
ICOT Tehnial Report TR-145

Making Exhaustive Searh Programs Deterministi

Kazunori Ueda

Institute for New Generation Computer Tehnology

4-28, Mita 1-home, Minato-ku, Tokyo 108 Japan

November 1985*

Revised: February 1987**

Abstrat. This paper presents a tehnique for ompiling a Horn-lause

program intended for exhaustive searh into a GHC (Guarded Horn

Clauses) program. The tehnique an be viewed also as a transformation

tehnique for Prolog programs whih ompiles away the `bagof' primi-

tive and non-determinate bindings. The lass of programs to whih our

tehnique is appliable is shown with a stati heking algorithm; it is

nontrivial and ould be extended. An experiment on a ompiler-based

Prolog system showed that our tehnique improved the eÆieny of ex-

haustive searh by 6 times for a permutation generator program. This

ompilation tehnique is important also in that it exploits the AND-

parallelism of GHC for parallel searh.

Keywords: Exhaustive searh, Multiple binding environments, Compilation, Pro-

gram transformation, Continuation, Mode analysis, Parallelism, Guarded Horn

Clauses

1. Introdution

We often use Horn-lause logi, or more spei�ally the language Prolog, to

obtain all solutions of some problem, that is, to obtain all answer substitutions for

a goal to be solved. In this framework, however, it is diÆult to ollet the ob-

tained solutions into a single environment for further proessing suh as ounting

the number of the solutions, omparing them, lassifying them, and so on. This

is beause these solutions orrespond to di�erent, independent paths of a searh

tree. For this reason, many of Prolog implementations support system prediates

for reating a list of all the solutions of a goal given as an argument; examples are

`setof' and `bagof' of DEC-10 Prolog (Bowen et al. [1983℄). Naish [1985℄ made

a survey of all-solutions prediates in various Prolog systems. These system pred-

iates, however, internally use some extralogial features to reord the obtained

* A slightly modi�ed version appeared in Pro. Third Int. Conf. on Logi Programming,

Shapiro, E. (ed.), Leture Notes in Computer Siene 225, Springer-Verlag, Berlin

Heidelberg, 1986, pp. 270{282.

** This version appeared in New Generation Computing, Vol. 5, No. 1, pp. 29{44.

{ 1 {

solutions. So it should be an interesting question whether exhaustive searh an

be done without suh primitives.

Another motivation is that we may sometimes wish to do exhaustive searh in

GHC (Ueda [1985℄[1986a℄[1986b℄) or other parallel logi programming languages

whih do not diretly support exhaustive searh. In this ase, parallelism inherent

in GHC should be e�etively used for the searh.

One possible way to ahieve the above requirements is to diretly write down a

�rst-order relation whih states, for example, that \S is a list of all the solutions of

the N -queens problem". It is almost evident that suh a relation an be desribed

within the framework of Horn-lause logi. However, in pratie, it is muh harder

to write it manually than to write a program that �nds only one solution at a time.

A programming tool whih automatially generates an exhaustive searh program

may resolve this situation, and this is the way we will pursue in this paper.

2. Outlines of the Method

Our method is to ompile a Horn-lause program intended for exhaustive

searh using baktraking or OR-parallelism into a GHC program or a determinis-

ti Prolog program whih returns the same (multi-)set of solutions in the form of

a single list. The word `deterministi' means that all bindings given to variables

are determinate and never undone. Prolog programs in this sublass are interest-

ing from the viewpoint of implementation, sine they never all for a trail stak.

Furthermore, determinism in this sense has a similarity with the semantial re-

strition whih GHC imposed to a proof proedure for Horn-lause logi in order to

make all ativities done in a single environment. This similarity is reeted by the

fat that a transformed program an be interpreted both as a GHC program and

as a Prolog program by the slight hange between the `|' (ommitment) operator

and the `!' (ut) operator.

There are two possible views of this transformation tehnique. One is to re-

gard this as ompilation from a Horn-lause program to a guarded-Horn-lause

program. By ompiling OR-parallelism into AND-parallelism, we eliminate a mul-

tiple environment mehanism for managing di�erent binding environments reated

simultaneously by the paths of a searh tree. The other view is to regard it as

transformation of a Prolog program. This transformation serves as simpli�ation

in the sense that all-solutions prediates and the unbinding mehanism an be

eliminated. Moreover, this transformation may remarkably improve the eÆieny

of a searh program, as we will see in Setion 7.

Our tehnique has another important meaning. By making searh performed

in a single environment, it beomes possible to introdue a mehanism for on-

trolling the searh. That is, our tehnique may provide a starting point for more

intelligent searh.

{ 2 {

A transformed program, viewed as a GHC program, emulates the OR-parallel

and AND-sequential exeution of the original program. The original OR-parallel-

ism is ompiled into AND-parallelism as stated above, and the sequential exeution

of onjuntive goals is realized by passing a ontinuation around. The AND-

parallelism of GHC we use is a simple one, sine onjuntive goals solving di�erent

paths of a searh tree have no interation exept when solutions are olleted.

A ontinuation is a data struture whih represents remaining tasks to be done

before we get a solution. The notion of a ontinuation was e�etively used also

in Conurrent Prolog and GHC ompilers on top of Prolog (Ueda and Chikayama

[1985℄) to implement a goal queue. The di�erene is that here we use a stak

instead of a queue.

3. Previous Researh

Implementation tehniques of exhaustive searh in parallel logi programming

languages were proposed by Hirakawa, Chikayama and Furukawa [1984℄ and by

Clark and Gregory [1984b℄. Their approah was to desribe an interpreter of Horn-

lause programs in Conurrent Prolog (Shapiro [1983℄) or PARLOG (Clark and

Gregory [1984a℄), but the following ould be addressed as problems:

(1) The interpreter approah loses eÆieny.

(2) The multiple environment mehanism is implemented as a run-time reation

of new variants of terms.

Here, a new variant of a term T is a term reated by systematially replaing all

the ourrenes of the variables in T by fresh variables.

Problem (1) will not be serious, sine it ould be resolved by a partial evalua-

tion tehnique. Alternatively, we ould diretly write a ompiler whih orresponds

to the original interpreter without muh diÆulty (Ueda and Chikayama [1985℄).

On the other hand, Problem (2) seems serious.

The reason why we need multiple environments is that di�erent uni�ers an

be generated when we rewrite a goal di�erently by using di�erent program lauses

at the same time. Therefore, when we interpret an exhaustive searh program, we

make a neessary number of variants of the urrent set of goals and the partially

determined solution prior to the simultaneous rewriting. The above interpreters

made some optimization to redue the total size of variants to be reated, but they

did not ompletely avoid run-time reation of them.

However, run-time reation of variants is a time-sensitive operation. The se-

mantis of GHC is designed so that it is not a�eted by anti-substitution (Ueda

[1986℄) whih replaes an ourrene of some term T in the guard/body of a lause

by a fresh variable X and adds the goal X=T in that guard/body, respetively.

{ 3 {

Anti-substitution serves as an aid test for new features among other impliations

of it. Applying anti-substitution to a variant reation goal, say `opy(T

1

,T

2

)',

we get a onjuntion `T

1

=T

3

, opy(T

3

,T

2

)'. This rewriting lari�es that the �rst

argument of `opy' speifying an original term may be instantiated with poten-

tial delay. Thus the prediate `opy' is inompatible with anti-substitution, and

GHC annot give any reasonable semantis to it. In sequential Prolog also, the

prediate `opy' should be onsidered extralogial, beause it annot be de�ned

without the extralogial prediate `var' whih heks if its argument is urrently

uninstantiated. The use of extralogial prediates should be disouraged, sine

it introdues semantial omplexity and it hinders desription of programming

systems and support from them.

Carlsson [1984℄ presented implementation of exhaustive searh in funtional

programming. His approah is similar to ours in that both use ontinuations; how-

ever, di�erenes seem more important than the similarity. Firstly, our tehnique

takes parallel exeution into aount. Seondly, our tehnique ompiles away the

environment problem while his approah requires variant reation when olleting

solutions. Thirdly, our tehnique generates logi programs and an therefore be

used as a transformation tool within logi programming.

Reddy [1984℄ also presented a tehnique for transforming logi programs into

funtional programs. Although the mode system we use in our tehnique is very

similar to his, our tehnique is new in the treatment of multiple environments.

4. A Simple Example

To illustrate the di�erene between the previous methods and ours, let us

onsider the example of deomposing a list using `append':

:- append(U, V,[1,2,3℄). (4{1)

append([℄, Z,Z). (4{2)

append([A|X℄,Y,[A|Z℄) :- append(X,Y,Z). (4{3)

From the head of Clause (4{3), we get a partial solution U=[1|X℄. Then we get

three instanes for X, namely [℄, [2℄, and [2,3℄, by reursive alls. However,

these three solutions annot share the ommon pre�x `[1|' as long as the value of

a variable is represented by a referene pointer instead of an assoiation list, and

this is why we have to make variants of the partial solution [1|X℄.

Our method, on the other hand, �rst rewrites Clause (4{3) as follows:

append(X2, Y,[A|Z℄) :- append(X,Y,Z), X2=[A|X℄. (4{4)

The prediate `=' uni�es its two arguments. It an be de�ned by a single unit

lause

X = X.

{ 4 {

We assume that body goals are exeuted from left to right, following head uni�a-

tion. Then, while Clause (4{3) generates answer substitutions in a top-down man-

ner, Clause (4{4) generates them in a bottom-up manner by ombining ground

terms. The �rst output argument X2 remains uninstantiated until the �rst re-

ursive goal, whih may fork beause of the two andidate lauses, sueeds.

Therefore, we need not make variants of the partial solution upon the reursive

all. Clause (4{4) is not tail-reursive, so we must instead push the remaining

task of onstruting the value of X2 onto the stak representing a ontinuation.

However, sine the variable A has a ground value, the remaining task to be staked

an be represented as a ground term and hene the ontinuation need not be opied

when the goal append(X,Y,Z) forks.

Now we are prepared for the elimination of nondeterminism. Program 1

shows a GHC program whih returns the result equivalent (up to the permutation

of solutions) to the following DEC-10 Prolog goal:

:- : : :, bagof((X,Y), append(X,Y,Z), S), : : : : (4{5)

Calling form: :- ..., ap(Z,'L0',S,[℄), ...

ap(Z,Cont,S0,S2) :- true | ap1(Z,Cont,S0,S1), ap2(Z,Cont,S1,S2).

ap1(Z,Cont,S0,S1) :- true | ont(Cont,[℄,Z,S0,S1).

ap2([A|Z℄,Cont,S0,S1) :- true | ap(Z,'L1'(A,Cont),S0,S1).

ap2(Z,

-

, S0,S1) :- otherwise | S0=S1.

ont('L1'(A,Cont),X,Y,S0,S1) :- true | ont(Cont,[A|X℄,Y,S0,S1).

ont('L0', X,Y,S0,S1) :- true | S0=[(X,Y)|S1℄.

Program 1. List deomposition program.

Searh orresponding to the two lauses of `append' is performed by the onjuntive

goals `ap1' and `ap2' generated by `ap'. The arguments of these prediates are as

follows:

(i) the input (i.e., the third) argument of the original program,

(ii) the ontinuation,

(iii) the head of the di�erene list of solutions, and

(iv) its tail.

The funtion symbols onstruting the ontinuation an be regarded as indi-

ating the loations of the original program: `L0' indiates the end of Clause (4{1)

{ 5 {

and `L1' indiates the end of the reursive all of Clause (4{4). The top-level goal

initializes the ontinuation to `L0'.

Sine Clause (4{2) is a unit lause, the orresponding prediate `ap1' ativates

the `remaining tasks' by alling the prediate `ont' for ontinuation proessing.

At that time, two output results, [℄ and the input argument itself, are passed to

the ontinuation proessing goal. The prediate `ap2' heks if the input argument

has the form [A|Z℄, and if so, ativates the �rst goal in the original lause with the

information on the seond goal attahed to the ontinuation. The new ontinuation

`L1'(A,Cont) indiates that the ontrol must be returned to `L1' and that A is

the value to be pushed in front of X. If the input argument is not of the form

[A|Z℄, the uni�ation of the input argument fails and an empty di�erene list is

returned immediately.

The prediate `ont' does ontinuation proessing. If the ontinuation has

the form `L1'(A,Cont), it pushes A in front of the output X and alls `ont' to

proess the rest of the ontinuation, Cont. If the ontinuation has the form `L0',

it inserts the two outputs it has reeived into the di�erene list. Interestingly, the

prediate `ont' is very similar to an eÆient (non-naive) list reversal program:

The ontinuation in this example is essentially a list whih represents the �rst

part of eah solution (whih is a pair of lists) in a reversed form. Di�erent solu-

tions to be olleted are reated by di�erent alls of `ont' whih reverse di�erent

substrutures of the shared ontinuation.

Program 1 ollets the solutions from `ap1' and `ap2' by the onatenation of

di�erene lists, but this is not a fair way of olletion. If the �rst lause of some

prediate produed in�nite number of solutions, we ould not see any solutions

from the seond lause. When we need a fair olletion, we must ollet solutions

by fair merging of lists.

We an interpret Program 1 also as a Prolog program, provided that the `|'

operator is replaed by the `!' operator, that the `otherwise' goal in the seond

lause of `ap2' is deleted, and that the seond lause of `ap2' is guaranteed to be

the last lause of `ap2'.

5. General Transformation Proedure

This setion �rst presents the lass of Horn-lause programs to whih the

tehnique as illustrated in Setion 4 an be mehanially applied, and then briey

shows the transformation proedure. We use the permutation program (Program

2) as an example.

First of all, we show the lass of Horn-lause programs to whih our trans-

formation tehnique is appliable. A program is transformable if it enjoys the

following property when the body goals in eah lause are exeuted from left to

right, following head uni�ation:

{ 6 {

perm([℄, [℄).

perm([H|T℄, [A|P℄) :- del([H|T℄, A, L), perm(L, P).

del([H|T℄, H, T).

del([H|T℄, L, [H|T2℄) :- del(T, L, T2).

Program 2. Permutation program.

� The arguments of every goal appearing in the program an be lassi�ed into

input arguments and output arguments. When some goal is alled, its input

arguments must have been instantiated to ground terms, and then the goal

must instantiate its output arguments to ground terms when it sueeds.

Although the above property may look restritive at a glane, most programs

whih do not use the notion of `multiple writers' (see Setion 6) or the notion

of a di�erene list (whih an be an inomplete data struture) will enjoy this

property. Programs whih use multiple writers require pre-transformation as de-

sribed in Setion 6. Programs whih make use of di�erene lists ould be handled

by extending the above notion of input and output, as long as they allow stati

dataow analysis. This onjeture is based on the observation that when we write

a Prolog program whih handles di�erene lists, we usually fully reognize how

uninstantiated variables appear in the data strutures.

One way to give input/output modes to a program would be to make the

programmer delare them for every goal argument appearing in the program.

However, a more realisti way will be to make the programmer delare the mode

of (the arguments of) the top-level goals and to infer the modes of other goals

aording to the following rules:

� (Moding Poliy for a Single Goal)

(a) Arguments whih have been instantiated to ground terms upon all are re-

garded as input (though they ould be lassi�ed otherwise).

(b) All the other arguments are regarded as output.

The mode inferene and the hek whether the program is transformable an

be done in a simple stati analysis. We must perform the following analysis for

eah lause and for eah mode in whih the prediate ontaining that lause may

be alled:

� (Mode Analysis of a Single Program Clause)

(1) Mark all the variables appearing in the input head arguments as ground.

(2) While there is a body goal yet to be analyzed, do the following repeatedly:

{ 7 {

Given Delaration: perm(+, -). (`+': input, `-': output)

+ -

perm([℄, [℄).

+ - + - - + -

perm([H|T℄, [A|P℄) :- del([H|T℄, A, L), perm(L, P).

+ - -

del([H|T℄, H, T).

+ - - + - -

del([H|T℄, L, [H|T2℄) :- del(T, L, T2).

Program 3. Mode analysis of the permutation program.

(i) Determine the mode of the next body goal aording to the above moding

poliy for a single goal. Here, those terms whih are omposed only of

variables marked as ground and funtion symbols, and only those, are

regarded as ground terms.

(ii) Then mark all the variables appearing in the output arguments of that

goal as ground.

(3) Chek if the variables appearing in the output head arguments are all marked

as ground. If the hek sueeds, terminate the analysis of this lause with

suess; otherwise report failure.

Initially, only the modes of top-level goals are known; possible modes of other

goals are inrementally obtained during the above analysis. Therefore, the whole

algorithm of the mode analysis should be as follows. In the following, S denotes

a set of `moded' prediates. A moded prediate is a prediate with a mode in

whih it is alled; di�erent modes of a prediate orrespond to di�erent moded

prediates.

� (Mode Analysis of an Entire Program)

(A) Let S be a set of the moded prediates whose alls appear in the (delared)

top-level goal lause. Mark those prediates as unanalyzed.

(B) Repeatedly do the following until no unanalyzed prediate remains in S or

failure is reported. That is, take an unanalyzed prediate from S, unmark it,

and analyze all its lauses using the above algorithm, adding to S with the

mark unanalyzed all moded prediates whose alls are newly found in Step

(2).

(C) The program is transformable if and only if no failure is reported in Step (3).

Program 3 is the analyzed permutation program.

It is easy to prove, by indution on the number of steps of resolution, that a

suessfully analyzed program instantiates the output arguments of eah goal to

{ 8 {

perm([℄, [℄).

perm([H|T℄,X) :- del([H|T℄,A,L), /*L1*/ perm(L,P), /*L2*/ X=[A|P℄.

del([H|T℄,H,T).

del([H|T℄,X,Y) :- del(T,L,T2), /*L3*/ X=L, Y=[H|T2℄.

Program 4. Normal form of the permutation program.

ground terms upon suessful termination, provided ground terms are given to the

input arguments.

A suessfully analyzed program is then transformed aording to the follow-

ing steps:

(1) If there is any prediate to be alled in two or more di�erent modes, give a

unique prediate name for eah mode.

(2) Rewrite eah lause into the normal form as follows:

(2a) For eah lause other than unit lauses, replae output head arguments

T

1

; : : : ; T

n

by distint fresh variables V

1

; : : : ; V

n

, and plae the goals

V

1

=T

1

; : : : ; V

n

=T

n

at the end of the lause.

(2b) For eah goal G in the body of eah lause, replae its output argu-

ments T

1

; : : : ; T

n

by distint fresh variables V

1

; : : : ; V

n

and plae the

goals V

1

=T

1

; : : : ; V

n

=T

n

immediately after G unless T

1

; : : : ; T

n

are dis-

tint variables not appearing in the previous goals or the lause head.

(3) Transform eah prediate in the program.

Step (1) removes multi-mode prediates. This transformation attahes the

onept of a mode to eah prediate as well as to eah prediate all.

The purpose of Step (2b) is to simplify output arguments in a goal. It is lear

that a program whih has passed the mode analysis and then has been rewritten

aording to Steps (1) and (2) is still in the transformable lass. Program 4 shows

the normal form of the permutation program.

Now we will show the outline of Step (3), the main part of our transformation

method. Program 5 shows the result applied to Program 4. In the following, we

indiate in braes what in the example of the permutation program are mentioned

by eah term appearing in the explanation.

(a) The arguments of a transformed prediate are made up of

� the input arguments of the original prediate,

� a ontinuation, and

{ 9 {

<

1

>

p([℄, Cont,S0,S1) :- true | ontp(Cont,[℄,S0,S1).

<

2

>

p([H|T℄,Cont,S0,S1) :- true | d([H|T℄,'L1'(Cont),S0,S1).

<

3

>

p(L,

-

, S0,S1) :- otherwise | S0=S1.

<

4

>

d(L,Cont,S0,S2) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).

<

5

>

d1([H|T℄,Cont,S0,S1) :- true | ontd(Cont,H,T,S0,S1).

<

6

>

d1(L,

-

, S0,S1) :- otherwise | S0=S1.

<

7

>

d2([H|T℄,Cont,S0,S1) :- true | d(T,'L3'(H,Cont),S0,S1).

<

8

>

d2(L,

-

, S0,S1) :- otherwise | S0=S1.

<

9

>

ontp('L2'(A,Cont),P,S0,S1) :- true | ontp(Cont,[A|P℄,S0,S1).

<

10

>

ontp('L0', P,S0,S1) :- true | S0=[P|S1℄.

<

11

>

ontd('L3'(H,Cont),L,T2,S0,S1) :- true |

ontd(Cont,L,[H|T2℄,S0,S1).

<

12

>

ontd('L1'(Cont), A, L,S0,S1) :- true |

p(L,'L2'(A,Cont),S0,S1).

Program 5. Transformed permutation program.

� the head and the tail of a di�erene list for returning solutions.

Eah transformed prediate is responsible for doing the task of the original

prediate, followed by the task represented by the ontinuation.

(b) For a prediate f`perm'g of whih at most one lause an be used for redu-

ing eah goal, the transformed prediate onsists of the transformed lauses

f

<

1

>

,

<

2

>

g of the original ones (See (i)). For a prediate f`del'g of whih

more than one lause may be appliable for redution, we give a separate

subprediate name f`d1', `d2'g to eah transformed lause f

<

5

>

,

<

7

>

g, and

let the transformed prediate f`d'g all all these subprediates and ollet

solutions.

() The body of a lause f

<

1

>

,

<

5

>

g transformed from a unit lause alls a

goal for ontinuation proessing f`ontp', `ontd'g. This goal is given as

arguments the output values f[℄, (H,T)g returned by the original unit lause.

(d) The body of a lause f

<

2

>

,

<

7

>

g transformed from a non-unit lause alls

the prediate f`d'g orresponding to the �rst body goal f`del'g of the original

lause (See (e) and (j)).

(e) When alling a (transformed) prediate fe.g., `d' in

<

7

>

g orresponding to the

i-th body goal G

i

fthe reursive all of `del'g of some lause, we push the label

f'L3'g indiating the next goal G

i+1

together with the input data fHg used

by the subsequent goals G

i+1

; : : : ; G

n

fX=L, Y=[H|T2℄g. If G

i

is the last goal,

{ 10 {

then nothing is pushed but the urrent ontinuation is passed as it is. When

alling a prediate f`p'g orresponding to the top-level goal fsay `perm(L,X)'

where L is some ground termg, we give as the initial value of the ontinuation

the label f'L0'g indiating the termination of refutation together with the

data fnoneg neessary for onstruting a term to be olleted fXg.

(f) Prediates for ontinuation proessing are omposed of lauses f

<

9

>

,

<

10

>

,

<

11

>

,

<

12

>

g eah orresponding to the label pushed in Step (e). These

lauses are lassi�ed aording to the prediates immediately before those

labels and are given separate prediate names f`ontp', `ontd'g.

(g) Eah lause fe.g.,

<

12

>

g of a prediate for ontinuation proessing prepares

input data fLg for the next goal fperm(L,P)g indiated by the reeived label

f`L1'g, by using the information fnoneg staked with the label and the output

fA, Lg of the last goal. Then it alls a prediate f`p'g orresponding to the

next goal (See (e), (j) and (k)).

(h) The lause f

<

10

>

g for proessing the label f'L0'g indiating termination

generates a term to be olleted fPg from the output fPg of the top-level goal

and the information fnoneg staked with the label, and returns a di�erene

list having that term as the sole element.

(i) For those transformed prediates f`p', `d1', `d2'g whih may fail in the uni�a-

tion of the input arguments, bakup lauses f

<

3

>

,

<

6

>

,

<

8

>

g are generated

for returning empty di�erene lists when the uni�ation fails.

(j) Uni�ation goals generated by moving output head uni�ation (Step (2a)

of the transformation) are proessed `on the spot' in a transformed pro-

gram, followed by the next task that must be a all to the ontinuation

proessing prediate f

<

9

>

,

<

11

>

g. The task is to feed the output value(s)

f[A|P℄; (L,[H|T2℄)g to the ontinuation proessing goal.

(k) Uni�ation goals generated by moving output arguments of a goal that may

ause failure (Step (2b) of the transformation) are transformed as follows

fthis never happens in the permutation programg: We onsider the following

sequene of goals

: : : ; G; /*La*/ V

1

=T

1

; : : : ; V

n

=T

n

; /*Lb*/ : : :

where V

1

=T

1

; : : : ; V

n

=T

n

are the goals moved from the goal G. LetW

1

; : : : ;W

l

be the variables in T

1

; : : : ; T

n

that must be made ground by previous goals,

and X

1

; : : : ; X

m

be the variables in T

1

; : : : ; T

n

used by subsequent goals that

will be made ground by V

1

=T

1

; : : : ; V

n

=T

n

. Then we de�ne a prediate of the

form

u(T

1

; : : : ; T

n

,W

1

; : : : ;W

l

,Cont,S0,S1) :- true |

ontx(Cont,X

1

; : : : ; X

m

,S0,S1).

u(V

1

; : : : ; V

n

,W

1

; : : : ;W

l

,Cont,S0,S1) :- otherwise | S0=S1.

{ 11 {

where `ontx' is a ontinuation proessing goal for 'Lb'. This prediate is

alled as

u(V

1

; : : : ; V

n

,W

1

; : : : ;W

l

,'Lb'(Y

1

; : : : ; Y

p

,Cont),S0,S1)

when the label 'La' is reognized, where Y

1

; : : : ; Y

p

are the input data used

by the goals after 'Lb'.

The above desription does not onsider system prediates. However, deter-

ministi system prediates that deal with ground data an be handled without

essential hanges. Prediates for arithmetis and integer omparison fall within

this lass.

Some peephole optimization may apply to a transformed program. For exam-

ple, if some prediate is alled only one (textually) in an original program, the

transformed prediate has only one `return address'. The operations on a ontinu-

ation ould be optimized in suh a ase. General unfolding (or partial evaluation)

tehnique may improve eÆieny also.

Lastly, it is worth noting that in spite of our restrition, a transformed pro-

gram an handle some non-ground data struture orretly. That is, the portions

of an input data struture whih are only passed around and never examined by

uni�ation need not be ground terms. For example, when we exeute the following

goal,

:- p([A,B,C℄, 'L0', S, [℄).

S will be orretly instantiated to a list of six permutations:

[[A,B,C℄,[A,C,B℄,[B,A,C℄,[B,C,A℄,[C,A,B℄,[C,B,A℄℄.

Non-ground data strutures ould be handled more graefully by extending the

mode system to a generi type system, but we used the mode system for the sake

of simpliity.

6. On the Class of Transformable Programs

For the tehnique desribed above to be useful from a pratial point of view,

the transformable lass of Horn-lause programs de�ned in Setion 5 must be large

enough to express many problems naturally. The problem in this regard is that

we often make use of the notion of `multiple writers'. By `multiple writers' we

mean two or more goals sharing some data struture and trying to instantiate it

ooperatively and/or ompetitively. In Prolog programming, suh a data struture

is usually represented diretly by a Prolog term and is operated by the diret use

of Prolog uni�ation; a typial example is the onstrution of the output data of

a parser program.

{ 12 {

However, this programming tehnique has problems in terms of appliability

of our transformation:

(1) It is generally impossible to analyze statially whih part of the shared data

struture is instantiated by whih goal.

(2) The shared data struture may not be instantiated fully to a ground term.

Problem (2) is onsidered a problem also from a semantial point of view.

When extrating some information from the shared data struture generated by

a searh program, we have to use the extralogial prediate `var' to see whether

some portion of the data struture is left undetermined. One may argue that we

need not use the prediate `var' if we analyze the data struture after making it

ground, that is, after instantiating its undetermined portions to some ground terms

suh as new onstant symbols. He may further argue that making a term ground

never alls for the prediate `var' sine we an aomplish this by trying to unify

every subterm of it with a new onstant. However, then, the searh program whih

generates a non-ground result and the program to make it ground will be in the

relationship of multiple writers, and the latter program should never start before

the former program has �nished beause the latter must have a lower priority with

respet to instantiation of the shared data struture. This means we have to use

the onept of sequentiality or priority between onjuntive goals, both of whih

are onepts outside Horn-lause logi.

Let us onsider Problem (2) in terms of the delarative semantis of logi

programs (Lloyd [1984℄). Colletion of solutions makes it possible to ount the

number of solutions (Warren [1982℄). Then what must be regarded as the number

of solutions when they ontain variables? The number of maximally general answer

substitutions? The number of elements of the minimal Herbrand model that are

instanes of the original goal? Both seem unsatisfatory. It seems that the number

of solutions an be reasonably de�ned only by disallowing non-ground solutions,

as long as we do not have a notion of types.

Anyway, we must make some pre-transformation to suh a Horn-lause pro-

gram in order to apply our transformation tehnique. That is, we must hange the

representation of the shared data struture to a ground-term representation|a

list of binding information generated by eah writer. Eah writer must reeive the

urrent list of binding information and return a new one as a separate argument.

When a writer is to add some binding information, it must hek the onsisteny

between the urrent and the new information to be added. This heking ould

be done by trying to onstrut the original representation from srath eah time,

but it ould be done more eÆiently by adopting an appropriate data struture

(possibly other than a list of bindings) for the binding information.

Comparing the original and the proposed implementation shemes of multiple

writers from a pratial point of view, the proposed sheme is apparently disad-

vantageous in the ease of programming. However, the di�erene does not lie in

{ 13 {

Table 1. Performane of exhaustive searh programs (in mse.).

Program Original Original Transformed Number of

(`bagof') (searh only) Solutions

List Deomposition 836 4 27 51

(50 elements)

Permutation Genera- 354 34 57 120

tion (5 elements)

5-Queens 45 20 28 10

6-Queens 90 75 106 4

7-Queens 441 325 446 40

8-Queens 1796 1484 1964 92

the spei�ation of the abstrat data but only in the ease of its implementation,

whih should not be so essential a problem sine aumulation of programming

tehniques and program libraries will alleviate the diÆulty.

EÆieny is another point on whih omparison should be made. Although

the original representation is suitable for the exeution using baktraking, it re-

quires a multiple environment mehanism for OR-parallel exeution, whih may

ause additional omplexity and overhead (Ciepielewski and Haridi [1983℄). The

proposed pre-transformation may make the onsisteny heking somewhat expen-

sive, but will make parallel exeution muh easier beause no multiple environment

mehanism is neessary.

Sometimes Problem (2) ould be resolved more easily. Consider a parser of

English sentenes whih heks the agreement of number. Neither a noun phrase

nor a verb phrase may determine whether the subjet is singular or plural, in whih

ase a variable indiating the number may be left uninstantiated. In this ase,

however, it is easy to rewrite the program so that the analyzer of the noun phrase

returns two possible values for that variable in OR-parallel instead of leaving it

uninstantiated.

7. Performane Evaluation

Table 1 ompares the performane of original and transformed programs.

The programs measured are those desribed above, and an N -queens pro-

gram with N being 5, 6, 7 and 8. The N -queens program we used was in the

transformable lass de�ned in Setion 5.

All programs were measured using DEC-10 Prolog on DEC2065. For eah

original program, the exeution time of exhaustive searh (by fored baktrak-

{ 14 {

ing) without olletion of solutions was measured as well as the exeution time by

the `bagof' primitive. The `setof' primitive was not onsidered beause the order

of solutions was inessential for us. Eah program was measured after possible sim-

pli�ation whih took advantage of the fat that Prolog heks andidate lauses

sequentially.

As Table 1 shows, the proposed program transformation improved the ef-

�ieny of exhaustive searh by 6 times for the permutation program and by

more than 30 times for the list deomposition program `append'. This remarkable

speedup was brought by speializing the task of olleting solutions to �t within

the framework of Horn-lause logi, while the `bagof' primitive uses a extralogial

feature similar to `assert' (Bowen et al. [1983℄) whih an optimizing ompiler

annot help. A program suh as N -queens, whih has a small number of solu-

tions ompared with its searh spae, annot therefore expet remarkable speedup;

the transformed N -queens program got slightly slower exept for 5-queens. After

manual optimization, however, the transformed 8-queens program surpassed the

original `bagof' version.

Another point to note is that in the ase of 8-queens, the transformed program

was only by 25% slower than the original program whih does not ollet solutions

and whih makes use of the dediated mehanism for searh problems, namely

automati baktraking. This suggests that the transformed program ould not

be improved very muh without hanging the searh algorithm.

8. Summary and Future Works

We have desribed a method of ompiling a Horn-lause program for exhaus-

tive searh into a GHC program or a deterministi Prolog program. Although not

stated above, the method using the onept of a ontinuation an be applied also

to the ase where only one solution is required. Our method also provides the

possibility of introduing ontrol into searh, sine all ativities are made to be

performed in a single environment.

We limited the lass of Horn-lause programs to whih our method is appli-

able. However, this lass is never trivial and it should not be so diÆult to write

a program within this lass or its natural extension. Rather, we believe that it

is important from a pratial point of view to show the lass of Horn-lause pro-

grams whih an be transformed without loss of eÆieny and without resort to

extralogial prediates. Programs to whih our method is essentially inappliable

seem to require semantial onsiderations before trying to extend our method.

The loss of performane by not using suh dediated mehanisms as automati

baktraking was small. We found that our tehnique may even improve the

eÆieny of exhaustive searh that has been done by using the `bagof' primitive.

{ 15 {

The proposed transformation eases parallel searh in that it eliminates the

need of multiple environments, but it never eliminates other problems on resoure

management. Resoure management is still an important problem in realizing

parallel searh. Therefore, our results need not and should not be interpreted as

reduing the signi�ane of OR-parallel Prolog mahines: Speialized hardware

an always perform better for a speial lass of programs. While our primary

purpose was to examine the possibility of eÆient searh on a general-purpose

parallel mahine, our tehnique ould be utilized also for improving the eÆieny

of OR-parallel Prolog mahines. Comparison of these two approahes should be

an interesting researh in the near future.

Aknowledgments

The author is indebted to Hisao Tamaki for pointing out an overlooked ase

in the transformation proedure of the original version of this paper.

Referenes

Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren, D. H. D.

[1983℄ DECsystem-10 Prolog User's Manual. Dept. of Arti�ial Intelligene,

Univ. of Edinburgh.

Carlsson, M. [1984℄ On Implementing Prolog in Funtional Programming. In Pro.

1984 Int. Symp. on Logi Programming, IEEE Computer Soiety, pp. 154{

159.

Ciepielewski, A. and Haridi, S. [1983℄ A Formal Model for OR-Parallel Exeution

of Logi Programs. In Pro. IFIP '83, Mason, R. E. A. (ed.), Elsevier Siene

Publishers B. V., Amsterdam, pp. 299{305.

Clark, K. L. and Gregory, S. [1984a℄ PARLOG: Parallel Programming in Logi.

Researh Report DOC 84/4, Dept. of Computing, Imperial College of Siene

and Tehnology, London. Also in ACM Trans. Prog. Lang. Syst., Vol. 8, No.1

(1986), pp. 1{49.

Clark, K. L. and Gregory, S. [1984b℄ Notes on the Implementation of PARLOG.

Researh Report DOC 84/16, Dept. of Computing, Imperial College of Siene

and Tehnology, London, 1984. Also in J. of Logi Programming, Vol. 2, No. 1

(1985), pp. 17{42.

Hirakawa, H., Chikayama, T. and Furukawa, K. [1984℄ Eager and Lazy Enumera-

tions in Conurrent Prolog. In Pro. Seond Int. Logi Programming Conf.,

Uppsala Univ., Sweden, pp. 89{100.

Lloyd, J. W. [1984℄ Foundations of Logi Programming. Springer-Verlag, Berlin

Heidelberg New York Tokyo.

{ 16 {

Naish, L. [1985℄ All Solutions Prediates in Prolog. In Pro. 1985 Symp. on Logi

Programming, IEEE Computer Soiety, pp. 73{77.

Reddy, U. S. [1984℄ Transformation of Logi Programs into Funtional Programs.

In Pro. 1984 Int. Symp. on Logi Programming, IEEE Computer Soiety,

pp. 187{196.

Shapiro, E. Y. [1983℄ A Subset of Conurrent Prolog and Its Interpreter. ICOT

Teh. Report TR-003, Institute for New Generation Computer Tehnology,

Tokyo.

Ueda, K. [1985℄ Guarded Horn Clauses. ICOT Teh. Report TR-103, Institute for

New Generation Computer Tehnology, Tokyo. Also in Pro. Logi Program-

ming '85, Wada, E. (ed.), Leture Notes in Computer Siene 221, Springer-

Verlag, Berlin Heidelberg (1986), pp. 168{179.

Ueda, K. [1986a℄ Guarded Horn Clauses. Dotoral Thesis, Information Engineer-

ing Course, Faulty of Engineering, Univ. of Tokyo.

Ueda, K. [1986b℄ Guarded Horn Clauses: A Parallel Logi Programming Language

with the Conept of a Guard, ICOT Teh. Report TR-208, Institute for New

Generation Computer Tehnology, Tokyo.

Ueda, K. and Chikayama, T. [1985℄ Conurrent Prolog Compiler on Top of Pro-

log. In Pro. 1985 Symp. on Logi Programming, IEEE Computer Soiety,

pp. 119{126.

Warren, D. H. D. [1982℄ Higher-order extensions to PROLOG: are they needed?

In Mahine Intelligene 10, Hayes, J. E., Mithie, D. and Pao, Y. -H. (eds.),

Ellis Horwood, Chihester, England, pp. 441{454.

{ 17 {

