
In T. Ito and A. Yonezawa (Eds.),

Theory and Practice of Parallel Programming,

LNCS 907, Springer, 1995, pp. 356{368.

I/O Mode Analysis in Concurrent Logic

Programming

Kazunori Ueda

Department of Information and Computer Science

Waseda University

4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169, Japan

ueda@ueda.info.waseda.ac.jp

Abstract. This paper brie
y reviews concurrent logic programming and

the I/O mode system designed for the concurrent logic language Flat

GHC. The mode system plays fundamental rôles both in programming

and implementation in almost the same way as type systems do but

in di�erent respects. It provides us with the information on how data

are generated and consumed and thus the view of \data as resources".

It statically detects bugs resulting from ill-formed data
ow and advo-

cates the \programming as wiring" paradigm. Well-modedness guaran-

tees the safety of uni�cation, the basic operation in concurrent logic

programming. Information on the numbers of access paths to data can

be obtained by slightly extending the framework, which can be used for

compile-time garbage collection and the destructive update of structures.

1 Concurrent Logic Programming

Concurrent logic programming was born around 1980 from the study of the

parallel execution of logic programs, and became an important paradigm for

concurrent programming in its own right. Relational Language [3] was the �rst

to appear in the form of a complete programming language. Guarded Horn

Clauses (GHC) was designed in the Fifth Generation Computer Project in 1984

[11], after thorough examination of its predecessors Concurrent Prolog [9] and an

early version of PARLOG [4]. Because of its simplicity, GHC was soon accepted

in the Project as the base of KL1, the full-
edged kernel language for the Parallel

Inference Machine. GHC was soon subsetted to Flat GHC with a simpler guard

construct, and the design of KL1 started based on Flat GHC. While GHC was

designed as a concurrent language that did not address how programs should be

executed, KL1 was designed as a parallel language in which programmers could

specify what processor should execute what processes and at what priorities [13].

For the detailed history of the kernel language design in the Fifth Generation

Computer Project, the readers are referred to [14].

1

Several more concurrent logic programming languages were proposed in the

past decade, but the di�erence between all those languages is rather small as

1

An e�cient KL1-to-C compiler system for Unix-based general-purpose computers,

named KLIC, can be obtained via anonymous ftp from ftp.icot.or.jp.



far as the constructs for reactive concurrent programming are concerned|it's

de�nitely smaller than the di�erence between CSP, CCS and ACP. All those lan-

guages feature asynchronous communication using single-assignment variables

which people call logical variables. All the languages after (and including) Con-

current Prolog supported incomplete messages, a bidirectional communication

technique using a single stream, and dynamic process creation and recon�gura-

tion. Although they do not support processes as �rst-class objects, they support

dynamic creation of processes and dynamic creation of streams connected to

the processes. Since streams are �rst-class in concurrent logic programming and

can freely passed from one process to another, those languages have e�ectively

supported \mobile" processes since early 1980's.

2 How Processes Communicate

In concurrent logic programming, processes communicate by observing and gen-

erating substitutions, namely bindings between variables and their values. Con-

sider an I/O process, say io(S), which models a CRT display terminal and

receives a stream S of I/O commands such as get(C) and put(63). The stream

S can be represented as a list of get and put commands, so Smay be instantiated

to a list [put(63),get(C),get(C

0

), : : : ], which means that the I/O process

should display \?" (63 in ASCII) and then read two characters. The same list

may be constructed incrementally as S = [put(63)|S

0

], S

0

= [get(C)|S

00

],

S

00

= [get(C

0

)|S

000

], and so on. The I/O process will interpret these commands

in the order they appear in the stream. If you key in \A" and then \B", it will

generate the bindings C = 65 and C

0

= 66.

The observation of bindings is done by matching (one-way uni�cation) and

the generation is done by (two-way) uni�cation. Interestingly, this algebraic ac-

count can be restated logically: Bindings can be viewed as equality constraints

on the values of variables, matching can be viewed as the checking (asking) of

whether one constraint implies another, and uni�cation can be viewed as the

publication (telling) of a constraint. This view was �rst given by Maher [6] and

studied extensively by Saraswat [7] in a generalized setting of concurrent con-

straint programming (CCP).

3 GHC as a Model of Concurrency

Although the family of concurrent logic languages [10] was initially proposed as

a tool for programming rather than a model of concurrency, its essence is simple

enough to be viewed as a model of concurrency. The somewhat simpli�ed syntax

of GHC, which ignores guard goals, is given in Figure 1. The syntax is rule-based

rather than expression-based simply for historical and practical reasons.

Rule (1) in concerned with indeterminate choice. Rule (2) is concerned with

information receiving (at A, called the head) and subsequent reduction to B

(the body). It implicitly expresses the hiding of variables occurring only in B



as well. Information receiving is done by matching A with a goal (say G) to

be reduced, where only the variables in A can be instantiated. If A and G are

not uni�able, G cannot be reduced using the program clause A :- B. If they

are uni�able but only by instantiating G, the matching is suspended until G

is su�ciently instantiated by the execution of other uni�cation goals. Thus the

matching between A and G may involve equality checking and synchronization

as well as information receiving.

Rule (3) is concerned with parallel composition. Rule (4) says that each goal

is either a uni�cation goal to publish information or a non-uni�cation goal to

be reduced using program clauses. The initial multiset of goals to be reduced is

given by a goal clause (Rule (7)).

The CCP framework considered a lot more combinators, but we have made

sure that the above (small) set of constructs, which corresponds to indeterminate

CCP with ask and (eventual) tell, is usually enough.

(program) P ::= set of C's (1)

(program clause) C ::= A :- B (2)

(body) B ::= multiset of G's (3)

(goal) G ::= T

1

= T

2

j A (4)

(non-uni�cation atom) A ::= p(T

1

, : : : ,T

n

); p 6= `=' (5)

(term) T ::= (as in �rst-order logic) (6)

(goal clause) Q ::= :- B (7)

Fig. 1. The (simpli�ed) syntax of GHC

4 Channels as First-Class Objects

What makes concurrent logic/constraint programming unique is that commu-

nication channels (streams) are �rst-class data structures (lists). Ordinary list

operations are used for sending and receiving messages, while in other models of

concurrency, channels and operations on channels are usually provided as built-

in language constructs. This uniformity in the language constructs was achieved

by the ability of (concurrent) logic languages to deal with partial information

such as lists with uninstantiated tails. The uniformity contributes much to the

simplicity of the semantical framework and program analysis.

Channels as data structures turned out to be quite 
exible. Various commu-

nication protocols have been used in actual programming, including streams of

streams (of streams : : : ), demand-driven communication, and incomplete mes-

sages with reply boxes. In addition, di�erence lists invented in logic programming

turned out to be extremely useful also in concurrent logic programming. Di�er-

ence lists allow us to form fragments of a message sequence independently|in



an arbitrary order or in parallel|, connect them later on, and feed the result to

the receiver process.

5 Experiences with GHC/KL1 Programming

Hundreds of thousands of lines of GHC/KL1 programs have been written inside

and outside the Fifth Generation Computer Project. The applications include an

operating system for the Parallel Inference Machine (PIMOS), a parallel theorem

prover (MGTP) that discovered a new fact in �nite algebra, genetic information

processing, and so on.

People found the communication and synchronization mechanisms of GHC/

KL1 quite natural. They were seldom bothered by synchronization bugs

2

and

gradually learned to model their problems in an object-oriented manner using

concurrent processes and streams. Although writing correct concurrent programs

was not so hard, writing e�cient parallel programs turned to be a quite separate

issue. A visual performance debugger played an important rôle.

We have found that logical variables are normally used for cooperative rather

than competitive communication. Most variables in a run-time con�guration

have exactly two occurrences each, in which case they are used as cables for

one-to-one communication. This is closely related to the fact that (surprisingly)

many program clauses in Prolog and concurrent logic programs are linear in the

sense that each variable in a clause occurs exactly twice. Consider append in

Prolog:

append([], Y,Y).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

The two clauses are linear in our sense, though they are not left-linear in

that some variables occur more than once in the heads. On the other hand, the

GHC counterpart of append is both linear and left-linear:

append([], Y,Z ) :- Z=Y.

append([A|X],Y,Z0) :- Z0=[A|Z], append(X,Y,Z).

Some GHC variables occur three or more times, most of which are used to

distribute ground terms such as numbers or shared global data. Clauses contain-

ing such variables will generate variables with three or more occurrences in a

run-time con�guration, which will be used as hubs for one-to-many communica-

tion.

Whether communication is one-to-one or one-to-many, uni�cation goals will

always succeed as long as they are used for cooperative communication. Never-

theless, programmers have often got an error message \uni�cation failure", which

indicates that variables are inadvertently used for non-cooperative communica-

tion. For instance, goals X =[] and X =[H|T] will noncooperatively attempt to

2

Bugs regarding the causality of information 
ow are a higher-level problem that often

arises in, for example, programs dealing with circular process structures.



bind X to di�erent values. A static means to ensure the security of uni�cation

was strongly desired.

Note that uni�cation failure is very similar to division-by-zero; for instance,

a Pascal statement X := 5 div 0 can be viewed as insisting that di�erent values,

X *0 (= 0) and 5, should become identical.

6 Mode System for Flat GHC

To guarantee the security of uni�cation statically, a mode system for Flat GHC

was designed in 1990 [12]. This and subsequent sections will introduce it rather

informally but from various aspects. We refer the readers to [15] for the precise

and detailed description.

As a metaphor, consider two electric devices connected by a cable for con-

veying signals. The cable may have a structure such as an array of wires. As

the nature of a cable, its both ends, viewed from outside the cable, should have

opposite polarity structures. That is, a signal given to one end of a wire will go

out from the other end, though di�erent wires may have di�erent directionali-

ties. The plug at an end of a cable will be inserted into the socket on a device.

For the plug and the socket to be compatible, they should again have opposite

polarity structures when viewed from outside. These constraints together imply

that the two sockets on the two devices should have opposite polarity structures.

Our mode system infers such polarity structures of goal arguments in es-

sentially the same manner. (To be exact, it infers the polarity structures of

the arguments of predicates de�ning the behavior of goals, rather than deal-

ing with individual goals themselves.) A mode represents the polarity struc-

ture of goal arguments. While an electric cable has an array structure, a logical

variable may be instantiated to a nested structure with a complicated com-

munication protocol. To deal with such protocols, a mode is a function from

the set of paths specifying positions in data structures occurring in goals, de-

noted P

Atom

, to the set fin; outg. Paths here are not strings of argument po-

sitions; instead they are strings of hsymbol; argument-positioni pairs in order

to be able to specify positions in data structures that are yet to be formed.

For instance, when the argument S of an I/O server io(S) is instantiated to

[put(63),get(C),get(C

0

), : : :], the symbol at

hio; 1ih.; 2ih.; 2ih.; 1ihget; 1i (`.' is a list constructor),

which did not exist initially, turns out to be C

0

. Formally, the sets of paths for

specifying positions in terms and atoms are de�ned, respectively, using disjoint

union as:

P

Term

= (

X

f2Fun

N

f

)

�

; P

Atom

= (

X

p2Pred

N

p

)� P

Term

;

where Fun and Atom are the sets of function and predicate symbols, respectively,

and N

p

and N

f

are the sets of positive integers up to and including the arities

of p and f , respectively.



Mode analysis tries to �nd a mode (i.e., polarity structure) under which every

piece of communication will be performed cooperatively. Such a mode is called

a well-moding.

A well-moding is computed by constraint solving. Function symbols in a

program/goal clause will impose constraints on the possible polarities of the

paths at which they occur. Variable symbols may constrain the polarities not

only of the paths at which they occur but of any positions below those paths.

For example, a variable occurring exactly twice, both in the body of a clause,

constrains the two occurrences to have opposite polarity structures|as an elec-

tric cable does. A variable occurring exactly once in the head and exactly once

in the body constrains the two occurrences to have the same polarity structure,

because the head can be compared to a device viewed from inside, not from out-

side. The two arguments of a uni�cation goal are constrained to have opposite

polarity structures, because a uni�cation goal can be viewed as an adaptor that

simply connects its two arguments and transmits information from one side to

the other. A function symbol occurring in a body goal represents a signal to be

input to the goal, while a function symbol in a head represent a signal to be

received. In either case, the path where a function symbol occurs is constrained

to have the mode in . All these constraints are merged to �nd well-modings for

user-de�ned goals.

As an example, consider the program for indeterminate stream merging:

merge([], Y, Z ) :- Z=Y.

merge(X, [], Z ) :- Z=X.

merge([A|X],Y, Z0) :- Z0=[A|Z], merge(X,Y,Z).

merge(X, [A|Y],Z0) :- Z0=[A|Z], merge(X,Y,Z).

The �rst clause has two occurrences of Y, one in the head and the other in

the body, so they should have the same mode. The two occurrences of Z should

have the same mode as well. On the other hand, the occurrences of Z and Y in

the body should have opposite modes because they occur in the opposite sides

of a uni�cation goal. So we obtain the constraint

8q 2 P

Term

�

m(hmerge; 2iq) 6= m(hmerge; 3iq)

�

: (1)

Also, because the function symbol [] occurs in the �rst argument, we have

m(hmerge; 1i) = in : (2)

Similarly, from the second clause we have

8q 2 P

Term

�

m(hmerge; 1iq) 6= m(hmerge; 3iq)

�

: (3)

We have m(hmerge; 2i) = in as well, but this is implied by (1), (2), and (3).

The third clause contains the goal Z0=[A|Z]. Let this be the kth uni�cation

goal in the program. (We su�x uni�cation goals here because we allow di�erent

uni�cation goals to have di�erent modes.) Then we havem(h=

k

; 2i) = in because

of the list constructor, and consequently m(h=

k

; 1i) = out . The latter constraint



is conveyed by Z0 and we have m(hmerge; 3i) = out , but this is again implied by

the constraints we already have. The constraint imposed by the list constructor

in the head is exactly the same as (2). The variable A occurs twice, once in the

head and once in the body, so we have

8q 2 P

Term

�

m(hmerge; 1ih.; 1iq) = m(h=

k

; 2ih.; 1iq)

6=m(h=

k

; 1ih.; 1iq) = m(hmerge; 3ih.; 1iq)

�

;

namely

8q 2 P

Term

�

m(hmerge; 1ih.; 1iq) 6= m(hmerge; 3ih.; 1iq)

�

:

This happens to be implied by (3). The variable X occurs at hmerge; 1ih.; 2i in

the head and at hmerge; 1i in the body, so we have

8q 2 P

Term

�

m(hmerge; 1ih.; 2iq) = m(hmerge; 1iq)

�

: (4)

The constraint imposed by the variable Y is a tautology

8q 2 P

Term

�

m(hmerge; 2iq) = m(hmerge; 2iq)

�

:

Lastly, the variable Z occurs twice as well, and we have

8q 2 P

Term

�

m(hmerge; 3iq) 6= m(h=

k

; 2ih.; 2iq)

6=m(h=

k

; 1ih.; 2iq) = m(hmerge; 3ih.; 2iq)

�

;

namely

8q 2 P

Term

�

m(hmerge; 3iq) = m(hmerge; 3ih.; 2iq)

�

;

which is, again, implied by the constraints we already have.

We can obtain constraints from the fourth clause a similar way, but all those

constraints turn out to be implied by the constraints obtained from other clauses.

To summarize, the conjunction of the four constraints (1), (2), (3), and (4)

represents all what are imposed by the merge program.

There are many good reasons to use a constraint-based framework. First of

all, because it is inherently incremental, program modules making up a large

program can be analyzed separately so that the results may be merged later.

Secondly, the system provides a uni�ed framework for mode inference, mode

declaration and mode checking, where mode declaration is simply a mode con-

straint given by a programmer. Thirdly, it can deal with generic modes quite

naturally. A predicate of a generic nature may have many possible well-modings,

in which case the analysis will return the principal (i.e., most-general) mode. In

these respects, our mode system has much in common with the type system of

ML, though their purposes are quite di�erent. A generic mode is represented as

a �nite set of (satis�able) mode constraints that all well-modings must satisfy,

as we saw in the merge example.

Mode analysis as constraint solving is decidable and e�cient. As mentioned

above, a variable occurring in a linear and left-linear clause imposes a binary

constraint; a uni�cation goal imposes a binary constraint; and each occurrence



of a function symbol imposes a unary constraint. A set of binary and unary

mode constraints can be represented as a feature graph (feature structures with

cycles) in which

1. paths represent paths in P

Atom

,

2. nodes may have mode values determined by unary constraints,

3. arcs may have \negative signs" that invert the interpretation of the mode

values beyond those arcs, and

4. binary constraints are represented by the sharing of nodes.

The union (i.e., conjunction) of two sets of constraints can be computed

e�ciently as uni�cation over feature graphs. The cost of the uni�cation is almost

proportional to the size of the program and the complexity of the data structures

used (in terms of the size of the grammar to generate them). The size of the

data structures that can be generated does not matter. A variable with more

than two occurrences imposes a non-binary constraint, but in most cases they

can be reduced to unary or binary constraints using other constraints. There are

non-binary constraints that may require generate-and-test search. However, they

are rather exceptional and our solution is not to implement generate-and-test

search but let programmers declare the modes of predicate arguments involving

such variables.

Concurrent languages Doc [5], A

0

UM [16] and Janus [8] attempt to ensure

well-modedness by allowing each variable to occur only twice and letting pro-

grammers distinguish between input and output occurrences using annotations.

These annotations can be regarded as mode declarations and contribute to read-

ability and/or ease of compilation, but they are optional because they can be

inferred in principle. In addition, our mode system can naturally deal with vari-

ables with three or more occurrences.

Another good news with our mode system is that, with slight extension,

it can statically distinguish between paths that are used only for one-to-one

communication and paths that may be used for one-to-many communication.

In other words, we can analyze whether a datum occurring at some path has

exactly one reader or possibly many. This information is fundamental for memory

management, as we will see later.

7 Fundamental Properties of the Mode System

The mode system guarantees the following basic properties. Let P be a program,

Q a goal clause containing the multiset of goals to be reduced, and m be a mode.

Let P : m and Q : m mean that m is a well-moding of P and Q, respectively.

Lemma1. If Q : m and Q contains a uni�cation goal t

1

= t

2

, then at least one

of t

1

and t

2

is a variable.

The lemma says that a uni�cation goal in a well-moded goal clause will not

fail unless the occur check does not fail.



Theorem2 (Subject reduction theorem). Suppose P : m, Q : m, and Q is

reduced in one step to Q

0

using P . Then Q

0

: m holds unless the extended occur

check fails in that reduction.

The theorem is not obvious because of its unless condition. The extended

occur check is the occur check that additionally excludes the uni�cation between

identical variables. In an electric device metaphor, unifying identical variables

corresponds to connecting the two ends of a cable together and forming a self-

loop not connected to anywhere else. This is certainly an operation which is not

likely to be performed in meaningful programs.

From Lemma 1 and Theorem 2, the following important corollary follows:

Corollary 3 (Safety of uni�cation). Suppose P : m and Q : m. Then the

execution of Q under P does not cause uni�cation failure (failure of uni�cation

goals) unless the extended occur check fails.

Another basic property is:

Theorem4 (Groundness theorem). Suppose P : m, Q : m, and Q has been

reduced (in one or more steps) to an empty clause, using P , without causing the

failure of the extended occur check. Then all the variables in Q are instantiated

to ground (i.e., variable-free) terms.

This theorem says that if the termination of Q can be proved, the groundness

property comes for free. The proofs of all the above results can be found in [15].

8 Implication of the Mode System

The mode system of Flat GHC has been exhibiting a vast in
uence on program-

ming, implementation, and language design.

8.1 Programming

Introducing a mode system means to subset a language, but we have felt almost

no loss of expressive power. The mode system can deal with (i) complex data

structures such as streams of incomplete messages and streams of streams, (ii)

di�erence lists, and (iii) mutual recursion, all with no di�culty. A di�erence list

is considered a fragment of a longer list whose tail will eventually be connected

to another di�erence list or a (complete) list. Hence its head and tail will be

constrained to have exactly opposite modes.

The mode system provides us with useful debugging information and pro-

gramming guidelines. Firstly, it is useful for the detection of careless mistakes

like the misspelling of variable names. A variable occurring only once can be

compared to a cable not connected to anywhere else and very often indicates a

program error. Such an occurrence (say at p) imposes a strong mode constraint in

our mode system, namely 8q2P

Term

�

m(pq) = in

�

or 8q2P

Term

�

m(pq) = out

�

,



depending on whether the occurrence is in the head or the body. This strong

constraint is highly likely to be incompatible with the other mode constraints

and cause a mode error. We have found that even without a mode system, many

careless mistakes can be detected by simply counting the number of occurrences

of each variable; it is as useful as checking whether there are unplugged sockets

or dangling cables before using electric devices.

Secondly, the mode system advocates the \programming as wiring" paradigm,

or equivalently, programming with linear clauses. (A variable in a linear clause

can be regarded as a cable that wires two atoms.) This programming style leads

to more generic well-modings and also encourages \structured programming"

in terms of data
ow. We found that this style is less error-prone than allowing

unrestrictive use of variables with more occurrences. For instance, we have pro-

grammed operations on self-adjusting binary trees and uni�cation over feature

graphs, both using processes and streams (rather than records and pointers). The

recon�guration of processes they involve is rather complicated, but debugging

was not so hard.

Thirdly, the mode system encourages the graceful termination of processes;

that is, a process cannot discard its arguments upon termination if it contains

variables to be instantiated by that process. Thanks to graceful termination, we

can prove that a well-moded terminating program instantiates all the variables to

ground terms (Theorem 4). In stream programming, this means that all streams

will be closed upon termination.

8.2 Implementation

While uni�cation is bidirectional by nature, mode analysis determines the di-

rection of data
ow at compile time. This information is particularly useful in

the distributed implementation of uni�cation goals. Another important aspect

is that mode analysis will make the use of native code more realistic. Without it,

the compiled code must prepare for exceptional situations that will not happen

in normal programs.

Compile-time distinction between one-to-one and possibly one-to-many com-

munication provides fundamental information for memory management. Since

a compiler can now pinpoint when each datum used in one-to-one communica-

tion becomes unnecessary, it can be reclaimed (compile-time garbage collection)

or destructively updated to create a new datum. Update-in-place is extremely

important for the e�cient support of arrays. Previous implementations of KL1

featured a one-bit reference counting scheme [2]. The reference counting worked

quite e�ciently on Parallel Inference Machines, but a static scheme is clearly

more desirable on stock microprocessors.

Analysis of the mode and the number of receivers enables a sophisticated im-

plementation technique that we call message-oriented implementation [12] [15].

Message-oriented implementation compiles uni�cation for stream communica-

tion into low-latency message passing, which is particularly bene�cial to pro-

grams in which processes suspend frequently and incur much process switching

overhead.



8.3 Language Design

We are currently exploring the possibility of using concurrent logic languages for

(massively) parallel array processing. KL1 supports data structures called vec-

tors (one-dimensional arrays) and provides several vector operations. However,

the mode analysis tells us some of them have more generic modes than others.

An operation with a more generic mode is considered more fundamental. For

element access, for instance, the most basic operation turns out to be

set vector element(V, I, E, NewE, NewV) :

This operation receives an array V and the index value I, and returns through

E the Ith value of V. In addition, it returns through NewV an array which is

identical to V except that the Ith element is replaced by NewE.

Interestingly, this seemingly \combined" operation is more generic than just

either reading or setting an array element. The reason is that it keeps unchanged

the number of references to the whole original array and its elements. For in-

stance, the above set vector element consumes one reference V to the whole

array and one reference NewE to the new element, and generates a reference E

to the old Ith element and a reference NewE to the updated array. Thus the

operation preserves the number of access paths to any of the elements in the

original or updated array. In contrast, an access operation that simply returns

a reference to the Ith element, such as Prolog's arg, will impose stronger mode

constraints because it loses access paths to the other elements.

The moral of the above result is that in a moded framework, data have an

aspect of resources whose access paths should not be copied or discarded freely.

An array element should, by default, be removed from the array once accessed,

and the resulting blank should be �lled with another value. When performing

some operation on an array element and storing the result back to the array,

the blank can be tentatively �lled with a variable which will be instantiated to

the result value. Another typical example of data as resources is a bidirectional

communication stream, which could be passed to another process but should not

be copied.

An exception to the above principle is that read-only arrays, namely arrays

whose elements are (or are to be instantiated to) ground terms, can be accessed

without removing their elements. Because ground terms are read-only, the prin-

ciple of cooperative communication allows them to be freely copied or pointed

to by a new read-only reference.

Other generic array operations include splitting an array, concatenating two

arrays, changing the dimensionality or the shape of an array, and exchanging two

elements in an array. Note that they all preserve the number of access paths to

elements. All those operations except concatenation are constant-time operations

as long as the original arrays are single-reference arrays. Concatenation can

be done in constant time as well, provided the two arrays to be concatenated

happens to lie next to each other.



The \data as resources" paradigm clearly has some connection with the

\propositions-as-resources" view of Linear Logic and also with Linear Lisp [1],

though the precise connection is yet to be studied.

9 Conclusions

The static mode system for concurrent logic programming has been described

informally but from various aspects. The mode system plays fundamental rôles

both in programming and implementation in almost the same way as type sys-

tems do but in di�erent respects. It also brings two paradigms, data as resources

and programming as wiring, into the language. Mode analysis is quite e�cient

and can be done incrementally.

In previous implementations, I/O modes and the number of access paths

were checked either at runtime or analyzed by abstract interpretation. The mode

system we propose is much simpler and more systematic. We do not claim that

the mode system can completely replace abstract interpretation. For instance,

the time-of-call/exit properties of goals such as the instantiation states of their

arguments, which in general depend on the scheduling of goals, can be obtained

only by abstract interpretation. However, sophisticated program analysis should

bene�t from the basic information provided by the mode system.

Programmers may �nd the rigid handling of \data as resources" enforced

by the mode system rather awkward, but we believe that the bene�t of the

mode system in programming and implementation will more than make up the

rigidness in most applications of concurrent logic programming.

References

1. Baker, H. G., Lively Linear Lisp|`Look Ma, No Garbage!' Sigplan Notices, Vol. 27,

No. 8 (1992), pp. 89{98.

2. Chikayama, T. and Kimura, Y., Multiple Reference Management in Flat GHC. In

Proc. 4th Int. Conf. on Logic Programming, MIT Press, Cambridge, MA, 1987,

pp. 276{293.

3. Clark, K. L. and Gregory, S., A Relational Language for Parallel Programming. In

Proc. ACM Conf. on Functional Programming Languages and Computer Archi-

tecture, ACM, 1981, pp. 171{178.

4. Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic. ACM.

Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1{49.

5. Hirata, M., Programming Language Doc and Its Self-Description or, X = X is

Considered Harmful. In Proc. 3rd Conf. of Japan Society of Software Science and

Technology, 1986, pp. 69{72.

6. Maher, M. J., Logic Semantics for a Class of Committed-Choice Programs. In

Proc. Fourth Int. Conf. on Logic Programming, MIT Press, Cambridge, MA, 1987,

pp. 858{876.

7. Saraswat, V. A. and Rinard M., Concurrent Constraint Programming (Extended

Abstract). In Conf. Record of the Seventeenth Annual ACM Symp. on Principles

of Programming Languages, ACM, 1990, pp. 232{245.



8. Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed Con-

straint Programming. In Proc. 1990 North American Conference on Logic Program-

ming, Debray, S. and Hermenegildo, M. (eds.), MIT Press, 1990, pp. 431{446.

9. Shapiro, E. Y., A Subset of Concurrent Prolog and Its Interpreter. ICOT Tech.

Report TR-003, Institute for New Generation Computer Technology, Tokyo, 1983.

10. Shapiro, E., The Family of Concurrent Logic Programming Languages. Computing

Surveys, Vol. 21, No. 3 (1989), pp. 413{510.

11. Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo, 1985.

Also in Logic Programming '85, Wada, E. (ed.), Lecture Notes in Computer Science

221, Springer-Verlag, Berlin Heidelberg, 1986, pp. 168{179.

12. Ueda, K. and Morita, M., A New Implementation Technique for Flat GHC. In

Proc. Seventh Int. Conf. on Logic Programming, The MIT Press, Cambridge, MA,

1990, pp. 3{17.

13. Ueda, K. and Chikayama, T., Design of the Kernel Language for the Parallel In-

ference Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494{500.

14. Ueda, K., The Fifth Generation Project: Personal Perspectives, Commun. ACM,

Vol. 36, No. 3 (1993), pp. 65{76.

15. Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-

tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3{43.

16. Yoshida, K. and Chikayama, T., A

0

UM | A Stream-Based Concurrent Object-

Oriented Language, in Proc. Int. Conf. on Fifth Generation Computer Systems

1988, ICOT, Tokyo, 1988, pp. 638{649. Also in New Generation Computing, Vol. 7,

No. 2{3 (1990), pp. 127{157.

This article was processed using the L

a

T

E

X macro package with LLNCS style


