Concurrent Logic/Constraint
Programming:
The Next 10 Years

Kazunori Ueda

Waseda University
ueda@ueda.info.waseda.ac.jp

Copyright (C) 1998 by Kazunori Ueda

Grand Challenges

¢ A “A-caculus’ in concurrency field

cf. X-calculus (calculus of X)

X: CS, pi, action, join, gamma, ambient, . . .
¢ Common platform for non-conventional

computations (parallel, distributed,
embedded, real-time, mobile, . . .)

& Type systems (in the broadest sense) and
frameworks of analysis for both logical and
physical properties

Two Approaches to Addressing
Novel Applications

+ Synthetic
—More expressive power
— Integration of features
¢ Analytic
— Identifying smaller fragments of LP with
nice and useful properties

cf. Turing machines vs. pushdown automata
— Separation prior to integration

LP vs. Concurrent LP

¢ Concurrent LP = LP + committed choice
= LP — completeness

Choiceis essential for specifying
arbitration, changes denotational semantics
drasticaly, but otherwise. . .

LP vs. Concurrent LP

¢ Concurrent LP

= LP + directionality (of dataflow)

= Logic + embedded concurrency control
* Concurrent LP/ CCPx

ask

+ Can/should share more interest with (I)LP

Example:
Parallel/Network Programming

< Still donewith “classical” constructs
— mutex, serialization, monitors, . . .
—cf. Obliq, Java, . . .

& . ..or with APIs(cf. MPI)

< Suffering from low-level details
—e.g., Unix sockets

+ Far from being “provably correct”

Example:
Parallel/Network Programming

Parallel and distributed computing are the
difficult areas where we need good models
and methodologies to build large
applications quickly.

A good chance for us to demonstrate the
power of simple and “usable’ languages
with an appropriate level of abstraction.

— should be simple and accessible to network
programmers; otherwise Javawill do!

Example: Network Applications
Need to Deal with:

+ Physical locations (nodes, sites)
& Resources
— space (heap usage)
—time and stack usage
& Security
— high-level: safety of comm. protocols etc.
— low-level: leave to Java s bytecode verifier?
< Transmission of various entities
< Various patterns of communication

GHC and KL 1: Brief History
(cf. CACM March 1993 issue)

*

+ 1983-84 big controversy (in ICOT) on LP
vs. concurrent LP for parallel KIP systems

1984 Guarded Horn Clauses designed
#1985 first paper (ICOT TR103, LNCS 221)
1985 GHC-to-Prolog compiler (SLP 85)

+ 1985-86 subsetting to Flat GHC

+ 1986 Prolog-to-GHC compiler (ICLP 86)

Brief History (cont’d)

¢ 1987 MRB (1-bit RC) scheme (ICLP 87)

¢ 1987 // impl. of Flat GHC on Multi-PSI v1
(6 PEs, ICLP 87)

+ 1987 book on GHC (in Japanese)

*

¢ 1987-1988 KL 1 (with shoen, vectors, MRB)

¢ 1988 // impl. of KL1 on Multi-PS| v2
(64 PEs, FGCS' 88, ICLP' 89)

Brief History (cont’d)

. — —
+ 1988(?) PIMOS operating system

+ 1988 unfold/fold transformation and
transaction-based semantics (FGCS' 88)

*

+ 1989 atomic vs. eventual tell discussed
1989 message-oriented impl. (LPC’ 89)

Brief History (cont’d)

#1990 Moded Flat GHC and constraint-based
anaysis (ICLP 90)

¢ 1990(?) MGTP-on-KL1 project started

1990 first structural OS (InfoJapan’ 90)

.

¢ 1990 Computer J. paper on GHC + KL1

*

Brief History (cont’d)

‘ — — —

¢ 1992 // impl. of KL1 on PIM/m and PIM/p
(FGCS 92)

¢ 1992 various parallel applications written in
KL1 including OS, biology, CAD, NL, law,
automated deduction, . . .

¢ 1992 message-oriented // impl. of Moded
Flat GHC on SMP (FGCS 92)

Brief History (cont’d)

¢ 1992 KLIC (KL 1-to-C compiler) desinged
(KL1 without shoen or MRB)

¢ 1992 MGTP solved an open problem
(1JCAI’93 award)
*

#1994 KLIC paper (PLILP 94)
#1994 Moded Flat GHC in detail (NGC)
L 2

Brief History (cont’d)

1995 constraint-based mode systemsin
practice (ICLP 95, PSLS 95)

¢ 1996 klint v1 (mode analyzer for/in KL1)

1996 constraint-based error diagnosis,
theory and practice (JICSLP 96)

¢ 1997 kima v1 (diagnoser) based on klint
& 1997 constraint-based error correction

Brief History (cont’d)

& 1998 klint v2 with linearity (static MRB) &
type analysis
4 1998 NSTO analysis for Moded Flat GHC

Guarded Horn Clauses and KL 1

& Weakest Concurrent Constraint Language
—ask + eventual tell (asynchronous)
—paralel composition
—hiding
—nondeterministic choice

+ A redlistic language as well as a model
—value passing
—data structures (cf. CCS, CSP, . . .)

Guarded Horn Clauses and KL 1

& Evolving process structures (since 1985)

& Physical locations (KL1)

¢ Object identity (by logical variables)

+ 1/0 completely within the basic framework

& Read/write capabilities (with strong moding)

 Resource-conscious programming (with
linearity)

& Scope extrusion (“method calls’ encoded as
messages)

Logical Variables
as Communication Channels

¢ Data- and demand-driven communication

& Messages with reply boxes

First-class channels (encoded as lists or
differencelists

Replicable read-only data

& Implicit redirection across sites

Guarded Horn Clauses as CCP

&“...itisquitenatura to view aGHC
program in terms of binding information and
the agents that observe and generate it.”

¢ “Ingenera, agoal can beviewed asa
process that observes input bindings and
generates output bindings according to them.
Observation and generation of bindings are
the basis of computation and communication
in our model.” — ICOT TR-208 (1986)

GHC after 13 years

The simplest fragment of CCP turned out to
be surprisingly versatile, after heated
discussions and programming experiences.

& As conjectured in 1985 (LNCS 221), GHC
as the weakest fragment of CCP has been
(d)evolving by featuring static constructs.

— static constructs added: mode systems

— operational constructs added: @node()
and priorities

GHC after 13 years

< Strong moding (1990, ICLP) ensures some
aspects of security by assigning a capability/
polarity to each variable occurrence and each
position of data structures.
— write capability can’t be duplicated or discarded
—read, non-linear capability can be duplicated
— linearity avoids distributed GC

— unification (constraint solving) degenerates to
assignment

GHC after 13 years

Yet to see what additional features are
really necessary, and why
— Example: higher-order constructs
* “design pattern” programming
* object encoding
& Pure CCP or impure CCP?

— cf. Oz approach (ports, cells, higher-order,
etc.)

Working Example
of Network Applications

¢ 1996 KLIC Programming Contest

—KLIC = KL1 (GHC) implementation on
Unix (http://www.icot.or.jp)

— Submitted programs included
» Web server totally written in KL 1, and
» Web browser with most features.

— Call for Participation: 1998 KLIC Pro-
gramming Contest (http://www.icot.or.jp)

Some Fallures and Problems

& Misleading names

— Concurrent LP: Sounds like an incompl ete
variant of LP (worse: committed-choice LP)

— CCP: Liableto forget its prehistory (<1987)

& Can very easily be forgotten by LP,
concurrency and constraint communities

Some Fallures and Problems

+ Shortage of communication with neigh-
boring communities (functional, OO, . . .)

—e.g., declarative arrays, program analysis
¢ Simple and general, but looks a bit too

abstract — idioms should be encoded
(cf. objects, messages, channels, . . .).

Some Fallures and Problems

¢ Good textbooks and tutorial materials yet to
be published

& Few research groups (except semantics)
— Oz (DFKI +SICS+..))
— GHC/KLIC (AITEC = former ICOT)
— many people “ graduated” too early

Challenges to share with proponents
of other declarative paradigms

& How can we program XXX in our
formalisms?
— Dynamic data structures (e.g., cyclic graphs)
—MUD and virtual reality
— Teleconferencing
—Forms
— Live Access Counters

L P and Concurrent LP/CCP

< Targetted (currently) at different levels:
—LP: KR, reasoning, search, etc.

— Concurrent LP: simple model for
concurrency and communication

— CCP: unified model for reactive systems and
infrastructures for reactive agents

— Should be very carefully ‘integrated’

& However, they still have much in common
and can benefit from each other!

Conclusions (1)

& CCP without static systems has been a
simple and elegant formalism of
concurrency, . . .

... and at the sametime it has been a stable,
full-fledged programming language.

— cf. other formalisms of concurrency

Conclusions (2)

< Constraint-based static systems can make

CCP asimple, powerful, and safe language
for

— paralel computing,

— distributed computing,

— real-time computing, and

— high-performance computing,

and give us strong support for programming.

cf. untyped vs. typed A-calculus

PART ||

Potentialities of Constraint-Based
Program Analysis

Can a machine debug your program?

append([], Y,Z):-true|Y=Z
append([A]Y],Y,Z0) :- true |
Z0=[A|Z], append(X,Y,2).

+ “>90% correct”
o cf. |lI-formed sentences in NL processing

Can a machine debug your program
without specifications?

append([], Y,Z):-true|Y=Z.
append([A]Y],Y,Z0) :- true |
Z0=[A|Z], append(X,Y,2).
¢ Non-well-moded, under the assumption of
“cooperative communication.”
¢ Mode analyzer finds a minimal inconsistent
set of mode constraints, which suspects X in
the recursive call and the first Y in the head.

Can a machine debug your program
without specifications?

append([], Y,Z):-true|Y=2Z
append([A]Y],Y,Z0) :- true |
Z0=[A|Z], append(X,Y,2).
¢ Mode analyzer suspectsthat X isthe reason.
The problem can be fixed by replacing X or
making X have more occurrences.

The debugger searches well-moded
mutations. Typing doesn’'t help in this case.

Can a machine debug your program
without specifications?

append([], Y,Z):-true|Y=Z.
append([A]Y],Y,Z0) :- true |
Z0=[A|Z], append(X,Y,2).
< The debugger finds 6 aternatives, but
prefers ‘generic’ programs and propose:
append([A|X],Y,Z0) :- true |
Z0=[A|Z], append(X,Y,2).
& We are happy if the system proposes the
intended program and nothing else.. . .

Can a machine debug your program
without specifications?

append([], Y,Z):-true|Y=Z
append([A]Y],Y,Z0) :- true |

Z0=[A|Z], append(X,Y,2).
... but it proposes one more aternative:
append([A]Y],X,Z0) :- true |

Z0=[A|Z], append(X,Y,Z).
& Fine, it’s not append but does something

meaningful (unlike many other junks)!

References

¢ Cho, K. and Ueda, K.:

Diagnosing Non-Well-Moded Concurrent
Logic Programs (J CSLP 96).

¢ Ueda, K., Ajiro, Y. and Cho, K.:

Error-correcting Source Code (submitted to
CP 98)

10

