
ICOT Te
hni
al Report TR-145

Making Exhaustive Sear
h Programs Deterministi


Kazunori Ueda

Institute for New Generation Computer Te
hnology

4-28, Mita 1-
home, Minato-ku, Tokyo 108 Japan

November 1985*

Revised: February 1987**

Abstra
t. This paper presents a te
hnique for 
ompiling a Horn-
lause

program intended for exhaustive sear
h into a GHC (Guarded Horn

Clauses) program. The te
hnique 
an be viewed also as a transformation

te
hnique for Prolog programs whi
h 
ompiles away the `bagof' primi-

tive and non-determinate bindings. The 
lass of programs to whi
h our

te
hnique is appli
able is shown with a stati
 
he
king algorithm; it is

nontrivial and 
ould be extended. An experiment on a 
ompiler-based

Prolog system showed that our te
hnique improved the eÆ
ien
y of ex-

haustive sear
h by 6 times for a permutation generator program. This


ompilation te
hnique is important also in that it exploits the AND-

parallelism of GHC for parallel sear
h.

Keywords: Exhaustive sear
h, Multiple binding environments, Compilation, Pro-

gram transformation, Continuation, Mode analysis, Parallelism, Guarded Horn

Clauses

1. Introdu
tion

We often use Horn-
lause logi
, or more spe
i�
ally the language Prolog, to

obtain all solutions of some problem, that is, to obtain all answer substitutions for

a goal to be solved. In this framework, however, it is diÆ
ult to 
olle
t the ob-

tained solutions into a single environment for further pro
essing su
h as 
ounting

the number of the solutions, 
omparing them, 
lassifying them, and so on. This

is be
ause these solutions 
orrespond to di�erent, independent paths of a sear
h

tree. For this reason, many of Prolog implementations support system predi
ates

for 
reating a list of all the solutions of a goal given as an argument; examples are

`setof' and `bagof' of DEC-10 Prolog (Bowen et al. [1983℄). Naish [1985℄ made

a survey of all-solutions predi
ates in various Prolog systems. These system pred-

i
ates, however, internally use some extralogi
al features to re
ord the obtained

* A slightly modi�ed version appeared in Pro
. Third Int. Conf. on Logi
 Programming,

Shapiro, E. (ed.), Le
ture Notes in Computer S
ien
e 225, Springer-Verlag, Berlin

Heidelberg, 1986, pp. 270{282.

** This version appeared in New Generation Computing, Vol. 5, No. 1, pp. 29{44.

{ 1 {



solutions. So it should be an interesting question whether exhaustive sear
h 
an

be done without su
h primitives.

Another motivation is that we may sometimes wish to do exhaustive sear
h in

GHC (Ueda [1985℄[1986a℄[1986b℄) or other parallel logi
 programming languages

whi
h do not dire
tly support exhaustive sear
h. In this 
ase, parallelism inherent

in GHC should be e�e
tively used for the sear
h.

One possible way to a
hieve the above requirements is to dire
tly write down a

�rst-order relation whi
h states, for example, that \S is a list of all the solutions of

the N -queens problem". It is almost evident that su
h a relation 
an be des
ribed

within the framework of Horn-
lause logi
. However, in pra
ti
e, it is mu
h harder

to write it manually than to write a program that �nds only one solution at a time.

A programming tool whi
h automati
ally generates an exhaustive sear
h program

may resolve this situation, and this is the way we will pursue in this paper.

2. Outlines of the Method

Our method is to 
ompile a Horn-
lause program intended for exhaustive

sear
h using ba
ktra
king or OR-parallelism into a GHC program or a determinis-

ti
 Prolog program whi
h returns the same (multi-)set of solutions in the form of

a single list. The word `deterministi
' means that all bindings given to variables

are determinate and never undone. Prolog programs in this sub
lass are interest-

ing from the viewpoint of implementation, sin
e they never 
all for a trail sta
k.

Furthermore, determinism in this sense has a similarity with the semanti
al re-

stri
tion whi
h GHC imposed to a proof pro
edure for Horn-
lause logi
 in order to

make all a
tivities done in a single environment. This similarity is re
e
ted by the

fa
t that a transformed program 
an be interpreted both as a GHC program and

as a Prolog program by the slight 
hange between the `|' (
ommitment) operator

and the `!' (
ut) operator.

There are two possible views of this transformation te
hnique. One is to re-

gard this as 
ompilation from a Horn-
lause program to a guarded-Horn-
lause

program. By 
ompiling OR-parallelism into AND-parallelism, we eliminate a mul-

tiple environment me
hanism for managing di�erent binding environments 
reated

simultaneously by the paths of a sear
h tree. The other view is to regard it as

transformation of a Prolog program. This transformation serves as simpli�
ation

in the sense that all-solutions predi
ates and the unbinding me
hanism 
an be

eliminated. Moreover, this transformation may remarkably improve the eÆ
ien
y

of a sear
h program, as we will see in Se
tion 7.

Our te
hnique has another important meaning. By making sear
h performed

in a single environment, it be
omes possible to introdu
e a me
hanism for 
on-

trolling the sear
h. That is, our te
hnique may provide a starting point for more

intelligent sear
h.

{ 2 {



A transformed program, viewed as a GHC program, emulates the OR-parallel

and AND-sequential exe
ution of the original program. The original OR-parallel-

ism is 
ompiled into AND-parallelism as stated above, and the sequential exe
ution

of 
onjun
tive goals is realized by passing a 
ontinuation around. The AND-

parallelism of GHC we use is a simple one, sin
e 
onjun
tive goals solving di�erent

paths of a sear
h tree have no intera
tion ex
ept when solutions are 
olle
ted.

A 
ontinuation is a data stru
ture whi
h represents remaining tasks to be done

before we get a solution. The notion of a 
ontinuation was e�e
tively used also

in Con
urrent Prolog and GHC 
ompilers on top of Prolog (Ueda and Chikayama

[1985℄) to implement a goal queue. The di�eren
e is that here we use a sta
k

instead of a queue.

3. Previous Resear
h

Implementation te
hniques of exhaustive sear
h in parallel logi
 programming

languages were proposed by Hirakawa, Chikayama and Furukawa [1984℄ and by

Clark and Gregory [1984b℄. Their approa
h was to des
ribe an interpreter of Horn-


lause programs in Con
urrent Prolog (Shapiro [1983℄) or PARLOG (Clark and

Gregory [1984a℄), but the following 
ould be addressed as problems:

(1) The interpreter approa
h loses eÆ
ien
y.

(2) The multiple environment me
hanism is implemented as a run-time 
reation

of new variants of terms.

Here, a new variant of a term T is a term 
reated by systemati
ally repla
ing all

the o

urren
es of the variables in T by fresh variables.

Problem (1) will not be serious, sin
e it 
ould be resolved by a partial evalua-

tion te
hnique. Alternatively, we 
ould dire
tly write a 
ompiler whi
h 
orresponds

to the original interpreter without mu
h diÆ
ulty (Ueda and Chikayama [1985℄).

On the other hand, Problem (2) seems serious.

The reason why we need multiple environments is that di�erent uni�ers 
an

be generated when we rewrite a goal di�erently by using di�erent program 
lauses

at the same time. Therefore, when we interpret an exhaustive sear
h program, we

make a ne
essary number of variants of the 
urrent set of goals and the partially

determined solution prior to the simultaneous rewriting. The above interpreters

made some optimization to redu
e the total size of variants to be 
reated, but they

did not 
ompletely avoid run-time 
reation of them.

However, run-time 
reation of variants is a time-sensitive operation. The se-

manti
s of GHC is designed so that it is not a�e
ted by anti-substitution (Ueda

[1986℄) whi
h repla
es an o

urren
e of some term T in the guard/body of a 
lause

by a fresh variable X and adds the goal X=T in that guard/body, respe
tively.

{ 3 {



Anti-substitution serves as an a
id test for new features among other impli
ations

of it. Applying anti-substitution to a variant 
reation goal, say `
opy(T

1

,T

2

)',

we get a 
onjun
tion `T

1

=T

3

, 
opy(T

3

,T

2

)'. This rewriting 
lari�es that the �rst

argument of `
opy' spe
ifying an original term may be instantiated with poten-

tial delay. Thus the predi
ate `
opy' is in
ompatible with anti-substitution, and

GHC 
annot give any reasonable semanti
s to it. In sequential Prolog also, the

predi
ate `
opy' should be 
onsidered extralogi
al, be
ause it 
annot be de�ned

without the extralogi
al predi
ate `var' whi
h 
he
ks if its argument is 
urrently

uninstantiated. The use of extralogi
al predi
ates should be dis
ouraged, sin
e

it introdu
es semanti
al 
omplexity and it hinders des
ription of programming

systems and support from them.

Carlsson [1984℄ presented implementation of exhaustive sear
h in fun
tional

programming. His approa
h is similar to ours in that both use 
ontinuations; how-

ever, di�eren
es seem more important than the similarity. Firstly, our te
hnique

takes parallel exe
ution into a

ount. Se
ondly, our te
hnique 
ompiles away the

environment problem while his approa
h requires variant 
reation when 
olle
ting

solutions. Thirdly, our te
hnique generates logi
 programs and 
an therefore be

used as a transformation tool within logi
 programming.

Reddy [1984℄ also presented a te
hnique for transforming logi
 programs into

fun
tional programs. Although the mode system we use in our te
hnique is very

similar to his, our te
hnique is new in the treatment of multiple environments.

4. A Simple Example

To illustrate the di�eren
e between the previous methods and ours, let us


onsider the example of de
omposing a list using `append':

:- append(U, V,[1,2,3℄). (4{1)

append([℄, Z,Z ). (4{2)

append([A|X℄,Y,[A|Z℄ ) :- append(X,Y,Z). (4{3)

From the head of Clause (4{3), we get a partial solution U=[1|X℄. Then we get

three instan
es for X, namely [℄, [2℄, and [2,3℄, by re
ursive 
alls. However,

these three solutions 
annot share the 
ommon pre�x `[1|' as long as the value of

a variable is represented by a referen
e pointer instead of an asso
iation list, and

this is why we have to make variants of the partial solution [1|X℄.

Our method, on the other hand, �rst rewrites Clause (4{3) as follows:

append(X2, Y,[A|Z℄ ) :- append(X,Y,Z), X2=[A|X℄. (4{4)

The predi
ate `=' uni�es its two arguments. It 
an be de�ned by a single unit


lause

X = X.

{ 4 {



We assume that body goals are exe
uted from left to right, following head uni�
a-

tion. Then, while Clause (4{3) generates answer substitutions in a top-down man-

ner, Clause (4{4) generates them in a bottom-up manner by 
ombining ground

terms. The �rst output argument X2 remains uninstantiated until the �rst re-


ursive goal, whi
h may fork be
ause of the two 
andidate 
lauses, su

eeds.

Therefore, we need not make variants of the partial solution upon the re
ursive


all. Clause (4{4) is not tail-re
ursive, so we must instead push the remaining

task of 
onstru
ting the value of X2 onto the sta
k representing a 
ontinuation.

However, sin
e the variable A has a ground value, the remaining task to be sta
ked


an be represented as a ground term and hen
e the 
ontinuation need not be 
opied

when the goal append(X,Y,Z) forks.

Now we are prepared for the elimination of nondeterminism. Program 1

shows a GHC program whi
h returns the result equivalent (up to the permutation

of solutions) to the following DEC-10 Prolog goal:

:- : : :, bagof((X,Y), append(X,Y,Z), S), : : : : (4{5)

Calling form: :- ..., ap(Z,'L0',S,[℄), ...

ap(Z,Cont,S0,S2) :- true | ap1(Z,Cont,S0,S1), ap2(Z,Cont,S1,S2).

ap1(Z,Cont,S0,S1) :- true | 
ont(Cont,[℄,Z,S0,S1).

ap2([A|Z℄,Cont,S0,S1) :- true | ap(Z,'L1'(A,Cont),S0,S1).

ap2(Z,

-

, S0,S1) :- otherwise | S0=S1.


ont('L1'(A,Cont),X,Y,S0,S1) :- true | 
ont(Cont,[A|X℄,Y,S0,S1).


ont('L0', X,Y,S0,S1) :- true | S0=[(X,Y)|S1℄.

Program 1. List de
omposition program.

Sear
h 
orresponding to the two 
lauses of `append' is performed by the 
onjun
tive

goals `ap1' and `ap2' generated by `ap'. The arguments of these predi
ates are as

follows:

(i) the input (i.e., the third) argument of the original program,

(ii) the 
ontinuation,

(iii) the head of the di�eren
e list of solutions, and

(iv) its tail.

The fun
tion symbols 
onstru
ting the 
ontinuation 
an be regarded as indi-


ating the lo
ations of the original program: `L0' indi
ates the end of Clause (4{1)

{ 5 {



and `L1' indi
ates the end of the re
ursive 
all of Clause (4{4). The top-level goal

initializes the 
ontinuation to `L0'.

Sin
e Clause (4{2) is a unit 
lause, the 
orresponding predi
ate `ap1' a
tivates

the `remaining tasks' by 
alling the predi
ate `
ont' for 
ontinuation pro
essing.

At that time, two output results, [℄ and the input argument itself, are passed to

the 
ontinuation pro
essing goal. The predi
ate `ap2' 
he
ks if the input argument

has the form [A|Z℄, and if so, a
tivates the �rst goal in the original 
lause with the

information on the se
ond goal atta
hed to the 
ontinuation. The new 
ontinuation

`L1'(A,Cont) indi
ates that the 
ontrol must be returned to `L1' and that A is

the value to be pushed in front of X. If the input argument is not of the form

[A|Z℄, the uni�
ation of the input argument fails and an empty di�eren
e list is

returned immediately.

The predi
ate `
ont' does 
ontinuation pro
essing. If the 
ontinuation has

the form `L1'(A,Cont), it pushes A in front of the output X and 
alls `
ont' to

pro
ess the rest of the 
ontinuation, Cont. If the 
ontinuation has the form `L0',

it inserts the two outputs it has re
eived into the di�eren
e list. Interestingly, the

predi
ate `
ont' is very similar to an eÆ
ient (non-naive) list reversal program:

The 
ontinuation in this example is essentially a list whi
h represents the �rst

part of ea
h solution (whi
h is a pair of lists) in a reversed form. Di�erent solu-

tions to be 
olle
ted are 
reated by di�erent 
alls of `
ont' whi
h reverse di�erent

substru
tures of the shared 
ontinuation.

Program 1 
olle
ts the solutions from `ap1' and `ap2' by the 
on
atenation of

di�eren
e lists, but this is not a fair way of 
olle
tion. If the �rst 
lause of some

predi
ate produ
ed in�nite number of solutions, we 
ould not see any solutions

from the se
ond 
lause. When we need a fair 
olle
tion, we must 
olle
t solutions

by fair merging of lists.

We 
an interpret Program 1 also as a Prolog program, provided that the `|'

operator is repla
ed by the `!' operator, that the `otherwise' goal in the se
ond


lause of `ap2' is deleted, and that the se
ond 
lause of `ap2' is guaranteed to be

the last 
lause of `ap2'.

5. General Transformation Pro
edure

This se
tion �rst presents the 
lass of Horn-
lause programs to whi
h the

te
hnique as illustrated in Se
tion 4 
an be me
hani
ally applied, and then brie
y

shows the transformation pro
edure. We use the permutation program (Program

2) as an example.

First of all, we show the 
lass of Horn-
lause programs to whi
h our trans-

formation te
hnique is appli
able. A program is transformable if it enjoys the

following property when the body goals in ea
h 
lause are exe
uted from left to

right, following head uni�
ation:

{ 6 {



perm([℄, [℄).

perm([H|T℄, [A|P℄) :- del([H|T℄, A, L), perm(L, P).

del([H|T℄, H, T).

del([H|T℄, L, [H|T2℄) :- del(T, L, T2).

Program 2. Permutation program.

� The arguments of every goal appearing in the program 
an be 
lassi�ed into

input arguments and output arguments. When some goal is 
alled, its input

arguments must have been instantiated to ground terms, and then the goal

must instantiate its output arguments to ground terms when it su

eeds.

Although the above property may look restri
tive at a glan
e, most programs

whi
h do not use the notion of `multiple writers' (see Se
tion 6) or the notion

of a di�eren
e list (whi
h 
an be an in
omplete data stru
ture) will enjoy this

property. Programs whi
h use multiple writers require pre-transformation as de-

s
ribed in Se
tion 6. Programs whi
h make use of di�eren
e lists 
ould be handled

by extending the above notion of input and output, as long as they allow stati


data
ow analysis. This 
onje
ture is based on the observation that when we write

a Prolog program whi
h handles di�eren
e lists, we usually fully re
ognize how

uninstantiated variables appear in the data stru
tures.

One way to give input/output modes to a program would be to make the

programmer de
lare them for every goal argument appearing in the program.

However, a more realisti
 way will be to make the programmer de
lare the mode

of (the arguments of) the top-level goals and to infer the modes of other goals

a

ording to the following rules:

� (Moding Poli
y for a Single Goal)

(a) Arguments whi
h have been instantiated to ground terms upon 
all are re-

garded as input (though they 
ould be 
lassi�ed otherwise).

(b) All the other arguments are regarded as output.

The mode inferen
e and the 
he
k whether the program is transformable 
an

be done in a simple stati
 analysis. We must perform the following analysis for

ea
h 
lause and for ea
h mode in whi
h the predi
ate 
ontaining that 
lause may

be 
alled:

� (Mode Analysis of a Single Program Clause)

(1) Mark all the variables appearing in the input head arguments as ground.

(2) While there is a body goal yet to be analyzed, do the following repeatedly:

{ 7 {



Given De
laration: perm(+, -). (`+': input, `-': output)

+ -

perm( [℄, [℄).

+ - + - - + -

perm([H|T℄, [A|P℄) :- del([H|T℄, A, L), perm(L, P).

+ - -

del([H|T℄, H, T).

+ - - + - -

del([H|T℄, L, [H|T2℄) :- del(T, L, T2).

Program 3. Mode analysis of the permutation program.

(i) Determine the mode of the next body goal a

ording to the above moding

poli
y for a single goal. Here, those terms whi
h are 
omposed only of

variables marked as ground and fun
tion symbols, and only those, are

regarded as ground terms.

(ii) Then mark all the variables appearing in the output arguments of that

goal as ground.

(3) Che
k if the variables appearing in the output head arguments are all marked

as ground. If the 
he
k su

eeds, terminate the analysis of this 
lause with

su

ess; otherwise report failure.

Initially, only the modes of top-level goals are known; possible modes of other

goals are in
rementally obtained during the above analysis. Therefore, the whole

algorithm of the mode analysis should be as follows. In the following, S denotes

a set of `moded' predi
ates. A moded predi
ate is a predi
ate with a mode in

whi
h it is 
alled; di�erent modes of a predi
ate 
orrespond to di�erent moded

predi
ates.

� (Mode Analysis of an Entire Program)

(A) Let S be a set of the moded predi
ates whose 
alls appear in the (de
lared)

top-level goal 
lause. Mark those predi
ates as unanalyzed.

(B) Repeatedly do the following until no unanalyzed predi
ate remains in S or

failure is reported. That is, take an unanalyzed predi
ate from S, unmark it,

and analyze all its 
lauses using the above algorithm, adding to S with the

mark unanalyzed all moded predi
ates whose 
alls are newly found in Step

(2).

(C) The program is transformable if and only if no failure is reported in Step (3).

Program 3 is the analyzed permutation program.

It is easy to prove, by indu
tion on the number of steps of resolution, that a

su

essfully analyzed program instantiates the output arguments of ea
h goal to

{ 8 {



perm([℄, [℄).

perm([H|T℄,X) :- del([H|T℄,A,L), /*L1*/ perm(L,P), /*L2*/ X=[A|P℄.

del([H|T℄,H,T).

del([H|T℄,X,Y) :- del(T,L,T2), /*L3*/ X=L, Y=[H|T2℄.

Program 4. Normal form of the permutation program.

ground terms upon su

essful termination, provided ground terms are given to the

input arguments.

A su

essfully analyzed program is then transformed a

ording to the follow-

ing steps:

(1) If there is any predi
ate to be 
alled in two or more di�erent modes, give a

unique predi
ate name for ea
h mode.

(2) Rewrite ea
h 
lause into the normal form as follows:

(2a) For ea
h 
lause other than unit 
lauses, repla
e output head arguments

T

1

; : : : ; T

n

by distin
t fresh variables V

1

; : : : ; V

n

, and pla
e the goals

V

1

=T

1

; : : : ; V

n

=T

n

at the end of the 
lause.

(2b) For ea
h goal G in the body of ea
h 
lause, repla
e its output argu-

ments T

1

; : : : ; T

n

by distin
t fresh variables V

1

; : : : ; V

n

and pla
e the

goals V

1

=T

1

; : : : ; V

n

=T

n

immediately after G unless T

1

; : : : ; T

n

are dis-

tin
t variables not appearing in the previous goals or the 
lause head.

(3) Transform ea
h predi
ate in the program.

Step (1) removes multi-mode predi
ates. This transformation atta
hes the


on
ept of a mode to ea
h predi
ate as well as to ea
h predi
ate 
all.

The purpose of Step (2b) is to simplify output arguments in a goal. It is 
lear

that a program whi
h has passed the mode analysis and then has been rewritten

a

ording to Steps (1) and (2) is still in the transformable 
lass. Program 4 shows

the normal form of the permutation program.

Now we will show the outline of Step (3), the main part of our transformation

method. Program 5 shows the result applied to Program 4. In the following, we

indi
ate in bra
es what in the example of the permutation program are mentioned

by ea
h term appearing in the explanation.

(a) The arguments of a transformed predi
ate are made up of

� the input arguments of the original predi
ate,

� a 
ontinuation, and

{ 9 {



<

1

>

p([℄, Cont,S0,S1) :- true | 
ontp(Cont,[℄,S0,S1).

<

2

>

p([H|T℄,Cont,S0,S1) :- true | d([H|T℄,'L1'(Cont),S0,S1).

<

3

>

p(L,

-

, S0,S1) :- otherwise | S0=S1.

<

4

>

d(L,Cont,S0,S2) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).

<

5

>

d1([H|T℄,Cont,S0,S1) :- true | 
ontd(Cont,H,T,S0,S1).

<

6

>

d1(L,

-

, S0,S1) :- otherwise | S0=S1.

<

7

>

d2([H|T℄,Cont,S0,S1) :- true | d(T,'L3'(H,Cont),S0,S1).

<

8

>

d2(L,

-

, S0,S1) :- otherwise | S0=S1.

<

9

>


ontp('L2'(A,Cont),P,S0,S1) :- true | 
ontp(Cont,[A|P℄,S0,S1).

<

10

>


ontp('L0', P,S0,S1) :- true | S0=[P|S1℄.

<

11

>


ontd('L3'(H,Cont),L,T2,S0,S1) :- true |


ontd(Cont,L,[H|T2℄,S0,S1).

<

12

>


ontd('L1'(Cont), A, L,S0,S1) :- true |

p(L,'L2'(A,Cont),S0,S1).

Program 5. Transformed permutation program.

� the head and the tail of a di�eren
e list for returning solutions.

Ea
h transformed predi
ate is responsible for doing the task of the original

predi
ate, followed by the task represented by the 
ontinuation.

(b) For a predi
ate f`perm'g of whi
h at most one 
lause 
an be used for redu
-

ing ea
h goal, the transformed predi
ate 
onsists of the transformed 
lauses

f

<

1

>

,

<

2

>

g of the original ones (See (i)). For a predi
ate f`del'g of whi
h

more than one 
lause may be appli
able for redu
tion, we give a separate

subpredi
ate name f`d1', `d2'g to ea
h transformed 
lause f

<

5

>

,

<

7

>

g, and

let the transformed predi
ate f`d'g 
all all these subpredi
ates and 
olle
t

solutions.

(
) The body of a 
lause f

<

1

>

,

<

5

>

g transformed from a unit 
lause 
alls a

goal for 
ontinuation pro
essing f`
ontp', `
ontd'g. This goal is given as

arguments the output values f[℄, (H,T)g returned by the original unit 
lause.

(d) The body of a 
lause f

<

2

>

,

<

7

>

g transformed from a non-unit 
lause 
alls

the predi
ate f`d'g 
orresponding to the �rst body goal f`del'g of the original


lause (See (e) and (j)).

(e) When 
alling a (transformed) predi
ate fe.g., `d' in

<

7

>

g 
orresponding to the

i-th body goal G

i

fthe re
ursive 
all of `del'g of some 
lause, we push the label

f'L3'g indi
ating the next goal G

i+1

together with the input data fHg used

by the subsequent goals G

i+1

; : : : ; G

n

fX=L, Y=[H|T2℄g. If G

i

is the last goal,

{ 10 {



then nothing is pushed but the 
urrent 
ontinuation is passed as it is. When


alling a predi
ate f`p'g 
orresponding to the top-level goal fsay `perm(L,X)'

where L is some ground termg, we give as the initial value of the 
ontinuation

the label f'L0'g indi
ating the termination of refutation together with the

data fnoneg ne
essary for 
onstru
ting a term to be 
olle
ted fXg.

(f) Predi
ates for 
ontinuation pro
essing are 
omposed of 
lauses f

<

9

>

,

<

10

>

,

<

11

>

,

<

12

>

g ea
h 
orresponding to the label pushed in Step (e). These


lauses are 
lassi�ed a

ording to the predi
ates immediately before those

labels and are given separate predi
ate names f`
ontp', `
ontd'g.

(g) Ea
h 
lause fe.g.,

<

12

>

g of a predi
ate for 
ontinuation pro
essing prepares

input data fLg for the next goal fperm(L,P)g indi
ated by the re
eived label

f`L1'g, by using the information fnoneg sta
ked with the label and the output

fA, Lg of the last goal. Then it 
alls a predi
ate f`p'g 
orresponding to the

next goal (See (e), (j) and (k)).

(h) The 
lause f

<

10

>

g for pro
essing the label f'L0'g indi
ating termination

generates a term to be 
olle
ted fPg from the output fPg of the top-level goal

and the information fnoneg sta
ked with the label, and returns a di�eren
e

list having that term as the sole element.

(i) For those transformed predi
ates f`p', `d1', `d2'g whi
h may fail in the uni�
a-

tion of the input arguments, ba
kup 
lauses f

<

3

>

,

<

6

>

,

<

8

>

g are generated

for returning empty di�eren
e lists when the uni�
ation fails.

(j) Uni�
ation goals generated by moving output head uni�
ation (Step (2a)

of the transformation) are pro
essed `on the spot' in a transformed pro-

gram, followed by the next task that must be a 
all to the 
ontinuation

pro
essing predi
ate f

<

9

>

,

<

11

>

g. The task is to feed the output value(s)

f[A|P℄; (L,[H|T2℄)g to the 
ontinuation pro
essing goal.

(k) Uni�
ation goals generated by moving output arguments of a goal that may


ause failure (Step (2b) of the transformation) are transformed as follows

fthis never happens in the permutation programg: We 
onsider the following

sequen
e of goals

: : : ; G; /*La*/ V

1

=T

1

; : : : ; V

n

=T

n

; /*Lb*/ : : :

where V

1

=T

1

; : : : ; V

n

=T

n

are the goals moved from the goal G. LetW

1

; : : : ;W

l

be the variables in T

1

; : : : ; T

n

that must be made ground by previous goals,

and X

1

; : : : ; X

m

be the variables in T

1

; : : : ; T

n

used by subsequent goals that

will be made ground by V

1

=T

1

; : : : ; V

n

=T

n

. Then we de�ne a predi
ate of the

form

u(T

1

; : : : ; T

n

,W

1

; : : : ;W

l

,Cont,S0,S1) :- true |


ontx(Cont,X

1

; : : : ; X

m

,S0,S1).

u(V

1

; : : : ; V

n

,W

1

; : : : ;W

l

,Cont,S0,S1) :- otherwise | S0=S1.

{ 11 {



where `
ontx' is a 
ontinuation pro
essing goal for 'Lb'. This predi
ate is


alled as

u(V

1

; : : : ; V

n

,W

1

; : : : ;W

l

,'Lb'(Y

1

; : : : ; Y

p

,Cont),S0,S1)

when the label 'La' is re
ognized, where Y

1

; : : : ; Y

p

are the input data used

by the goals after 'Lb'.

The above des
ription does not 
onsider system predi
ates. However, deter-

ministi
 system predi
ates that deal with ground data 
an be handled without

essential 
hanges. Predi
ates for arithmeti
s and integer 
omparison fall within

this 
lass.

Some peephole optimization may apply to a transformed program. For exam-

ple, if some predi
ate is 
alled only on
e (textually) in an original program, the

transformed predi
ate has only one `return address'. The operations on a 
ontinu-

ation 
ould be optimized in su
h a 
ase. General unfolding (or partial evaluation)

te
hnique may improve eÆ
ien
y also.

Lastly, it is worth noting that in spite of our restri
tion, a transformed pro-

gram 
an handle some non-ground data stru
ture 
orre
tly. That is, the portions

of an input data stru
ture whi
h are only passed around and never examined by

uni�
ation need not be ground terms. For example, when we exe
ute the following

goal,

:- p([A,B,C℄, 'L0', S, [℄).

S will be 
orre
tly instantiated to a list of six permutations:

[[A,B,C℄,[A,C,B℄,[B,A,C℄,[B,C,A℄,[C,A,B℄,[C,B,A℄℄.

Non-ground data stru
tures 
ould be handled more gra
efully by extending the

mode system to a generi
 type system, but we used the mode system for the sake

of simpli
ity.

6. On the Class of Transformable Programs

For the te
hnique des
ribed above to be useful from a pra
ti
al point of view,

the transformable 
lass of Horn-
lause programs de�ned in Se
tion 5 must be large

enough to express many problems naturally. The problem in this regard is that

we often make use of the notion of `multiple writers'. By `multiple writers' we

mean two or more goals sharing some data stru
ture and trying to instantiate it


ooperatively and/or 
ompetitively. In Prolog programming, su
h a data stru
ture

is usually represented dire
tly by a Prolog term and is operated by the dire
t use

of Prolog uni�
ation; a typi
al example is the 
onstru
tion of the output data of

a parser program.

{ 12 {



However, this programming te
hnique has problems in terms of appli
ability

of our transformation:

(1) It is generally impossible to analyze stati
ally whi
h part of the shared data

stru
ture is instantiated by whi
h goal.

(2) The shared data stru
ture may not be instantiated fully to a ground term.

Problem (2) is 
onsidered a problem also from a semanti
al point of view.

When extra
ting some information from the shared data stru
ture generated by

a sear
h program, we have to use the extralogi
al predi
ate `var' to see whether

some portion of the data stru
ture is left undetermined. One may argue that we

need not use the predi
ate `var' if we analyze the data stru
ture after making it

ground, that is, after instantiating its undetermined portions to some ground terms

su
h as new 
onstant symbols. He may further argue that making a term ground

never 
alls for the predi
ate `var' sin
e we 
an a

omplish this by trying to unify

every subterm of it with a new 
onstant. However, then, the sear
h program whi
h

generates a non-ground result and the program to make it ground will be in the

relationship of multiple writers, and the latter program should never start before

the former program has �nished be
ause the latter must have a lower priority with

respe
t to instantiation of the shared data stru
ture. This means we have to use

the 
on
ept of sequentiality or priority between 
onjun
tive goals, both of whi
h

are 
on
epts outside Horn-
lause logi
.

Let us 
onsider Problem (2) in terms of the de
larative semanti
s of logi


programs (Lloyd [1984℄). Colle
tion of solutions makes it possible to 
ount the

number of solutions (Warren [1982℄). Then what must be regarded as the number

of solutions when they 
ontain variables? The number of maximally general answer

substitutions? The number of elements of the minimal Herbrand model that are

instan
es of the original goal? Both seem unsatisfa
tory. It seems that the number

of solutions 
an be reasonably de�ned only by disallowing non-ground solutions,

as long as we do not have a notion of types.

Anyway, we must make some pre-transformation to su
h a Horn-
lause pro-

gram in order to apply our transformation te
hnique. That is, we must 
hange the

representation of the shared data stru
ture to a ground-term representation|a

list of binding information generated by ea
h writer. Ea
h writer must re
eive the


urrent list of binding information and return a new one as a separate argument.

When a writer is to add some binding information, it must 
he
k the 
onsisten
y

between the 
urrent and the new information to be added. This 
he
king 
ould

be done by trying to 
onstru
t the original representation from s
rat
h ea
h time,

but it 
ould be done more eÆ
iently by adopting an appropriate data stru
ture

(possibly other than a list of bindings) for the binding information.

Comparing the original and the proposed implementation s
hemes of multiple

writers from a pra
ti
al point of view, the proposed s
heme is apparently disad-

vantageous in the ease of programming. However, the di�eren
e does not lie in

{ 13 {



Table 1. Performan
e of exhaustive sear
h programs (in mse
.).

Program Original Original Transformed Number of

(`bagof') (sear
h only) Solutions

List De
omposition 836 4 27 51

(50 elements)

Permutation Genera- 354 34 57 120

tion (5 elements)

5-Queens 45 20 28 10

6-Queens 90 75 106 4

7-Queens 441 325 446 40

8-Queens 1796 1484 1964 92

the spe
i�
ation of the abstra
t data but only in the ease of its implementation,

whi
h should not be so essential a problem sin
e a

umulation of programming

te
hniques and program libraries will alleviate the diÆ
ulty.

EÆ
ien
y is another point on whi
h 
omparison should be made. Although

the original representation is suitable for the exe
ution using ba
ktra
king, it re-

quires a multiple environment me
hanism for OR-parallel exe
ution, whi
h may


ause additional 
omplexity and overhead (Ciepielewski and Haridi [1983℄). The

proposed pre-transformation may make the 
onsisten
y 
he
king somewhat expen-

sive, but will make parallel exe
ution mu
h easier be
ause no multiple environment

me
hanism is ne
essary.

Sometimes Problem (2) 
ould be resolved more easily. Consider a parser of

English senten
es whi
h 
he
ks the agreement of number. Neither a noun phrase

nor a verb phrase may determine whether the subje
t is singular or plural, in whi
h


ase a variable indi
ating the number may be left uninstantiated. In this 
ase,

however, it is easy to rewrite the program so that the analyzer of the noun phrase

returns two possible values for that variable in OR-parallel instead of leaving it

uninstantiated.

7. Performan
e Evaluation

Table 1 
ompares the performan
e of original and transformed programs.

The programs measured are those des
ribed above, and an N -queens pro-

gram with N being 5, 6, 7 and 8. The N -queens program we used was in the

transformable 
lass de�ned in Se
tion 5.

All programs were measured using DEC-10 Prolog on DEC2065. For ea
h

original program, the exe
ution time of exhaustive sear
h (by for
ed ba
ktra
k-

{ 14 {



ing) without 
olle
tion of solutions was measured as well as the exe
ution time by

the `bagof' primitive. The `setof' primitive was not 
onsidered be
ause the order

of solutions was inessential for us. Ea
h program was measured after possible sim-

pli�
ation whi
h took advantage of the fa
t that Prolog 
he
ks 
andidate 
lauses

sequentially.

As Table 1 shows, the proposed program transformation improved the ef-

�
ien
y of exhaustive sear
h by 6 times for the permutation program and by

more than 30 times for the list de
omposition program `append'. This remarkable

speedup was brought by spe
ializing the task of 
olle
ting solutions to �t within

the framework of Horn-
lause logi
, while the `bagof' primitive uses a extralogi
al

feature similar to `assert' (Bowen et al. [1983℄) whi
h an optimizing 
ompiler


annot help. A program su
h as N -queens, whi
h has a small number of solu-

tions 
ompared with its sear
h spa
e, 
annot therefore expe
t remarkable speedup;

the transformed N -queens program got slightly slower ex
ept for 5-queens. After

manual optimization, however, the transformed 8-queens program surpassed the

original `bagof' version.

Another point to note is that in the 
ase of 8-queens, the transformed program

was only by 25% slower than the original program whi
h does not 
olle
t solutions

and whi
h makes use of the dedi
ated me
hanism for sear
h problems, namely

automati
 ba
ktra
king. This suggests that the transformed program 
ould not

be improved very mu
h without 
hanging the sear
h algorithm.

8. Summary and Future Works

We have des
ribed a method of 
ompiling a Horn-
lause program for exhaus-

tive sear
h into a GHC program or a deterministi
 Prolog program. Although not

stated above, the method using the 
on
ept of a 
ontinuation 
an be applied also

to the 
ase where only one solution is required. Our method also provides the

possibility of introdu
ing 
ontrol into sear
h, sin
e all a
tivities are made to be

performed in a single environment.

We limited the 
lass of Horn-
lause programs to whi
h our method is appli-


able. However, this 
lass is never trivial and it should not be so diÆ
ult to write

a program within this 
lass or its natural extension. Rather, we believe that it

is important from a pra
ti
al point of view to show the 
lass of Horn-
lause pro-

grams whi
h 
an be transformed without loss of eÆ
ien
y and without resort to

extralogi
al predi
ates. Programs to whi
h our method is essentially inappli
able

seem to require semanti
al 
onsiderations before trying to extend our method.

The loss of performan
e by not using su
h dedi
ated me
hanisms as automati


ba
ktra
king was small. We found that our te
hnique may even improve the

eÆ
ien
y of exhaustive sear
h that has been done by using the `bagof' primitive.

{ 15 {



The proposed transformation eases parallel sear
h in that it eliminates the

need of multiple environments, but it never eliminates other problems on resour
e

management. Resour
e management is still an important problem in realizing

parallel sear
h. Therefore, our results need not and should not be interpreted as

redu
ing the signi�
an
e of OR-parallel Prolog ma
hines: Spe
ialized hardware


an always perform better for a spe
ial 
lass of programs. While our primary

purpose was to examine the possibility of eÆ
ient sear
h on a general-purpose

parallel ma
hine, our te
hnique 
ould be utilized also for improving the eÆ
ien
y

of OR-parallel Prolog ma
hines. Comparison of these two approa
hes should be

an interesting resear
h in the near future.

A
knowledgments

The author is indebted to Hisao Tamaki for pointing out an overlooked 
ase

in the transformation pro
edure of the original version of this paper.

Referen
es

Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren, D. H. D.

[1983℄ DECsystem-10 Prolog User's Manual. Dept. of Arti�
ial Intelligen
e,

Univ. of Edinburgh.

Carlsson, M. [1984℄ On Implementing Prolog in Fun
tional Programming. In Pro
.

1984 Int. Symp. on Logi
 Programming, IEEE Computer So
iety, pp. 154{

159.

Ciepielewski, A. and Haridi, S. [1983℄ A Formal Model for OR-Parallel Exe
ution

of Logi
 Programs. In Pro
. IFIP '83, Mason, R. E. A. (ed.), Elsevier S
ien
e

Publishers B. V., Amsterdam, pp. 299{305.

Clark, K. L. and Gregory, S. [1984a℄ PARLOG: Parallel Programming in Logi
.

Resear
h Report DOC 84/4, Dept. of Computing, Imperial College of S
ien
e

and Te
hnology, London. Also in ACM Trans. Prog. Lang. Syst., Vol. 8, No.1

(1986), pp. 1{49.

Clark, K. L. and Gregory, S. [1984b℄ Notes on the Implementation of PARLOG.

Resear
h Report DOC 84/16, Dept. of Computing, Imperial College of S
ien
e

and Te
hnology, London, 1984. Also in J. of Logi
 Programming, Vol. 2, No. 1

(1985), pp. 17{42.

Hirakawa, H., Chikayama, T. and Furukawa, K. [1984℄ Eager and Lazy Enumera-

tions in Con
urrent Prolog. In Pro
. Se
ond Int. Logi
 Programming Conf.,

Uppsala Univ., Sweden, pp. 89{100.

Lloyd, J. W. [1984℄ Foundations of Logi
 Programming. Springer-Verlag, Berlin

Heidelberg New York Tokyo.

{ 16 {



Naish, L. [1985℄ All Solutions Predi
ates in Prolog. In Pro
. 1985 Symp. on Logi


Programming, IEEE Computer So
iety, pp. 73{77.

Reddy, U. S. [1984℄ Transformation of Logi
 Programs into Fun
tional Programs.

In Pro
. 1984 Int. Symp. on Logi
 Programming, IEEE Computer So
iety,

pp. 187{196.

Shapiro, E. Y. [1983℄ A Subset of Con
urrent Prolog and Its Interpreter. ICOT

Te
h. Report TR-003, Institute for New Generation Computer Te
hnology,

Tokyo.

Ueda, K. [1985℄ Guarded Horn Clauses. ICOT Te
h. Report TR-103, Institute for

New Generation Computer Te
hnology, Tokyo. Also in Pro
. Logi
 Program-

ming '85, Wada, E. (ed.), Le
ture Notes in Computer S
ien
e 221, Springer-

Verlag, Berlin Heidelberg (1986), pp. 168{179.

Ueda, K. [1986a℄ Guarded Horn Clauses. Do
toral Thesis, Information Engineer-

ing Course, Fa
ulty of Engineering, Univ. of Tokyo.

Ueda, K. [1986b℄ Guarded Horn Clauses: A Parallel Logi
 Programming Language

with the Con
ept of a Guard, ICOT Te
h. Report TR-208, Institute for New

Generation Computer Te
hnology, Tokyo.

Ueda, K. and Chikayama, T. [1985℄ Con
urrent Prolog Compiler on Top of Pro-

log. In Pro
. 1985 Symp. on Logi
 Programming, IEEE Computer So
iety,

pp. 119{126.

Warren, D. H. D. [1982℄ Higher-order extensions to PROLOG: are they needed?

In Ma
hine Intelligen
e 10, Hayes, J. E., Mit
hie, D. and Pao, Y. -H. (eds.),

Ellis Horwood, Chi
hester, England, pp. 441{454.

{ 17 {


