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Abstract. This paper presents a technique for compiling a Horn-clause
program intended for exhaustive search into a GHC (Guarded Horn
Clauses) program. The technique can be viewed also as a transformation
technique for Prolog programs which compiles away the ‘bagof’ primi-
tive and non-determinate bindings. The class of programs to which our
technique is applicable is shown with a static checking algorithm; it is
nontrivial and could be extended. An experiment on a compiler-based
Prolog system showed that our technique improved the efficiency of ex-
haustive search by 6 times for a permutation generator program. This
compilation technique is important also in that it exploits the AND-
parallelism of GHC for parallel search.
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1. Introduction

We often use Horn-clause logic, or more specifically the language Prolog, to
obtain all solutions of some problem, that is, to obtain all answer substitutions for
a goal to be solved. In this framework, however, it is difficult to collect the ob-
tained solutions into a single environment for further processing such as counting
the number of the solutions, comparing them, classifying them, and so on. This
is because these solutions correspond to different, independent paths of a search
tree. For this reason, many of Prolog implementations support system predicates
for creating a list of all the solutions of a goal given as an argument; examples are
‘setof’ and ‘bagof’ of DEC-10 Prolog (Bowen et al. [1983]). Naish [1985] made
a survey of all-solutions predicates in various Prolog systems. These system pred-
icates, however, internally use some extralogical features to record the obtained
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solutions. So it should be an interesting question whether exhaustive search can
be done without such primitives.

Another motivation is that we may sometimes wish to do exhaustive search in
GHC (Ueda [1985][1986a][1986b]) or other parallel logic programming languages
which do not directly support exhaustive search. In this case, parallelism inherent
in GHC should be effectively used for the search.

One possible way to achieve the above requirements is to directly write down a
first-order relation which states, for example, that “S is a list of all the solutions of
the N-queens problem”. It is almost evident that such a relation can be described
within the framework of Horn-clause logic. However, in practice, it is much harder
to write it manually than to write a program that finds only one solution at a time.
A programming tool which automatically generates an exhaustive search program
may resolve this situation, and this is the way we will pursue in this paper.

2. Outlines of the Method

Our method is to compile a Horn-clause program intended for exhaustive
search using backtracking or OR-parallelism into a GHC program or a determinis-
tic Prolog program which returns the same (multi-)set of solutions in the form of
a single list. The word ‘deterministic’ means that all bindings given to variables
are determinate and never undone. Prolog programs in this subclass are interest-
ing from the viewpoint of implementation, since they never call for a trail stack.
Furthermore, determinism in this sense has a similarity with the semantical re-
striction which GHC imposed to a proof procedure for Horn-clause logic in order to
make all activities done in a single environment. This similarity is reflected by the
fact that a transformed program can be interpreted both as a GHC program and
as a Prolog program by the slight change between the ‘|’ (commitment) operator
and the ‘! (cut) operator.

There are two possible views of this transformation technique. One is to re-
gard this as compilation from a Horn-clause program to a guarded-Horn-clause
program. By compiling OR-parallelism into AND-parallelism, we eliminate a mul-
tiple environment mechanism for managing different binding environments created
simultaneously by the paths of a search tree. The other view is to regard it as
transformation of a Prolog program. This transformation serves as simplification
in the sense that all-solutions predicates and the unbinding mechanism can be
eliminated. Moreover, this transformation may remarkably improve the efficiency
of a search program, as we will see in Section 7.

Our technique has another important meaning. By making search performed
in a single environment, it becomes possible to introduce a mechanism for con-
trolling the search. That is, our technique may provide a starting point for more
intelligent search.



A transformed program, viewed as a GHC program, emulates the OR-parallel
and AND-sequential execution of the original program. The original OR-parallel-
ism is compiled into AND-parallelism as stated above, and the sequential execution
of conjunctive goals is realized by passing a continuation around. The AND-
parallelism of GHC we use is a simple one, since conjunctive goals solving different
paths of a search tree have no interaction except when solutions are collected.

A continuation is a data structure which represents remaining tasks to be done
before we get a solution. The notion of a continuation was effectively used also
in Concurrent Prolog and GHC compilers on top of Prolog (Ueda and Chikayama
[1985]) to implement a goal queue. The difference is that here we use a stack
instead of a queue.

3. Previous Research

Implementation techniques of exhaustive search in parallel logic programming
languages were proposed by Hirakawa, Chikayama and Furukawa [1984] and by
Clark and Gregory [1984b]. Their approach was to describe an interpreter of Horn-
clause programs in Concurrent Prolog (Shapiro [1983]) or PARLOG (Clark and
Gregory [1984al), but the following could be addressed as problems:

(1) The interpreter approach loses efficiency.

(2) The multiple environment mechanism is implemented as a run-time creation
of new variants of terms.

Here, a new variant of a term T is a term created by systematically replacing all
the occurrences of the variables in T" by fresh variables.

Problem (1) will not be serious, since it could be resolved by a partial evalua-
tion technique. Alternatively, we could directly write a compiler which corresponds
to the original interpreter without much difficulty (Ueda and Chikayama [1985]).
On the other hand, Problem (2) seems serious.

The reason why we need multiple environments is that different unifiers can
be generated when we rewrite a goal differently by using different program clauses
at the same time. Therefore, when we interpret an exhaustive search program, we
make a necessary number of variants of the current set of goals and the partially
determined solution prior to the simultaneous rewriting. The above interpreters
made some optimization to reduce the total size of variants to be created, but they
did not completely avoid run-time creation of them.

However, run-time creation of variants is a time-sensitive operation. The se-
mantics of GHC is designed so that it is not affected by anti-substitution (Ueda
[1986]) which replaces an occurrence of some term 7' in the guard/body of a clause
by a fresh variable X and adds the goal X=T in that guard/body, respectively.
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Anti-substitution serves as an acid test for new features among other implications
of it. Applying anti-substitution to a variant creation goal, say ‘copy(7y,7%)’,
we get a conjunction ‘T1=T3, copy(7T5,7T3)’. This rewriting clarifies that the first
argument of ‘copy’ specifying an original term may be instantiated with poten-
tial delay. Thus the predicate ‘copy’ is incompatible with anti-substitution, and
GHC cannot give any reasonable semantics to it. In sequential Prolog also, the
predicate ‘copy’ should be considered extralogical, because it cannot be defined
without the extralogical predicate ‘var’ which checks if its argument is currently
uninstantiated. The use of extralogical predicates should be discouraged, since
it introduces semantical complexity and it hinders description of programming
systems and support from them.

Carlsson [1984] presented implementation of exhaustive search in functional
programming. His approach is similar to ours in that both use continuations; how-
ever, differences seem more important than the similarity. Firstly, our technique
takes parallel execution into account. Secondly, our technique compiles away the
environment problem while his approach requires variant creation when collecting
solutions. Thirdly, our technique generates logic programs and can therefore be
used as a transformation tool within logic programming.

Reddy [1984] also presented a technique for transforming logic programs into
functional programs. Although the mode system we use in our technique is very
similar to his, our technique is new in the treatment of multiple environments.

4. A Simple Example

To illustrate the difference between the previous methods and ours, let us
consider the example of decomposing a list using ‘append’:

:— append (U, v,[1,2,31). (4-1)
append ([], Z,Z ). (4-2)
append([A|X],Y,[AlZ] ) :- append(X,Y,Z). (4-3)

From the head of Clause (4-3), we get a partial solution U=[1|X]. Then we get
three instances for X, namely [1, [2], and [2,3], by recursive calls. However,
these three solutions cannot share the common prefix ‘[1]|” as long as the value of
a variable is represented by a reference pointer instead of an association list, and
this is why we have to make variants of the partial solution [1]X].

Our method, on the other hand, first rewrites Clause (4-3) as follows:

append (X2, Y,[AlZ] ) :- append(X,Y,Z), X2=[A|X]. (4-4)
The predicate ‘=" unifies its two arguments. It can be defined by a single unit
clause

X=X



We assume that body goals are executed from left to right, following head unifica-
tion. Then, while Clause (4-3) generates answer substitutions in a top-down man-
ner, Clause (4-4) generates them in a bottom-up manner by combining ground
terms. The first output argument X2 remains uninstantiated until the first re-
cursive goal, which may fork because of the two candidate clauses, succeeds.
Therefore, we need not make variants of the partial solution upon the recursive
call. Clause (4-4) is not tail-recursive, so we must instead push the remaining
task of constructing the value of X2 onto the stack representing a continuation.
However, since the variable A has a ground value, the remaining task to be stacked
can be represented as a ground term and hence the continuation need not be copied
when the goal append(X,Y,Z) forks.

Now we are prepared for the elimination of nondeterminism. Program 1
shows a GHC program which returns the result equivalent (up to the permutation
of solutions) to the following DEC-10 Prolog goal:

i~ ..., bagof((X,Y), append(X,Y,Z), S), ... . (4-5)

Calling form: :- ..., ap(z,’L0’,S,[1),
ap(Z,Cont,S0,52) :- true | ap1(Z,Cont,S0,S1), ap2(Z,Cont,S1,S52).
ap1(Z,Cont,S0,S1) :- true | cont(Cont,[],Z,S0,S1).

ap2([A|Z],Cont,S0,51) :- true | ap(Z,’L1’(A,Cont),S0,S51).
ap2(Z, — S0,S1) :- otherwise | S0=S1.

cont(’L1’(A,Cont),X,Y,S80,81) :- true | cont(Cont,[A]|X],Y,S0,S1).
cont(’LO’, X,Y,S0,S1) :- true | SO=[(X,Y)|S1].

Program 1. List decomposition program.

Search corresponding to the two clauses of ‘append’ is performed by the conjunctive
goals ‘apl’ and ‘ap2’ generated by ‘ap’. The arguments of these predicates are as
follows:

(i) the input (i.e., the third) argument of the original program,

(ii) the continuation,

(iii) the head of the difference list of solutions, and
)

(iv) its tail.

The function symbols constructing the continuation can be regarded as indi-
cating the locations of the original program: ‘L0’ indicates the end of Clause (4-1)
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and ‘L1’ indicates the end of the recursive call of Clause (4-4). The top-level goal
initializes the continuation to ‘LO’.

Since Clause (4-2) is a unit clause, the corresponding predicate ‘apl’ activates
the ‘remaining tasks’ by calling the predicate ‘cont’ for continuation processing.
At that time, two output results, [] and the input argument itself, are passed to
the continuation processing goal. The predicate ‘ap2’ checks if the input argument
has the form [A|Z], and if so, activates the first goal in the original clause with the
information on the second goal attached to the continuation. The new continuation
‘L1’ (A,Cont) indicates that the control must be returned to ‘L1’ and that A is
the value to be pushed in front of X. If the input argument is not of the form
[A|Z], the unification of the input argument fails and an empty difference list is
returned immediately.

The predicate ‘cont’ does continuation processing. If the continuation has
the form ‘L1’ (A,Cont), it pushes A in front of the output X and calls ‘cont’ to
process the rest of the continuation, Cont. If the continuation has the form ‘L0’
it inserts the two outputs it has received into the difference list. Interestingly, the
predicate ‘cont’ is very similar to an efficient (non-naive) list reversal program:
The continuation in this example is essentially a list which represents the first
part of each solution (which is a pair of lists) in a reversed form. Different solu-
tions to be collected are created by different calls of ‘cont’ which reverse different
substructures of the shared continuation.

Program 1 collects the solutions from ‘ap1’ and ‘ap2’ by the concatenation of
difference lists, but this is not a fair way of collection. If the first clause of some
predicate produced infinite number of solutions, we could not see any solutions
from the second clause. When we need a fair collection, we must collect solutions
by fair merging of lists.

We can interpret Program 1 also as a Prolog program, provided that the ‘|’
operator is replaced by the ‘!’ operator, that the ‘otherwise’ goal in the second
clause of ‘ap2’ is deleted, and that the second clause of ‘ap2’ is guaranteed to be
the last clause of ‘ap2’.

5. General Transformation Procedure

This section first presents the class of Horn-clause programs to which the
technique as illustrated in Section 4 can be mechanically applied, and then briefly
shows the transformation procedure. We use the permutation program (Program
2) as an example.

First of all, we show the class of Horn-clause programs to which our trans-
formation technique is applicable. A program is transformable if it enjoys the
following property when the body goals in each clause are executed from left to
right, following head unification:
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perm([], (1.
perm([H|T], [AIP]) :- del([HI|T], A, L), perm(L, P).

del([HIT], H, T).
del([HIT], L, [H|T2]) :- del(T, L, T2).

Program 2. Permutation program.

e The arguments of every goal appearing in the program can be classified into
input arguments and output arguments. When some goal is called, its input
arguments must have been instantiated to ground terms, and then the goal
must instantiate its output arguments to ground terms when it succeeds.

Although the above property may look restrictive at a glance, most programs
which do not use the notion of ‘multiple writers’ (see Section 6) or the notion
of a difference list (which can be an incomplete data structure) will enjoy this
property. Programs which use multiple writers require pre-transformation as de-
scribed in Section 6. Programs which make use of difference lists could be handled
by extending the above notion of input and output, as long as they allow static
dataflow analysis. This conjecture is based on the observation that when we write
a Prolog program which handles difference lists, we usually fully recognize how
uninstantiated variables appear in the data structures.

One way to give input/output modes to a program would be to make the
programmer declare them for every goal argument appearing in the program.
However, a more realistic way will be to make the programmer declare the mode
of (the arguments of) the top-level goals and to infer the modes of other goals
according to the following rules:

e (Moding Policy for a Single Goal)

(a) Arguments which have been instantiated to ground terms upon call are re-
garded as input (though they could be classified otherwise).

(b) All the other arguments are regarded as output.

The mode inference and the check whether the program is transformable can
be done in a simple static analysis. We must perform the following analysis for

each clause and for each mode in which the predicate containing that clause may
be called:

e (Mode Analysis of a Single Program Clause)
(1) Mark all the variables appearing in the input head arguments as ground.

(2) While there is a body goal yet to be analyzed, do the following repeatedly:
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(3)

Given Declaration: perm(+, -). (‘+’: input, ‘=": output)

+ —
perm( [], 1.

+ - + - - + -
perm([H|T], [A[IP]) :- del([H|T], A, L), perm(L, P).

+
del([HIT], H, T).

+ - - + - -
del([HI|T], L, [H|T2]) :- del(T, L, T2).

Program 3. Mode analysis of the permutation program.

(i) Determine the mode of the next body goal according to the above moding
policy for a single goal. Here, those terms which are composed only of
variables marked as ground and function symbols, and only those, are
regarded as ground terms.

(ii) Then mark all the variables appearing in the output arguments of that
goal as ground.

Check if the variables appearing in the output head arguments are all marked
as ground. If the check succeeds, terminate the analysis of this clause with
success; otherwise report failure.

Initially, only the modes of top-level goals are known; possible modes of other

goals are incrementally obtained during the above analysis. Therefore, the whole
algorithm of the mode analysis should be as follows. In the following, S denotes
a set of ‘moded’ predicates. A moded predicate is a predicate with a mode in
which it is called; different modes of a predicate correspond to different moded
predicates.

e (Mode Analysis of an Entire Program)

(A)

(B)

(©)

Let S be a set of the moded predicates whose calls appear in the (declared)
top-level goal clause. Mark those predicates as unanalyzed.

Repeatedly do the following until no unanalyzed predicate remains in S or
failure is reported. That is, take an unanalyzed predicate from S, unmark it,
and analyze all its clauses using the above algorithm, adding to S with the
mark unanalyzed all moded predicates whose calls are newly found in Step

(2).
The program is transformable if and only if no failure is reported in Step (3).

Program 3 is the analyzed permutation program.

It is easy to prove, by induction on the number of steps of resolution, that a

successfully analyzed program instantiates the output arguments of each goal to
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perm([], (1.
perm([H|T],X) :- del([H|T],A,L), /*L1x/ perm(L,P), /*L2x/ X=[A|P].

del ([HIT],H,T).
del([H|T],X,Y) :- del(T,L,T2), /xL3%/ X=L, Y=[H|T2].

Program 4. Normal form of the permutation program.

ground terms upon successful termination, provided ground terms are given to the
input arguments.

A successfully analyzed program is then transformed according to the follow-
ing steps:

(1) If there is any predicate to be called in two or more different modes, give a
unique predicate name for each mode.

(2) Rewrite each clause into the normal form as follows:

(2a) For each clause other than unit clauses, replace output head arguments
Ty,..., T, by distinct fresh variables Vi,...,V,,, and place the goals
Vi=T1,...,V,=T, at the end of the clause.

(2b) For each goal G in the body of each clause, replace its output argu-
ments T1,..., T, by distinct fresh variables Vi,...,V,, and place the
goals V1=Ty,..., V,=T, immediately after G unless Ty,...,T,, are dis-
tinct variables not appearing in the previous goals or the clause head.

(3) Transform each predicate in the program.

Step (1) removes multi-mode predicates. This transformation attaches the
concept of a mode to each predicate as well as to each predicate call.

The purpose of Step (2b) is to simplify output arguments in a goal. It is clear
that a program which has passed the mode analysis and then has been rewritten
according to Steps (1) and (2) is still in the transformable class. Program 4 shows
the normal form of the permutation program.

Now we will show the outline of Step (3), the main part of our transformation
method. Program 5 shows the result applied to Program 4. In the following, we
indicate in braces what in the example of the permutation program are mentioned
by each term appearing in the explanation.

(a) The arguments of a transformed predicate are made up of
e the input arguments of the original predicate,

e a continuation, and



<1>
<2>
<3>

<4>

<5>
<6>

<7>
<8>

<9>
<10>

<11>

<12>

p(CL], Cont,S0,S1) :- true | contp(Cont,[],S0,S1).
p([HIT],Cont,S0,S1) :- true | d([H|T],’L1’(Cont),S0,S1).

p(L, — S0,S1) :- otherwise | S0=S1.

d(L,Cont,S0,82) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).
d1([H|T],Cont,S0,S1) :- true | contd(Cont,H,T,S0,S1).

d1(L, _, S0,S1) :- otherwise | SO0=S1.
d2([H|T],Cont,S0,S1) :- true | d4(T,’L3’(H,Cont),S0,S1).

d2(L, — S0,S1) :- otherwise | S0=S1.

contp(’L2’(A,Cont) ,P,S0,S1) :- true | contp(Cont,[A|P],S0,S1).

contp(’LO’, P,50,S1) :- true | SO=[P|S1].

contd(’L3’ (H,Cont),L,T2,S0,S1) :- true |
contd(Cont,L, [H|T2],S0,S1).

contd(’L1’(Cont), A, L,SO,S1) :- true |
p(L, L2’ (A,Cont),S0,S1) .

Program 5. Transformed permutation program.

e the head and the tail of a difference list for returning solutions.

Each transformed predicate is responsible for doing the task of the original
predicate, followed by the task represented by the continuation.

For a predicate {‘perm’} of which at most one clause can be used for reduc-
ing each goal, the transformed predicate consists of the transformed clauses
{<1>, <2>} of the original ones (See (i)). For a predicate {‘del’} of which
more than one clause may be applicable for reduction, we give a separate
subpredicate name {‘d1’, ‘d2’} to each transformed clause {<5>, <7>}, and
let. the transformed predicate {‘d’} call all these subpredicates and collect
solutions.

The body of a clause {<1>, <5>} transformed from a unit clause calls a
goal for continuation processing {‘contp’, ‘contd’}. This goal is given as
arguments the output values {[1, (H,T)} returned by the original unit clause.

The body of a clause {<2>, <7>} transformed from a non-unit clause calls
the predicate {‘d’} corresponding to the first body goal {‘del’} of the original
clause (See (e) and (j)).

When calling a (transformed) predicate {e.g., ‘d’ in <7>} corresponding to the
i-th body goal G; {the recursive call of ‘del’} of some clause, we push the label
{’L3’} indicating the next goal G;11 together with the input data {H} used
by the subsequent goals G;41,...,Gp {X=L, Y=[H|T2]1}. If G; is the last goal,
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then nothing is pushed but the current continuation is passed as it is. When
calling a predicate {‘p’} corresponding to the top-level goal {say ‘perm(L,X)’
where L is some ground term}, we give as the initial value of the continuation
the label {°L0’} indicating the termination of refutation together with the
data {none} necessary for constructing a term to be collected {X}.

Predicates for continuation processing are composed of clauses {<9>, <10>,
<11>, <12>} each corresponding to the label pushed in Step (e). These
clauses are classified according to the predicates immediately before those
labels and are given separate predicate names {‘contp’, ‘contd’}.

Each clause {e.g., <12>} of a predicate for continuation processing prepares
input data {L} for the next goal {perm(L,P)} indicated by the received label
{¢L1’}, by using the information {none} stacked with the label and the output
{A, L} of the last goal. Then it calls a predicate {‘p’} corresponding to the
next goal (See (e), (j) and (k)).

The clause {<10>} for processing the label {’L0’} indicating termination
generates a term to be collected {P} from the output {P} of the top-level goal
and the information {none} stacked with the label, and returns a difference
list having that term as the sole element.

For those transformed predicates {‘p’, ‘d1’, ‘d2’} which may fail in the unifica-
tion of the input arguments, backup clauses {<3>, <6>, <8>} are generated
for returning empty difference lists when the unification fails.

Unification goals generated by moving output head unification (Step (2a)
of the transformation) are processed ‘on the spot’ in a transformed pro-
gram, followed by the next task that must be a call to the continuation
processing predicate {<9>, <11>}. The task is to feed the output value(s)
{[AIP], (L, [HIT2]) } to the continuation processing goal.

Unification goals generated by moving output arguments of a goal that may
cause failure (Step (2b) of the transformation) are transformed as follows
{this never happens in the permutation program}: We consider the following
sequence of goals

.., G, /¥Lax/ Vi=Ty, ..., V,=T,, /*Lb*/

where V1=T1, ..., V,=T, are the goals moved from the goal G. Let Wy,..., W
be the variables in T4,...,T, that must be made ground by previous goals,
and X1,...,X,, be the variables in T4, ..., T, used by subsequent goals that
will be made ground by V;=T1,...,V,=T,. Then we define a predicate of the
form

u(Ty,..., T, ,Wy,...,W;,Cont,S0,S1) :- true |
contx(Cont, Xq,...,X,,,S0,S1).
u(Vy,...,V,,Wy,...,W;,Cont,S0,S1) :- otherwise | S0=S1.
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where ‘contx’ is a continuation processing goal for ’Lb’. This predicate is
called as

u(Vi,...,Vy,Wi,...,W;,’Lb* (Y3,...,Y,,Cont),S0,51)

when the label ’La’ is recognized, where Yi,...,Y), are the input data used
by the goals after ’Lb’.

The above description does not consider system predicates. However, deter-
ministic system predicates that deal with ground data can be handled without
essential changes. Predicates for arithmetics and integer comparison fall within
this class.

Some peephole optimization may apply to a transformed program. For exam-
ple, if some predicate is called only once (textually) in an original program, the
transformed predicate has only one ‘return address’. The operations on a continu-
ation could be optimized in such a case. General unfolding (or partial evaluation)
technique may improve efficiency also.

Lastly, it is worth noting that in spite of our restriction, a transformed pro-
gram can handle some non-ground data structure correctly. That is, the portions
of an input data structure which are only passed around and never examined by
unification need not be ground terms. For example, when we execute the following
goal,

:= p([A,B,C], ’LO’, S, [1).
S will be correctly instantiated to a list of six permutations:
[[A,B,C],[A,C,B],[B,A,C],[B,C,A], [C,A,B], [C,B,A]].

Non-ground data structures could be handled more gracefully by extending the
mode system to a generic type system, but we used the mode system for the sake
of simplicity.

6. On the Class of Transformable Programs

For the technique described above to be useful from a practical point of view,
the transformable class of Horn-clause programs defined in Section 5 must be large
enough to express many problems naturally. The problem in this regard is that
we often make use of the notion of ‘multiple writers’. By ‘multiple writers’ we
mean two or more goals sharing some data structure and trying to instantiate it
cooperatively and/or competitively. In Prolog programming, such a data structure
is usually represented directly by a Prolog term and is operated by the direct use
of Prolog unification; a typical example is the construction of the output data of
a parser program.

— 12 —



However, this programming technique has problems in terms of applicability
of our transformation:

(1) Tt is generally impossible to analyze statically which part of the shared data
structure is instantiated by which goal.

(2) The shared data structure may not be instantiated fully to a ground term.

Problem (2) is considered a problem also from a semantical point of view.
When extracting some information from the shared data structure generated by
a search program, we have to use the extralogical predicate ‘var’ to see whether
some portion of the data structure is left undetermined. One may argue that we
need not use the predicate ‘var’ if we analyze the data structure after making it
ground, that is, after instantiating its undetermined portions to some ground terms
such as new constant symbols. He may further argue that making a term ground
never calls for the predicate ‘var’ since we can accomplish this by trying to unify
every subterm of it with a new constant. However, then, the search program which
generates a non-ground result and the program to make it ground will be in the
relationship of multiple writers, and the latter program should never start before
the former program has finished because the latter must have a lower priority with
respect to instantiation of the shared data structure. This means we have to use
the concept of sequentiality or priority between conjunctive goals, both of which
are concepts outside Horn-clause logic.

Let us consider Problem (2) in terms of the declarative semantics of logic
programs (Lloyd [1984]). Collection of solutions makes it possible to count the
number of solutions (Warren [1982]). Then what must be regarded as the number
of solutions when they contain variables? The number of maximally general answer
substitutions? The number of elements of the minimal Herbrand model that are
instances of the original goal? Both seem unsatisfactory. It seems that the number
of solutions can be reasonably defined only by disallowing non-ground solutions,
as long as we do not have a notion of types.

Anyway, we must make some pre-transformation to such a Horn-clause pro-
gram in order to apply our transformation technique. That is, we must change the
representation of the shared data structure to a ground-term representation—a
list of binding information generated by each writer. Each writer must receive the
current list of binding information and return a new one as a separate argument.
When a writer is to add some binding information, it must check the consistency
between the current and the new information to be added. This checking could
be done by trying to construct the original representation from scratch each time,
but it could be done more efficiently by adopting an appropriate data structure
(possibly other than a list of bindings) for the binding information.

Comparing the original and the proposed implementation schemes of multiple
writers from a practical point of view, the proposed scheme is apparently disad-
vantageous in the ease of programming. However, the difference does not lie in
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Table 1. Performance of exhaustive search programs (in msec.).

Program Original Original Transformed Number of
(‘bagof’) (search only) Solutions

List Decomposition 836 4 27 51

(50 elements)

Permutation Genera- 354 34 57 120

tion (5 elements)

5-Queens 45 20 28 10

6-Queens 90 75 106 4

7-Queens 441 325 446 40

8-Queens 1796 1484 1964 92

the specification of the abstract data but only in the ease of its implementation,
which should not be so essential a problem since accumulation of programming
techniques and program libraries will alleviate the difficulty.

Efficiency is another point on which comparison should be made. Although
the original representation is suitable for the execution using backtracking, it re-
quires a multiple environment mechanism for OR-parallel execution, which may
cause additional complexity and overhead (Ciepielewski and Haridi [1983]). The
proposed pre-transformation may make the consistency checking somewhat expen-
sive, but will make parallel execution much easier because no multiple environment
mechanism is necessary.

Sometimes Problem (2) could be resolved more easily. Consider a parser of
English sentences which checks the agreement of number. Neither a noun phrase
nor a verb phrase may determine whether the subject is singular or plural, in which
case a variable indicating the number may be left uninstantiated. In this case,
however, it is easy to rewrite the program so that the analyzer of the noun phrase
returns two possible values for that variable in OR-parallel instead of leaving it
uninstantiated.

7. Performance Evaluation
Table 1 compares the performance of original and transformed programs.

The programs measured are those described above, and an N-queens pro-
gram with N being 5, 6, 7 and 8. The N-queens program we used was in the
transformable class defined in Section 5.

All programs were measured using DEC-10 Prolog on DEC2065. For each
original program, the execution time of exhaustive search (by forced backtrack-
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ing) without collection of solutions was measured as well as the execution time by
the ‘bagof’ primitive. The ‘setof’ primitive was not considered because the order
of solutions was inessential for us. Each program was measured after possible sim-
plification which took advantage of the fact that Prolog checks candidate clauses
sequentially.

As Table 1 shows, the proposed program transformation improved the ef-
ficiency of exhaustive search by 6 times for the permutation program and by
more than 30 times for the list decomposition program ‘append’. This remarkable
speedup was brought by specializing the task of collecting solutions to fit within
the framework of Horn-clause logic, while the ‘bagof’ primitive uses a extralogical
feature similar to ‘assert’ (Bowen et al. [1983]) which an optimizing compiler
cannot help. A program such as N-queens, which has a small number of solu-
tions compared with its search space, cannot therefore expect remarkable speedup;
the transformed N-queens program got slightly slower except for 5-queens. After
manual optimization, however, the transformed 8-queens program surpassed the
original ‘bagof’ version.

Another point to note is that in the case of 8-queens, the transformed program
was only by 25% slower than the original program which does not collect solutions
and which makes use of the dedicated mechanism for search problems, namely
automatic backtracking. This suggests that the transformed program could not
be improved very much without changing the search algorithm.

8. Summary and Future Works

We have described a method of compiling a Horn-clause program for exhaus-
tive search into a GHC program or a deterministic Prolog program. Although not
stated above, the method using the concept of a continuation can be applied also
to the case where only one solution is required. Our method also provides the
possibility of introducing control into search, since all activities are made to be
performed in a single environment.

We limited the class of Horn-clause programs to which our method is appli-
cable. However, this class is never trivial and it should not be so difficult to write
a program within this class or its natural extension. Rather, we believe that it
is important from a practical point of view to show the class of Horn-clause pro-
grams which can be transformed without loss of efficiency and without resort to
extralogical predicates. Programs to which our method is essentially inapplicable
seem to require semantical considerations before trying to extend our method.

The loss of performance by not using such dedicated mechanisms as automatic
backtracking was small. We found that our technique may even improve the
efficiency of exhaustive search that has been done by using the ‘bagof’ primitive.
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The proposed transformation eases parallel search in that it eliminates the
need of multiple environments, but it never eliminates other problems on resource
management. Resource management is still an important problem in realizing
parallel search. Therefore, our results need not and should not be interpreted as
reducing the significance of OR-parallel Prolog machines: Specialized hardware
can always perform better for a special class of programs. While our primary
purpose was to examine the possibility of efficient search on a general-purpose
parallel machine, our technique could be utilized also for improving the efficiency
of OR-parallel Prolog machines. Comparison of these two approaches should be
an interesting research in the near future.
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