and a goal lause

C de�ned as follows:

(1) The root represents the goal lause C, and has an outgoing ar for eah body

goal.

(2) Eah non-root node represents a program lause in P , and has one inoming

ar from its parent node and an outgoing ar for eah body goal.

Heneforth we may identify a node with the lause it represents. Note that the

leaves of a tree represent unit lauses.

Eah ar A of a proof tree is onsidered as representing an equation G = H,

where G is the body goal (of the parent node) orresponding to A and H is the

head of the hild node C. The goal G is alled the aller of C, and G is said to

all C.

The set of all the ars in a proof tree de�nes a uni�ation problem. The

answer substitution of a proof tree is the most general uni�er of the uni�ation

problem. A proof tree may not have an answer substitution; a proof tree that has

{ 3 {

an answer substitution is alled a non-ordered refutation. Note that there may

be many possible proof trees onstruted from a given program and a goal lause,

sine any program lause an be a hild of a given parent node.

Our purpose is to obtain non-ordered refutations and their answer substitu-

tions for a given program and a goal lause, whih is ahieved by performing the

following two tasks:

(1) prodution of possible proof trees, and

(2) solution of the uni�ation problem de�ned by eah proof tree.

The proof proedure may exploit parallelism in the above tasks. Firstly, it may

exploit parallelism in onstruting a non-ordered refutation: A proof tree may

be onstruted in parallel, the assoiated uni�ation problem may be solved in

parallel, and these two tasks may be performed in parallel. This proof method is

alled parallel input resolution, and the parallelism of this kind is often referred to

as AND-parallelism. The primitive operation in the onstrution of a proof tree

is to provide a body goal with a renamed program lause, leaving uni�ation of

the goal and the lause head as a separate operation. The primitive operations

in solving a uni�ation problem are those in the uni�ation algorithm employed.

We do not speify a partiular uni�ation algorithm, but only request that the

algorithm be orret, that is, it alulates the most general uni�er if and only if

the original uni�ation problem has it.

Seondly, the proof proedure may exploit parallelism in getting di�erent non-

ordered refutations. Parallelism of this kind is often referred to as OR-parallelism.

Amending the above framework for GHC requires the following modi�ation.

Firstly, eah non-root node representing a guarded Horn lause must have an

outgoing ar for eah guard goal as well as for eah body goal. Seondly, the

prede�ned prediate `=' is treated as if there were a unit lause \X = X." whose

ontents are semantially divided into two parts: The prediate name `=' and its

arity are treated like the entities in a guard, and the identity of the two arguments

are treated like the entities in a body.

Now we give the semantis of the distintion between guard and body by

restriting the above parallel input resolution.

In the above framework, di�erent proof trees onstruted from a given pro-

gram and a goal lause are treated independently. A variable in the goal lause may

be bound to di�erent values in di�erent proof trees, and this is why OR-parallel

Prolog requires implementation of multiple binding environments. Baktraking

in sequential Prolog is also regarded as a sequential implementation of multiple

environments.

On the other hand, GHC treats all proof trees in a single environment rather

than independently. For this purpose, it disallows uni�ation performed in two

{ 4 {

proof trees to instantiate orresponding variables to di�erent values, where the

orrespondene of entities in di�erent proof trees is de�ned as follows. Given two

proof trees T

1

and T

2

onstruted from a given program and a goal lause, we say

(i) that a non-root node in T

1

and a non-root node in T

2

orrespond if they

represent idential program lauses (up to renaming) and their parent nodes

orrespond, and

(ii) that the roots of T

1

and T

2

orrespond.

Further we say that two variables orrespond if they appear in the same position of

the (idential) program lauses represented by orresponding nodes. If orrespond-

ing variables are never instantiated di�erently, it is unneessary for orresponding

nodes to represent independent program lauses. Therefore, in the following we

assume that orresponding nodes share the program lause they represent.

The purpose of the above single environment restrition is to let any substitu-

tion be ommon and global throughout the exeution of a program and to let it be

determinate and unneessary to revoke. This restrition fores GHC to abandon

ompleteness as a proof proedure. However, disallowing nondeterminate bind-

ings greatly simpli�es a binding-oriented view of the exeution of logi programs

disussed in detail in Setion 4.

The simplest way to ahieve the single environment restrition is to restrit

resolution so that no bindings may be generated, but it will severely limit the

expressive power of the language. To obey the restrition while letting the language

be still useful, we impose the following rules of suspension:

� Rules of Suspension

(a) Uni�ation invoked diretly or indiretly in the guard of a lause C alled

by a goal G (i.e., uni�ation of G with the head of C and any uni�ation

invoked by solving the guard goals of C) annot instantiate the goal G.

(b) Uni�ation invoked diretly or indiretly in the body of a lause C alled

by a goal G annot instantiate the guard of C or G until C is seleted

for ommitment (see below).

A piee of uni�ation that an sueed only by ausing suh instantiation is

suspended until it an sueed without ausing suh instantiation (end of the

rules of suspension).

Here, we assume that any substitution (legally) generated by a piee of uni�ation

is applied to the proof trees, instantiating the lauses represented by their nodes.

This means that the equations de�ned by the proof trees are always getting in-

stantiated.

For the lause de�ning the prediate `=', the above rules are understood as

follows: Uni�ation between the lause \X = X." and its aller G (whih does not

{ 5 {

neessarily all the prediate `=') annot instantiate G until this lause is seleted

for ommitment.

A suspended piee of uni�ation may (but annot always) be resumed when

some other uni�ation goal running in parallel has instantiated the variable that

aused suspension to some term. For example, if the guard of C tries to unify X

appearing in G with a, the uni�ation suspends due to Rule (a) above. It an be

resumed and sueeds when some other goal instantiates X to a. If the guard of C

tries to unify X and Y both appearing in G, then the uni�ation an be resumed

and sueeds either when X and Y are uni�ed together and beome idential or

when both X and Y are bound to an idential non-variable term.

Another rule we must have is the rule of ommitment:

� Rule of Commitment

When some lause C alled by a goal G sueeds in solving (see below) its

guard, the lause C tries to be seleted for subsequent exeution (i.e., proof) of

G. To be seleted, C must �rst on�rm that no other lauses in the program

have been seleted for G. If on�rmed, C is seleted indivisibly, and the

exeution of G is said to be ommitted to the lause C (end of the rule of

ommitment).

For the lause de�ning the prediate `=', the above rule is understood as

follows: When it is on�rmed that a goal G alls the binary prediate `=', the

lause \X = X." tries to be seleted for establishing the identity of the arguments

by unifying them.

We say that a part P of a program lause C alled by a goal G or of a goal

lause C sueeds (or is solved) if the proof proedure sueeds in onstruting

the part of a proof tree onsisting of

(i) the ars orresponding to the body goals in P ,

(ii) the subtrees having the hild nodes of those ars as their roots, and

(iii) if C is a program lause and P ontains the headH of C, the ar orresponding

to the uni�ation of G with H

suh that

(a) the set of the ars in it has a most general uni�er (under the rule of suspension)

and

(b) the nodes in it all orrespond to seleted lauses.

As a speial ase, we say that a goal lause sueeds if the proof proedure sueeds

in onstruting a non-ordered refutation whose non-root nodes all orrespond to

seleted lauses. We do not say that a goal lause sueeds even if the proof

{ 6 {

proedure onstruts a non-ordered refutation with a non-root node representing

a non-seleted lause: We are interested in a proof in whih only seleted lauses

are involved. The above de�nition does not introdue the notion of failure. We

ould introdue it, but it is not neessary for ordinary appliations.

It must be stressed that under the rules stated above, anything an be done in

parallel. To put it preisely, parallel exeution is the basi omputation strategy

in GHC, whether performed by a parallel omputer or simulated by a sequential

omputer. Conjuntive goals (i.e., goals in the same proof tree) are solved in

parallel; andidate lauses alled by a goal (that belong to di�erent proof trees)

ompete in parallel for ommitment; uni�ation of a goal with the head of a

andidate lause is done in parallel, both internally and with the exeution of

guard goals.

However, it must be even more stressed that we an also exeute a set of

operations in a predetermined order as long as it does not a�et the result. There

are two possible ways in whih pre-ordering of operations makes di�erene. One is

that sequential exeution may suspend forever on a piee of uni�ation whih par-

allel exeution would sometime make sueed. For example, onsider the following

program

p(ok) :- true | true. (3{1)

q(Z) :- true | Z=ok. (3{2)

and a goal lause \:- p(X),q(X)."; and suppose we solve the goal lause sequen-

tially from left to right, moving to the next goal when and only when the previous

goal has sueeded. Then the goal p(X) will suspend (beause the the head p(ok)

of Clause (3{1) would otherwise instantiate it) and the exeution will result in

deadlok. However, if we solve p(X) and q(X) in parallel, sometime the goal q(X)

will selet Clause (3{2). Then the body goal of Clause (3{2) will bind the shared

variable X to ok, and the goal p(X), now instantiated to p(ok), will selet Clause

(3{1). This means that sequential exeution of onjuntive goals is not a legal

exeution strategy in general.

The seond possible di�erene is that sequential exeution may be trapped by

in�nite omputation when parallel exeution ould avoid it. For example, suppose

we solve andidate lauses for a goalG sequentially, moving to the next lause when

the previous lause turns out to be unseletable forever or when it has to wait for

instantiation of G. Then, if the guard of some lause falls into in�nite omputation

(i.e., onstrution of an in�nite proof tree) trying to be solved, subsequent lauses

whose guards ould be solved and seleted will not be exeuted forever.

In a word, serialization of operations is allowed when and only when it does not

make an exeution trapped by unresumable suspension or in�nite omputation.

For example, we an exploit sequentiality between the guard and the body of

a lause, and between the head and the guard goals of a lause. Serialization

{ 7 {

may be useful for avoiding sheduling overhead of pseudo-parallel exeution and

omputation that may not ontribute to the suess of a top-level goal lause.

The above rules of suspension and ommitment guarantee that among pro-

gram lauses alled by a goal G, only one that is seleted for ommitment an

instantiate G (by exeuting its body goals). Thus only one binding environment

need be managed. The guard of a lause is entirely passive and never instantiates

G. The guard of a lause suspends until G gets enough binding information to

selet that lause, and then the body generates bindings bak to the aller. This

suspension mehanism is very important beause due to the single environment

restrition, ommitment an never be revoked and hene must be done deliberately

based on suÆient information.

Unlike an ordinary Horn lause, a guarded Horn lause expliitly spei�es

the diretion of omputation. For instane, a program for onatenating two lists

annot be used for dividing a list into two. If a program is used against its intended

diretion, it simply suspends.

4. GHC as a Proess Desription Language

It is said that the main purpose of a logi programming system is to om-

pute answer substitutions for a given goal [5℄, but in the original framework, its

suess or failure should be important as well. In GHC, we are more interested in

bindings generated by omputation. Most programs are de�ned so that they will

suessfully solve a given goal, and a program that does not sueed for a `orret'

goal (due to deadlok or unsuessful uni�ation) is usually erroneous.

Therefore, it is quite natural to view a GHC program in terms of binding

information and the agents that observe and generate it. Consider the following

program:

gen(N,Ns) :- true | Ns=[N|Ns1℄, N1:=N+1, gen(N1,Ns1). (4{1)

This lause de�nes an eager generator of a sequene of integers. One we generate a

goal gen(1,Xs), Xs will be gradually instantiated and will approximate an in�nite

list of integers beginning with 1. This goal generates bindings autonomously, sine

the guard of Clause (4{1) alled by the top-level and reursive goals an always

sueed immediately. However, if Clause (4{1) is rewritten as follows, the behavior

of the goal will be quite di�erent:

gen(N,[M|Ns1℄) :- true | M=N, N1:=N+1, gen(N1,Ns1). (4{2)

Now the goal gen(1,Xs) will suspend as long as no other goal instantiates Xs,

sine unifying Xs with [M|Ns1℄ in the guard would instantiate Xs and violate the

rules of suspension. However, if some onjuntive goal (say p) has instantiated Xs

to [X1|Xs1℄, then gen(1,Xs), whih has now beome gen(1,[X1|Xs1℄), selets

{ 8 {

Clause (4{2) and binds X1 to 1. If p has further instantiated Xs1 to [X2|Xs2℄,

gen(1,Xs) will bind X2 to 2. Thus, the goal gen(1,Xs) annot reate a list

struture by itself, but it �lls a given list struture with suessive integers. It

an be alled a demand-driven (lazy) generator of a sequene of integers, where

instantiating (a sublist of) Xs to the struture [Car|Cdr℄ an be regarded as a

demand. Note that Clauses (4{1) and (4{2) are equivalent as logial formulae; the

di�erene omes from whether the seond argument of the aller is uni�ed with

the list struture in the guard or in the body.

In general, a goal an be viewed as a proess that observes input bindings

and generates output bindings aording to them. Observation and generation

of bindings are the basis of omputation and ommuniation in our model. The

behavior of a proess is de�ned by program lauses using other proesses, possibly

reursively. A program lause an be viewed as a proess rewrite rule. Consider

Clause (4{2). Its guard spei�es the onditions for ommitment: The prediate

must be `gen' with two arguments and the seond argument must have the list

struture [Car|Cdr℄. If both onditions are satis�ed, this lause an be seleted;

and if seleted, the original goal is replaed by the three goals M=N, N1:=N+1, and

gen(N1,Ns1). The goal M=N determines the value of the �rst element of the list,

N1:=N+1 omputes the value for the next element, and gen(N1,Ns1) generates the

sublist Ns1 in a similar way on demand. Stritly speaking, the ommitment does

not mean that the original goal disappears from a proof tree; the point is that its

funtion is realized by the three subgoals.

In the GHC framework, interproess ommuniation is done using shared

variables, but it is quite di�erent from shared-variable ommuniation in proe-

dural languages. The di�erene omes from the single-assignment (as opposed to

destrutive assignment) property of logial variables, whih ontributes muh to

oneptual simpliity. Sine we have a natural notion of an unde�ned value, we

an realize synhronization by letting a proess wait until neessary values are

known. No other means need be provided for synhronization. A shared variable

between reursive proesses is usually instantiated to a list of data or messages

gradually as omputation proeeds, and we all suh a shared variable a stream.

That a sequene of data or messages is just a data struture also ontributes to the

simpliity. In most proedural languages, sequenes of ommuniation messages

are impliit and must be manipulated using a speial set of operations.

One might feel it inonvenient that many-to-one ommuniation requires ex-

pliit stream merging de�ned by the following prediate:

merge([A|Xs℄,Ys, Zs) :- true | Zs=[A|Zs1℄, merge(Xs,Ys,Zs1).

merge(Xs, [A|Ys℄,Zs) :- true | Zs=[A|Zs1℄, merge(Xs,Ys,Zs1).

merge([℄, Ys, Zs) :- true | Zs=Ys.

merge(Xs, [℄, Zs) :- true | Zs=Xs.

Many-to-one ommuniation serializes messages from two or more soures, whih

{ 9 {

should involve arbitration on the arrival order of the messages. This means that

any programming language that allows impliit many-to-one ommuniation does

arbitration impliitly. However, sine the onept of arbitration does not exist in

the original framework of logi programming, we had to inlude it in the form of

the ommitment operator.

A proess an also be viewed as performing data-driven omputation in the

sense that it generates output data when neessary input data are available. For

example, the goal N1:=N+1 does nothing until N is instantiated, and binds N1 to

6 when N is bound to 5. Although the prediate `:=' will be de�ned as a system

prediate for reasons of eÆieny and onveniene, exatly the same behavior an

be obtained using the following lause:

N:=5+1 :- true | N=6.

GHC has a unique feature of uniformity and exibility as a dataow lan-

guage. It naturally ontains the notion of non-strit data strutures. It handles

data-driven and demand-driven omputation in the same framework. It separates

stati program strutures and possibly dynami proess strutures. It allows us

to de�ne mutable objets (suh as arrays) as proesses ompletely in a delarative

framework.

Finally, we note that the features of GHC listed in this setion apply also

to other parallel logi programming languages inluding PARLOG, Conurrent

Prolog, and O [3℄.

5. Interation with the Outside World

We pointed out in Setion 4 that the main purpose of GHC programs is

to ompute binding information. However, observing an answer substitution re-

turned by the system is not the normal way of interating with a large program.

It may be good for a query language whih allows only a very restrited form of

input/output, but is not appropriate for more general input/output required in

interative programs. It looks like the logi programming ounterpart of the post-

mortem dump failities in onventional operating systems. A method for normal

input/output must be provided separately from it.

In the GHC framework, the most appropriate input/output method is to

inlude in a goal lause a goal (i.e., a proess) modeling the outside world. This is

quite natural beause the omputer and the outside world always run onurrently.

The outside world inludes everything outside the proof proedure; it inludes the

operating system that manages and performs physial input/output, peripheral

devies, and a human being in front of the terminal. It is important to note that

the outside world partiipates in the proof proedure instead of observing it.

{ 10 {

Treating the outside world as a proess means that we treat interproess om-

muniation and input/output in the same framework. In addition to the onep-

tual simpliity and uniformity, this ontributes to the modularity and reusability

of programs. For instane, we an easily rediret a stream of output data to other

proesses for further proessing.

The spei�ation of the goal modeling the outside world should be de�ned by

eah system. In general, the argument of the goal will represent request messages

to the operating system and atual input/output data. The request messages

will be used for speifying a devie, an aess method, and so on. There will

be various aess methods for input/output, sine a method appropriate for one

appliation may be inappropriate for another. For instane, input data from a

magneti tape will be best formulated as a stream instantiated in a data-driven

manner, while input data from a terminal may be better formulated as responses

to requests issued by a program. Thus, full-edged input/output failities for GHC

may not be very simple, but still it will ahieve a ertain simpli�ation in that

everything inluding data-driven and demand-driven input is realized within the

basi framework of the language.

6. GHC as a Logi Programming Language

This setion examines GHC as a logi programming language. The opera-

tional semantis of GHC desribed in Setion 3.2 is a sound proof proedure for

a Horn-lause program; if a goal lause \ :- B

1

, : : :, B

n

." sueeds with an

answer substitution �, 8(B

1

�, : : :,B

n

�) is a logial onsequene of the program.

Unfortunately, it is not a omplete proof proedure. The inompleteness is due to

the single-environment restrition whih means only one solution an be returned.

However, not a few of logi programs we write are deterministi when used in their

intended diretions, i.e., eah of them is expeted to return a single solution whih

is not a�eted by the hoie nondeterminism involved in ommitment. Moreover,

it is unlikely that one an write a orret and eÆient program without thinking

of how the values of variables are determined, whether the program is intended to

return single or multiple solutions. So it is worth noting that as long as we write

a deterministi logi program with a orret spei�ation of the intended data

ow (using the guard/body distintion) and as long as we use it in the intended

diretion it expresses, the operational semantis of GHC is omplete.

There are two ases where a program annot apparently be deterministi. One

is where we want to use don't-are (hoie) nondeterminism intentionally. In this

ase, the loss of possible solutions due to ommitment is just what the programmer

wants to speify, so inompleteness is not a defet. The other ase is where we

really want to searh all possible solutions, that is, where we don't want to have

guard and ommitment. Ordinary Horn lauses should be a better language for

this purpose, but we an relate these two languages by a translation tehnique.

{ 11 {

Ueda [8℄ proposed a tehnique for ompiling an exhaustive searh program in or-

dinary Horn lauses into a deterministi GHC program. Colleting all solutions

requires the primitives like setof and bagof of DEC-10 Prolog whose semantis

annot be explained only by the semantis of �rst-order logi programming. The

above tehnique ompiles away suh primitives without introduing any extralog-

ial features, and establishes ordinary Horn lauses as a user language on top of

GHC for simple searh problems.

GHC has a greater expressive power as a programming language than the orig-

inal framework, but of ourse this means that the semantis of GHC is less simple

and that mehanial handling of programs suh as program transformation is less

easy. Nevertheless, being based on logi programming is an advantage of GHC: A

program allows delarative reading as a logial formula, and the desription of the

semantis is made quite simple using the terms of theorem proving.

GHC has no notion of the order of program lauses or the order of goals

in a lause, exept that eah lause has a guard and a body. For this reason,

many extralogial built-in prediates of Prolog whose behavior is order- (or time-)

dependent annot make any sense and are exluded from GHC. Among suh pred-

iates are input/output prediates �a la Prolog; other examples are prediates like

var and `==' used for knowing the `urrent' state of instantiation. We have found

that GHC enourages programmers to write better logi programs; programmers

never make inadvertent use of extralogial features that often happens in Prolog

programming.

Referenes

[1℄ Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren,

D. H. D., DECsystem-10 Prolog User's Manual. Dept. of Arti�ial Intelligene,

Univ. of Edinburgh, 1983.

[2℄ Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logi. ACM

Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1{49.

[3℄ Hirata, M., Letter to the editor. Sigplan Noties, Vol. 21, No. 5 (1986),

pp. 16{17.

[4℄ Kowalski, R., Algorithm = Logi + Control. Comm. ACM, Vol. 22, No. 7

(1979), pp. 424{436.

[5℄ Lloyd, J. W. Foundations of Logi Programming. Springer-Verlag, Berlin

Heidelberg New York Tokyo, 1984.

[6℄ Shapiro, E. Y., A Subset of Conurrent Prolog and Its Interpreter. ICOT

Teh. Report TR-003, Institute for New Generation Computer Tehnology,

Tokyo, 1983.

{ 12 {

[7℄ Ueda, K., Guarded Horn Clauses. ICOT Teh. Report TR-103, Institute

for New Generation Computer Tehnology, Tokyo, 1985 (revised in 1986).

Also in Pro. Logi Programming '85, Wada, E. (ed.), Leture Notes in

Computer Siene 221, Springer-Verlag, Berlin Heidelberg New York Tokyo,

1986, pp. 168{179. Also to appear in Conurrent Prolog: Colleted Papers,

Vol. 1, Shapiro, E. Y. (ed.), The MIT Press, Cambridge, Mass, 1987.

[8℄ Ueda, K., Making Exhaustive Searh Programs Deterministi. New Genera-

tion Computing, Vol. 5, No. 1 (1987), pp. 29{44.

[9℄ Ueda, K., Guarded Horn Clauses. Dotoral thesis, Information Engineering

Course, Faulty of Engineering, Univ. of Tokyo, 1986.

[10℄ Ueda, K., Introdution to Guarded Horn Clauses. ICOT Teh. Report TR-

209, Institute for New Generation Computer Tehnology, Tokyo, 1986.

{ 13 {

