
Experiences with Strong Moding in Concurrent

Logic/Constraint Programming

Kazunori Ueda

?

Department of Information and Computer Science

Waseda University

4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169, Japan

ueda@ueda.info.waseda.ac.jp

Proc. International Workshop on Parallel Symbolic

Languages and Systems (PSLS'95, October 1995),

Lecture Notes in Computer Science 1068, pp. 134{153, 1996.

Abstract. Strong moding is turning out to play fundamental roles in

concurrent logic programming (or in general, concurrent constraint pro-

gramming) as strong typing does but in di�erent respects. \Principal

modes" can most naturally be represented as feature graphs and can

be formed by uni�cation. We built a mode analyzer, implementing mode

graphs and their operations by means of concurrent processes and streams

(rather than records and pointers). This is a non-trivial programming ex-

perience with complicated process structures and has provided us with

several insights into the relationship between programming with dynamic

data structures and programming with dynamic process structures. The

mode analyzer was then applied to the analyzer itself to study the char-

acteristics of the mode constraints it imposed and of the form of large

mode graphs. Finally, we show how our framework based on principal

moding can be extended to deal with (1) random-access data structures,

(2) mode polymorphism, (3) higher-order constructs, and (4) various

non-Herbrand constraint systems.

1 Strong Moding in Concurrent Logic/Constraint

Programming

Historically, two di�erent notions of modes have been studied in logic program-

ming. Modes of the �rst kind are concerned with reasoning about temporal

properties (i.e., time-of-call/exit instantiation states) of variables, and are used

for answering questions such as \Is X unbound when p(X) is called?" They are

usually analyzed using abstract interpretation and necessarily depends on \com-

putation rules." Modes of the second kind, which are less well-known and we are

going to deal with here, are for reasoning about non-temporal properties of vari-

ables, and are intended to answer questions such as \Which occurrence of X in

the con�guration p(X), q(X), r(X) may instantiate X eventually?" They are in-

dependent of how goals are executed and thus can be regarded as a language

construct.

?

Supported in part by the Ministry of Education and Japan Information Processing

Development Center (JIPDEC).

2

Variables in logic programming languages can be viewed as communication

channels. A variable may in general have many writers and many readers (black-

board communication), but in most cases variables are used for cooperative

communication, namely point-to-point communication (one writer, one reader)

or multicasting/broadcasting (one writer, many readers). In both logic program-

ming and concurrent logic programming, it seems important to be able to dis-

tinguish between competitive and cooperative communication and, for the latter

case, to infer the communication protocols used.

From our experience, we are strongly con�dent that variables in concurrent

logic languages can be restricted to cooperative communication without loss of

expressive power. Rather, by doing so, we will bene�t very much from strong

moding, as we do from strong typing in many other languages:

{ It helps programmers understand their programs better.

{ It detects a certain kind of program errors at compile-time.

{ It establishes some fundamental properties statically:

� Well-moded programs do not collapse due to uni�cation failure (failure

of uni�cation body goals).

� All variables are guaranteed to become ground terms upon termination.

� It distinguishes between data with a single reference and those with

multiple references. This provides us with basic information for compile-

time garbage collection.

{ It provides basic information for program optimization:

� elimination of various runtime checks,

� (much) simpler distributed uni�cation,

� message-oriented implementation [7][9].

{ It encourages modular programming by making programmers better aware

of module interface.

Since the mode system for Flat GHC was proposed [5][7], some attempts

have been made to implement the system [8], but no attempts have been made

to implement a mode analyzer based on the uni�cation of mode graphs as it

appeared in [5]. In this paper, we describe our �rst experiences with the graph-

based mode analyzer. Also, we show how our framework based on principal

moding can be extended to deal with (1) random-access data structures, (2)

mode polymorphism, (3) higher-order constructs, and (4) various non-Herbrand

constraint systems.

We assume familiarity with the basic idea of the mode system, though it will

be described brie
y in Section 2. Full detail of the mode system, with proofs of

the fundamental properties, can be found in [7]. Implications of the mode system

are discussed in [10], which contains informal introduction to concurrent logic

programming and the mode system as well.

2 The Mode System

As discussed in [10], a logical variable with exactly two occurrences can be com-

pared to a signal cable which has a certain structure (e.g., array of wires) and

3

conveys information under some established protocol. A piece of information

owing into the n-th pin of the plug at one end of a cable will come out from the

n-th pin at the other end of the cable, which means that two ends/occurrences

of a cable/variable should have exactly inverse (i.e., complementary) polarity

structures.

A variable with three or more occurrences in a run-time con�guration will

be used as a hub for one-to-many communication. The polarity structures of the

terminals of a hub should be given so that for each set of corresponding positions

in those structures, exactly one of them is the inlet of information and the others

are outlets.

We call variables with exactly two occurrences linear variables and other

variables non-linear variables, where we do not count the second and subsequent

occurrences of a variable in a clause head or any of the occurrences in guard goals.

We call clauses not containing non-linear variables linear clauses and clauses

containing non-linear variables non-linear clauses.

An argument of a goal can be compared to a socket of a device. To be

compatible, a plug and a socket should have opposite polarity structures when

viewed from outside.

The purpose of our mode system is exactly to assign polarity structures to

the arguments of predicates de�ning the behavior of goals, so that each part of

data structures will be determined cooperatively, namely by exactly one goal. If

the part has more than one writer goal, the communication is competitive and

hence not cooperative. If the part has no writer at all, the communication is not

cooperative, though not competitive, because the readers will never get a value.

A mode is a function from the set of paths specifying positions in data struc-

tures occurring in goals, denoted P

Atom

, to the set fin ; outg. Paths here are

not strings of argument positions; instead they are strings of hsymbol; argument-

positioni pairs in order to be able to specify positions in data structures that are

yet to be formed.

Formally, the sets of paths for specifying positions in terms and atomic for-

mulas are de�ned, respectively, using disjoint union as:

P

Term

= (

X

f2Fun

N

f

)

�

; P

Atom

= (

X

p2Pred

N

p

)� P

Term

;

where Fun and Pred are the sets of function and predicate symbols, respectively,

and N

f

and N

p

are the sets of positive integers up to and including the arities

of f and p, respectively.

Mode analysis tries to �nd a mode m : P

Atom

! fin; outg under which every

piece of communication will be performed cooperatively. Such a mode is called a

well-moding. A well-moding is computed by constraint solving. Function symbols

in a program/goal clause will impose constraints on the possible polarities of the

paths at which they occur. Variable symbols may constrain the polarities not

only of the paths at which they occur but of any positions below those paths. The

set of all these constraints syntactically imposed by the symbols or the symbol

occurrences in a program does not necessarily de�ne a unique mode because

4

the constraints are usually not strong enough to de�ne one. Instead it de�nes a

`principal' mode that can best be expressed as a mode graph, as we will see in

Section 3.

Constraints imposed by a clause h :- G | B, where G and B are multisets

of atomic formulae, are summarized in Figure 1. Here, Var denotes the set of

variable symbols, and ea(p) denotes a symbol occurring at p in an atomic formula

a. A submode of m at p, denoted m=p, is a function (from P

Term

to fin; outg)

such that (m=p)(q) = m(pq). IN and OUT are submodes that always return in

or out , respectively. An overline, \ ", inverts the polarity of a mode, a submode,

or a mode value.

(HF) 8p 2 P

Atom

�

e

h(p) 2 Fun) m(p) = in

�

(if the symbol at p in h is a function symbol, m(p) = in),

(HV) 8p 2 P

Atom

�

e

h(p) 2Var ^ 9p

0

6=p

�

e

h(p) =

e

h(p

0

)

�

) m=p = IN

�

(if the symbol at p in h is a variable occurring elsewhere in h, thenm=p = IN),

(GV) 8p; p

0

2 P

Atom

8a 2G

�

e

h(p) 2Var ^

e

h(p) = ea(p

0

)

) 8q 2 P

Term

�

m(p

0

q) = in) m(pq) = in

��

(if the same variable occurs both at p in h and at p

0

in G, then

8q 2 P

Term

�

m(p

0

q) = in) m(pq) = in

�

)

(BU) 8k > 0 8t

1

; t

2

2 Term

�

(t

1

=

k

t

2

) 2B) m=h=

k

; 1i = m=h=

k

; 2i

�

(the two arguments of a uni�cation body goal have complementary submodes)

(BF) 8p 2 P

Atom

8a 2B

�

ea(p) 2 Fun) m(p) = in

�

(if the symbol at p in a body goal is a function symbol, m(p) = in),

(BV) Let v 2Var occur n (� 1) times in h and B at p

1

; : : : ; p

n

, of which the occur-

rences in h are at p

1

; : : : ; p

k

(k � 0). Then

�

R

�

fm=p

1

; : : : ;m=p

n

g

�

; k = 0;

R

�

fm=p

1

;m=p

k+1

; : : : ;m=p

n

g

�

; k > 0;

where R is a `cooperativeness' relation:

R(S)

def

= 8q 2 P

Term

9s 2 S

�

s(q) = out ^ 8s

0

2 Snfsg

�

s

0

(q) = in

��

Fig. 1. Mode constraints imposed by a clause h:- G | B.

Uni�cation body goals, dealt with by Constraint (BU), are polymorphic in

the sense that di�erent goals are allowed to have di�erent modes. To deal with

polymorphism, we give each uni�cation body goal a unique number. General

treatment of polymorphism will be discussed in Section 5.2.

As an example, consider a merge program:

5

� �

merge([],Y,Z):- true | Z=

1

Y.

merge(X,[],Z):- true | Z=

2

X.

merge([A|X],Y,Z0):- true | Z0=

3

[A|Z], merge(X,Y,Z).

merge(X,[A|Y],Z0):- true | Z0=

4

[A|Z], merge(X,Y,Z).

�

From the third clause, for instance, we obtain the following eight constraints,

where \." stands for the constructor of non-empty lists:

m(hmerge; 1i) = in by (HF) applied to \."

m=h=

3

; 1i = m=h=

3

; 2i by (BU) applied to =

3

m(h=

3

; 2i) = in by (BF) applied to \."

m=hmerge; 1ih.; 1i = m=h=

3

; 2ih.; 1i by (BV) applied to A

m=hmerge; 1ih.; 2i = m=hmerge; 1i by (BV) applied to X

m=hmerge; 2i = m=hmerge; 2i by (BV) applied to Y

m=hmerge; 3i = m=h=

3

; 1i by (BV) applied to Z0

m=h=

3

; 2ih.; 2i = m=hmerge; 3i by (BV) applied to Z

From the entire set of clauses, we obtain 24 constraints, of which 6 are of

the form m(p) = in, 12 are of the form m=p

1

= m=p

2

, and 6 are of the form

m=p

1

= m=p

2

. Elimination of the constraints on =

k

, however, leaves only four

constraints:

m(hmerge; 1i) = in

m=hmerge; 1ih.; 2i = m=hmerge; 1i

m=hmerge; 2i = m=hmerge; 1i

m=hmerge; 3i = m=hmerge; 1i

We could handle these constraints as logical formulae, but mode graphs de-

scribed below allow us to represent and manipulate constraints e�ciently.

3 Mode Graphs and Principal Modes

It turns out that most of the mode constraints are either of the six forms: (i)

m(p) = in , (ii)m(p) = out , (iii)m=p = IN , (iv)m=p = OUT , (v)m=p

1

= m=p

2

,

or (vi) m=p

1

= m=p

2

. We call (i){(iv) unary constraints and (v){(vi) binary

constraints.

A set of binary and unary mode constraints can be represented as a feature

graph (feature structures with cycles), called a mode graph, in which

1. paths represent paths in P

Atom

,

2. nodes may have mode values determined by unary constraints,

3. arcs may have \negative signs" that invert the interpretation of the mode

values beyond those arcs, and

6

4. binary constraints are represented by the sharing of nodes.

Figure 2 is the mode graph of the four constraints from the merge program.

<m,1> <m,2> <m,3>

< . ,1> < . ,2>

Fig. 2. Mode graph of the merge program.

An arc of a mode graph represents the pair of a predicate/function symbol

(abbreviated to its initial in the �gures) and an argument position. The pair

exactly corresponds to a feature of a feature graph. A sequence of features forms

a path both in the sense of our mode system and in the graph-theoretic sense.

A node is possibly labeled with a mode value (in shown as \#", or out

shown as \"") to which any paths p

1

, p

2

, : : : terminating with that node are

constrained, or with a constant submode (IN shown as \#" with a grounding

sign (as in Figure 4), or OUT) to which the submodes m=p

1

, m=p

2

, : : : are

constrained.

An arc is either a negative arc (bulleted in the �gures) or a positive arc.

When a path passes an odd number of negative arcs, that path is said to be

inverted, and the mode value of the path should be understood to be inverted.

Thus the number of bulleted arcs on a path determines the polarity of the path.

A binary constraint of the form m=p

1

= m=p

2

or m=p

1

= m=p

2

is rep-

resented by a shared node with two (or more) incoming paths with possibly

di�erent polarities. When the polarities of the two incoming paths are di�erent,

the shared node stands for complementary submodes; otherwise the node stands

for identical submodes.

Figure 2 has a node, under the arc labeled h.; 1i, that expresses no informa-

tion at all. It was created to express binary constraints, but all its parent nodes

were later merged into a single node by other constraints.

As another example, consider a program that simply uni�es the two argu-

ments:

� �

p(X,Y):- true | X=Y.

�

7

The program forms a simple mode graph shown in Figure 3. This graph can be

viewed as the principal mode of the predicate p, which represents many possi-

ble particular modes satisfying the constraint m=hp; 1i = m=hp; 2i. In general,

the principal mode of a well-moded program, represented as a mode graph, is

uniquely determined, as long as all the mode constraints imposed by the program

are unary or binary.

<p,1> <p,2>

Fig. 3. Mode graph of the unify program.

Constraints imposed by the rule (BV) may be non-binary. Non-binary con-

straints are imposed by non-linear variables, and cannot be represented as mode

graphs by themselves. However, by delaying them, most of them will be reduced

to unary/binary ones by other constraints, as we will see later. In this case they

can be represented in mode graphs, and the programs that imposed them have

unique principal modes (as long as they are well-moded).

Theoretically, some non-binary constraints may remain unreduced, whose

satis�ability must be checked eventually. However, a much more practical so-

lution is to let programmers declare the modes of the paths where non-linear

variables occur.

The union (i.e., conjunction) of two sets of constraints can be computed e�-

ciently as uni�cation over feature graphs. For instance, adding a new constraint

m=p

1

= m=p

2

causes the subgraph rooted at p

1

and the subgraph rooted at p

2

to be uni�ed. A good news is that an e�cient uni�cation algorithm for feature

graphs has been established [1].

Figure 4 shows the mode graph of a quicksort program using di�erence lists.

The head and the tail of a di�erence list, namely the second and the third

arguments of qsort, are constrained to have complementary submodes.

Figure 5 shows the driver of a demand-driven sequence generator that re-

ceives messages done or more from an I/O stream and keeps sending requests

to the sequence generator until done is received. The �gure shows how mutual

recursion can be dealt with: driver calls checkinput after sending a message

and checkinput calls driver after sending two messages. These two predicates

form a cycle with three nodes in the mode graph.

8

qsort([], Ys0,Ys):- true | Ys=Ys0.

qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L), qsort(S,Ys0,[X|Ys2]), qsort(L,Ys2,Ys3).

part(

-

,[], S, L):- true | S=[], L=[].

part(A,[X|Xs],S0,L):- A>=X | S0=[X|S], part(A,Xs,S,L).

part(A,[X|Xs],S, L0):- A< X | L0=[X|L], part(A,Xs,S,L).

<q,1> <q,2> <q,3> <p,1> <p,2> <p,3>
<p,4>

< . ,1>
< . ,2>

< . ,2>

< . ,1>

Fig. 4. A quicksort program and its mode graph.

driver(Fs,IOs0):- true | IOs0=[gett(X)|IOs1], checkinput(Fs,IOs1,X).

checkinput(Fs, IOs, done):- true | Fs=[], IOs=[].

checkinput(Fs0,IOs0,more):- true |

Fs0=[N|Fs1], IOs0=[putt(N),nl|IOs1], driver(Fs1,IOs1).

<d,1> <d,2> <c,1> <c,2> <c,3>

< . ,2>

< . ,2>< . ,2>

< . ,1>

< . ,1>< . ,1>

< . ,1>
< . ,2>

<g,1>

<p,1>

Fig. 5. A mutually recursive program and its mode graph.

9

4 Implementing Mode Analysis

We have implemented a mode analyzer for Flat GHC, and have extended it to

deal with most features of KL1 [6]. The analyzer is itself a well-moded program

entirely written in KL1. Mode analysis proceeds as follows:

1. Constraint generation

(a) KL1 clauses are translated into their normal forms [7].

(b) Calls to polymorphic built-in predicates are identi�ed and numbered.

(c) A symbol table is generated, which records all the occurrences of predi-

cate, function, constant, and variable symbols.

(d) Constraints imposed by symbols, occurrences of symbols, and built-in

predicates are generated according to the rules in Figure 1.

2. Constraint solving

(a) The constraints are put into an empty mode graph to form a graph

representing their conjunction.

(b) If successful, the �nal graph state is retrieved; otherwise, failure and its

reason are reported.

4.1 Constraint Generation

Since the �rst part, constraint generation, is simply the syntactic manipulation

of a given program, we only note that KL1 di�ers from Flat GHC in the following

aspects, which are all handled appropriately.

1. KL1 supports modularization; a predicate is identi�ed by the pair of the

module it belongs to and the predicate name.

2. A program commences execution by calling the nullary predicate main in

the module main.

3. KL1 supports vectors. A vector is denoted felement

1

; : : : ; element

n

g, which

is regarded as a structure with a special function symbol indicating that the

term is a vector of length n.

4. KL1's guard built-in predicates may have output arguments (e.g., functor),

which is not allowed in Flat GHC. They are treated as a source of informa-

tion like input arguments in the head. Output arguments in a clause guard

may be used both for providing values to be used in the body (cooperative

communication) or for checking the applicability of the clause (competitive

communication).

5. KL1 features character strings and string operations, but a string can be

treated as a constant because it cannot contain uninstantiated variables.

4.2 Constraint Satisfaction

Our constraint solver represents mode graphs using processes and streams. Al-

though not shown in the �gures, each mode graph has a root node corresponding

10

to the empty path.

2

New constraints are added by sending messages to the root

node. Retrieval of mode information can be done by sending messages as well.

Process representation is interesting in its own right as an experiment of

programming complicated process structures. We must deal with (1) graphs

with node sharing and cycles and (2) the merging of graph nodes. It is not clear

whether they can be programmed in a strongly moded framework and how much

parallelism can be exploited.

One alternative to the process representation would be to use rational trees

for representing mode graphs. Unfortunately, even if the underlying language

features rational trees, we cannot rely too much on the built-in uni�cation but

must de�ne uni�cation for feature graphs ourselves. One reason is that the uni-

�cation procedure should be able to report failure explicitly. Another obvious

alternative would be to represent mode graphs using arrays of nodes and arcs,

modifying them as new constraints are added. The sequential nature of this

approach can make global operations such as termination detection easier to

implement. However, we chose the process approach to explore the viability of

process representation of dynamic data structures and to be able to exploit par-

allelism in future (Section 4.4).

The node process representing an ordinary node contains the following argu-

ments:

1. an input stream for receiving messages,

2. a node identi�er used for the equality checking of nodes,

3. a mode value (unconstrained, input, or output),

4. a list of features corresponding to output streams,

5. a list of output streams,

6. a termination variable shared by all node processes, and

7. a
ag for the retrieval of the graph state.

When there is more than one incoming arc (stream) to a node, they are

merged using frontend merge processes. A negative arc is represented using an

inverter �lter process that inverts the interpretation of mode values contained

in messages.

A node is created by sending a message to the node server, which provides

each node with its identi�er. Unlike in procedural languages, the identity of nodes

cannot be checked by pointer comparison but this capability should be provided

explicitly by the process. Assignment (pointer copying) and equality checking

(pointer comparison) are provided as basic operations in many programming

languages, but there are cases where they should not be allowed.

A node whose submode is constrained to IN or OUT is represented by a

gnode process, which contains four of the above seven arguments: 1, 2, 3, and 7.

2

P

Atom

does not contain an empty path �, but we could extend the domain of modes

to P

Atom

[f�g and let m(�) = in.

11

Operating on Mode Graphs All operations on mode graphs are provided as

messages to the root node, which are delegated to appropriate processes. The

delegation of messages corresponds to the dereferencing of pointers in procedural

languages.

Operations (i.e., messages) accepted by a node process include the following:

1. examine the state of the node,

2. instantiate the mode value of the node,

3. add a new outgoing arc to the node,

4. create and return a new input stream to the node,

5. unify the node with another node,

6. examine the state of the (sub)graph rooted at the node, and

7. forward the above requests to an o�spring node.

Operation 4 corresponds to pointer assignment in procedural programming.

Uni�cation of two nodes is a `symmetric' operation that the object-oriented

programming style is not very good at. The operation is divided into two phases:

It �rst accesses one of the nodes to obtain an input stream to it, and then sends

a unify

-

with message to the other node. Care must be taken so that the second

phase does not start until the �rst phase reaches the target node. Otherwise the

second phase may reach its target node earlier, blocking the �rst phase to be

delegated to its target node. This was actually the most awkward error we �rst

made in implementing the constraint solver.

Thanks to the monotonicity of the constraint framework, however, the �rst

and the second phases of the uni�cation operation can be intervened by another

operation.

The unify

-

with message takes the input stream to, and the identi�er of, the

partner node to its own target node. If the two nodes turn out to be the same,

uni�cation simply succeeds or fails depending on whether the polarities of the

two paths are the same or not. Otherwise it examines the state of the partner

node. If the two nodes have compatible mode values, they are uni�ed by (1)

merging the input streams of the nodes and directing the result to one of the

nodes, (2) terminating the other node, and (3) merging the two sets of outgoing

arcs, unifying corresponding arcs from each set recursively.

Retrieval of Graph States Retrieval of the state of the whole graph is not

straightforward due to the circularity. We have prepared two messages for the

purpose: examine and examined. The examine message is propagated over the

graph, splitting itself at nodes with two or more outgoing arcs and turning

the
ag of each node on, until it reaches nodes with the
ags on, and collects

the states of the nodes using di�erence lists. The examined message is simply

for turning o� all the
ags. We could dispense with the examined message by

employing toggling
ags rather than set-reset
ags.

For a snapshot of the dynamically changing cyclic graph to be meaningful,

no messages that may alter the graph should be issued before the processing of

12

examine terminates. This will not cause a performance problem because snap-

shots will not be taken so often.

Termination Termination of a circular process structure turned out to be not

so straightforward. Stream closing corresponds to the removal of a pointer in

procedural programming. However, because of the circularity, propagating the

stream closing operation from the root node to child processes is not enough

to close all the streams and thus terminate all the node processes. So we de-

cided to have all the node processes share a termination variable, which will be

instantiated to abort when the graph is to be terminated.

However, each node process cannot simply terminate itself when it �nds that

the termination variable has been instantiated. Since the input stream of a node

has a sophisticated protocol that may require backward communication, the

node cannot discard it freely but must wait until it is closed: This is an example

of the `data-as-resource' moral enforced by strong moding. Upon instantiation

of the termination variable, each process closes its own output streams, waits

until its input stream is closed, and only after that it terminates gracefully.

4.3 An Experiment|Analyzing the Mode Analyzer

As an experiment, we analyzed the constraint solver of our mode system, which

had 190 clauses.

Those 190 clauses imposed 2464 constraints in total, which were classi�ed

as Table 1 according to the forms of the constraints and the rules that imposed

the constraints. \Built-in" stands for the constraints imposed by calls to built-in

predicates.

The most remarkable thing about these statistics is that, of 1392 constraints

imposed by Constraint (BV), more than 90% were of the form m=p

1

= m=p

2

or

m=p

1

= m=p

2

. Thus we can say that the clauses analyzed are highly linear. Only

5% of the variables were singletons, and 3% had more than two occurrences and

imposed non-binary constraints. 2% of the variables had their values examined

in guards, for which Constraint (BV) were weakened to a form m(p) = in [7].

All of the 42 non-binary constraints were reduced to unary or binary con-

straints using other unary or binary constraints. Actually they were reduced to 6

constraints of the form m=p

1

= m=p

2

and 72 constraints of the form m=p = IN .

This means that non-linear variables were all used under simple, unidirectional

communication protocols.

The �nal mode graph contained 162 nodes and 938 arcs. Table 2 shows the

depth of the nodes from the top node. Considering that the program analyzed

used quite complicated protocols, this result suggests that mode graphs are,

in general, very shallow and wide. The program used complicated protocols

(e.g., streams of messages containing other streams), but it de�ned various local

procedures that had access to and handled various parts of the protocols. Mode

graphs obtained by larger programs will be wider due to many top-level features

corresponding to predicate arguments, but they will not be too deeper.

13

Type Rule Number of constraints

m(p) = in (BF) 453

(HF) 288

(GV) 54

(BV) 24

Built-in 22

m(p) = out Built-in 18

m=p = IN (BV) 69

(GV) 2

(HV) 4

m=p

1

= m=p

2

(BV) 1074

m=p

1

= m=p

2

(BV) 183

(BU) 231

Non-binary (BV) 42

Table 1. Constraints imposed by the mode constraint solver.

Level Number of nodes

0 1

1 124

2 22

3 15

> 3 0

Table 2. Depth of the nodes of the mode graph of the mode constraint solver.

Of the 938 arcs, 814 went from the top-level node and were labelled with

predicate arguments, while 124 went from non-top-level nodes and were labelled

with function arguments. Of the 814 arcs sharing 124 level-1 nodes, 462 were

by polymorphic uni�cation body goals and 36 were by arithmetic goals which

were also polymorphic. The remaining 316 arcs were those corresponding to the

arguments of user-de�ned predicates.

Of the 161 non-top-level nodes, 122 had no outgoing arcs and the remaining

39 nodes had the total of 124 outgoing arcs. The node representing the path of

the messages to the input stream of the predicate node had 54 outgoing arcs,

while the other 38 nodes had less than two arcs on average. This means that hash

tables should be used for maintaining the set of outgoing arcs of the top-level

node, while simpler data structures can be used for other nodes.

14

4.4 Parallelism

Although mode analysis is not a highly computation-intensive task, it is worth-

while to explore the possibility of parallel speedup. One prominent feature of our

mode system is that inter-procedure global analysis is done simply as incremental

constraint solving which has much potential for parallel execution.

The �rst phase of mode analysis, constraint generation, is a highly parallel

task because each clause yields its own mode constraints independently.

The second phase, constraint solving, is worth closer look. An important

advantage of the constraint framework is that constraints can be merged in any

order. Moreover, in our case, the order will not a�ect the performance too much.

Thus the simplest and the most practical way of parallel execution is to exploit

coarse-grain parallelism by creating a mode graph for each procedure or each

module independently and merging them later.

Fine-grain parallelism that could be obtained by the pipelined processing

of messages is subtler. Firstly, as we saw in Section 4.3, mode graphs are not

deep anyway. Secondly, as we saw in Section 4.2, uni�cation of two nodes im-

poses certain sequentiality. However, it is still important for mode graphs to be

able to process messages concurrently, because imposing too much sequentiality

between messages leaves less freedom (on the part of implementation) in the

scheduling of message handling and can lead to lower sequential performance.

Optimizing compilers may well exploit independence of primitive operations to

gain performance.

Fortunately, in most cases, a message can be sent to mode graphs before

the previous message �nishes processing. Because a mode graph becomes \con-

strained" monotonically, concurrent instantiation of nodes and concurrent uni-

�cation of nodes will not lead to an incorrect state as long as the atomicity of

primitive operations such as the instantiation of node values and the merging

of nodes is guaranteed. A message may enter a mode graph even if the previous

one causes a mode error. Its e�ect is simply that when some message causes and

reports a mode error, subsequent messages may already have given additional

constraints to the mode graph.

5 Extension of the Mode System

5.1 Arrays

There have been a number of proposals of mutable array constructs that hide

side e�ects at the language level but exploit them in implementation; some early

work include [2], [3], and [4]. Not a few symbolic languages lack array constructs,

but they are essential in many real-life applications.

KL1 supports several built-in operations for accessing and updating the el-

ements of vectors and compound terms. In general, the semantics of built-in

predicates can be explained by means of a possibly in�nite number of virtual

clauses, and the principal modes of built-in predicates can be obtained by con-

sidering the mode constraints imposed by those virtual clauses.

15

For array constructs, mode analysis tells us that the most basic element access

operation, namely the operation that has the most general principal mode, is

set_arg(I, T0, X0, X, T).

This operation receives an index value I and a (compound) term T0, and returns

through X0 the Ith value of T0. In addition, it returns through T a compound

term which is identical to T0 except that the Ith element is replaced by X. A

similar operation is de�ned for vectors as well [10]. Figure 6 shows the operation

and the mode graph of set

-

arg, where h?; ?i stands for a wildcard that matches

any feature. Note that di�erent elements of an array are constrained to have

identical modes, but the mode of the elements itself is not constrained at all.

I-thI
T0

T X0

X

th <s,4><s,2> <s,3><s,1> <s,5>

<?,?>

Fig. 6. The predicate set

-

arg and its mode graph.

Strong moding is deeply concerned with the number of access paths to each

variable. As a result, data structures have an aspect of resources in general,

whose access paths should not be copied or discarded freely. As can be seen in

Figure 6, an array element should, by default, be removed from the array once

accessed, and the resulting blank should be �lled with another value.

Array creation is another fundamental operation. In Prolog, functor initial-

izes the arguments of the created structure with distinct fresh variables, which

are instantiated afterwards if necessary. However, strong moding tells us that the

arguments should be initialized with constants and be updated by set

-

arg.

Strong moding is particularly important in array processing because it may

enable update-in-place. Let the nodes of a mode graph have a shared/non-shared

ag as well as mode values. Shared/non-shared means that the paths ending at

the node may/won't be used for one-to-many communication, respectively. To

see at which paths shared data may occur, we set the
ags of all the nodes at

the paths where non-linear variables occur, and of all the nodes below the nodes

with the
ags on. Then we can see what paths will be used only for one-to-one

communication, and arrays occurring at those non-shared paths can be updated

in place.

Aliasing is recognized as an awkward phenomenon in procedural program-

ming, in which a[e

1

] and a[e

2

] may or may not denote the same variable

depending on whether e

1

and e

2

evaluate to the same value. However, accessing

16

two elements of a non-shared array using set

-

arg will not create new, implicit

sharing. To access the Ith element and the Jth element of an array A, one will

call set

-

arg twice:

set_arg(I, A, AI, AInew, A1), set_arg(J, A1, AJ, AJnew, A2).

The array A1 does not contain the original Ith element any more, so AI and

AJ cannot be the same unless AI and AInew happens to be the same. However,

AI and AInew cannot be the same as long as the array elements occur only at

non-shared positions. For them to be the same, AI must occur in a goal for

equating it with AInew in addition to the occurrence in set

-

arg, but then, we

cannot `use' AI through its third occurrence because it does not exist by the

`non-shared ' assumption. AI and AJ could be the same if one replaced A1 in the

second call by A, but then the array itself would become a shared array.

5.2 Polymorphic Modes

A uni�cation body goal is polymorphic in the sense that its di�erent occurrences

in program text may have di�erent modes as long as they obey Constraint (BU).

Constraint (BU) here is considered to represent the `principal mode scheme' for

uni�cation, and di�erent occurrences may have di�erent instances of it.

Array operations, stack processes, and streammerging are examples of generic

programs in the sense that they do not constrain the modes of elements. Dif-

ferent arrays, stacks, or stream mergers should be able to accept elements with

di�erent protocols, where the necessity of polymorphic modes arises.

Although not yet implemented, polymorphism could be incorporated easily.

For polymorphic predicates, their principal mode schemes (i.e., mode graphs)

are computed �rst. To allow di�erent instantiations of a principal mode scheme,

a copy of the mode graph representing the principal mode scheme will be created

for each call to a polymorphic predicate, which will be merged into the mode

graph of the whole program. (In the monomorphic case, the original graph of

the predicate is simply merged into the mode graph of the rest of the program.)

It seems that polymorphic predicates should be declared so in some way. Such

a distinction was done also when introducing type polymorphism into functional

languages. In ML, for instance, (�x:A)E and let x = E in A have di�erent

meanings if types are taken into account.

The above treatment of polymorphism requires that the mode schemes of

polymorphic predicates be obtained before analyzing the rest of the program that

uses the polymorphic predicates. So polymorphic predicates should be strati�ed

so that mode analysis can start from the `most polymorphic' predicates that

depend on no other predicates and end with the analysis of the whole program.

5.3 Higher-Order

There are two possible ways to allow a goal to dynamically determine the pred-

icate to be called: One is call (analogous to eval in Lisp) and the other is

apply.

17

Let call(G) be a goal that interprets G as a goal (by interpreting the prin-

cipal function symbol as the predicate to be called) and executes it. The moding

of call is straightforward; it simply imposes the constraint m=hcall; 1i = m.

In contrast, apply needs extension to the mode system. Suppose apply(P,

X,Y) is a goal that executes a binary predicate P with the arguments X and Y .

P may be either a function symbol representing a predicate to be called, a list of

clauses (in which bound variables are represented by constants), or a compiled

code with mode information. In either case, P is a ground term, but should have

a mode as a predicate as well. The mode of apply could be represented as the

left graph of Figure 7. Here, dotted lines represent the constraint that, when the

�rst argument of apply is interpreted as a program, the �rst/second argument

of that program must have the identical mode as the second/third argument of

apply, respectively.

Then consider a predicate that applies P to X twice:

twice(P,X,Z):- apply(P,X,Y), apply(P,Y,Z).

If apply is monomorphic, applying Constraint (BV) to the variables X, Y, and

Z will result in the right graph of Figure 7 (where the constraints on apply is

omitted).

<a,1> <a,2> <a,3>

<1> <2>

<t,1> <t,2> <t,3>

<1> <2>

Fig. 7. Moding higher-order predicates.

5.4 Non-Herbrand Constraint Systems

Concurrent constraint programming generalizes concurrent logic programming

by allowing data types that are not based on syntactic equality over the Herbrand

universe (set of �nite ground terms). Here we consider three extensions.

Rational terms: Our path-based mode system can quite naturally deal with

non-�nite rational terms. Readers may have noticed the similarity between

the way our mode is de�ned and the way in�nite trees are represented as

functions.

18

Numerical constraints: Numerical constraints can be dealt with in a moded

framework if data
ow can be determined statically. For instance, if the con-

straint goal X = Y+1 is used always for determining Y from X or always for

determining X from Y, it can be moded. However, data
ow caused by solving

simultaneous equations will not be that simple in general.

Equational theories: Syntactic equality can be replaced by various equational

theories, and a lot of work has been done on uni�cation under equational the-

ories. Here we focus on simple built-in theories; associativity, commutativity

and idempotency.

Associativity and commutativity have the property that rewriting based on

those preserve the number of occurrences of symbols. Actually they can be

included naturally into the mode system. For instance, bags (multisets) enjoy

the properties t

1

[t

2

= t

2

[t

1

and t

1

[(t

2

[t

3

) = (t

1

[t

2

)[t

3

. So the paths

where bags may occur should obey the constraint shown in Figure 8. That is,

any subterm of a bag whose parent symbols are all [(the bag constructor)

must have an identical mode whose top-level is in.

<U,1>
<U,2>

<U,2>
<U,1>

Fig. 8. Constraints imposed by an associative and commutative operator [.

On the other hand, idempotency (t = t op t) says that terms can be freely

copied and two identical terms can be freely contracted. This is not very com-

patible with the data-as-resource view, and any path which is an inlet/outlet

of an idempotent operator will be constrained to IN /OUT , respectively.

6 Related Work

Tick and Koshimura implemented and compared several algorithms for mode

analysis [8]. One of them uses process structures to represent mode graphs, but

their mode graphs have many di�erences from the graphs in [5] and [7]. They

form `initial mode graphs' and minimize them to form the �nal graphs, while

we add many simple constraints (in the form of messages) to an empty mode

graph to form the �nal graphs. Their graphs deal with non-binary constraints,

while we delay non-binary constraints to avoid complication. Their graphs re-

quire additional information called `partition node sets' to maintain the node

identi�ers, which we need not have. They implement the uni�cation of cyclic

19

structures using marking, while we dispense with marking by implementing it

using incremental redirection of streams.

7 Conclusions

We implemented a mode analyzer for Flat GHC and KL1, itself described as a

strongly moded KL1 program. The analyzer was applied to the analyzer pro-

gram itself, which used fairly sophisticated communication protocols, to see if

automatic mode analysis worked well for non-trivial KL1 programs. We also

discussed how the current moding framework could be extended to deal with

random-access data structures, polymorphic modes, higher order, and general

constraint systems.

Our implementation of the mode system employs quite sophisticated process

structures, namely feature graphs with cycles and node sharing. Concurrent op-

erations on such data structures involve nondeterminism and make programs

harder to debug. Also, operations on graphs include a rather unusual operation:

the merging of two nodes. We succeeded in describing all these in a strongly

moded framework and made sure that strongly moded concurrent logic pro-

gramming was expressive enough for quite complicated programs. Rather, we

bene�ted much from the mode system in debugging.

In spite of complicated process structures formed, debugging was not so di�-

cult. Bugs had to be found manually at �rst, but most of them were those which

could be detected by mode analysis. Many of the bugs we removed later were

detected by the mode analyzer itself.

Not all bugs were identi�ed easily, however. The most awkward one was

perpetual suspension resulting from the misunderstanding of causality between

messages handled concurrently in a nondeterministic program. However, exploit-

ing concurrency is important both for parallel execution and e�cient sequential

execution.

Self-application of the mode analyzer has con�rmed our conjectures that (1)

most variables are used for one-to-one communication (i.e., are linear) and (2)

non-binary constraints will be reduced to unary/binary constraints. However,

these points require further study because programs written by other people

may be less linear.

For the mode system to be more practical, it should generate a user-friendly

error messages to non-well-moded programs. The current system simply reports

the constraint that �nally caused inconsistency and the mode graph immediately

before the inconsistency was detected. However, a more user-friendly system

should �nd as concise and intuitive an explanation of inconsistency as possible.

A forthcoming paper will report an algorithmic approach to the diagnosis of

non-well-moded programs.

References

1. A��t-Kaci, H. and Nasr, R., LOGIN: A Logic Programming Language with Built-In

Inheritance. J. Logic Programming, Vol. 3, No. 3 (1986), pp. 185{215.

20

2. Cohen, S., Multi-Version Structures in Prolog. In Proc. Int. Conf. on Fifth Gener-

ation Computer Systems 1984, ICOT, Tokyo, pp. 265{274.

3. Eriksson, L.-H. and Rayner, M., Incorporating Mutable Arrays into Logic Pro-

gramming, In Proc. Second Int. Logic Programming Conf., Uppsala Univ., Sweden,

1984, pp. 101{114.

4. Ueda, K. and Chikayama, T., E�cient Stream/Array Processing in Logic Program-

ming Languages. In Proc. Int. Conf. on Fifth Generation Computer Systems 1984,

ICOT, Tokyo, pp. 317{326.

5. Ueda, K. and Morita, M., A New Implementation Technique for Flat GHC. In

Proc. Seventh Int. Conf. on Logic Programming, The MIT Press, Cambridge, MA,

1990, pp. 3{17.

6. Ueda, K. and Chikayama, T., Design of the Kernel Language for the Parallel In-

ference Machine. The Computer Journal, Vol. 33, No. 6 (1990), pp. 494{500.

7. Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-

tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3{43.

8. Tick, E. and Koshimura, M., Static Mode Analyses of Concurrent Logic Languages,

ICOT Tech. Report TR-875, ICOT, Tokyo, 1994. Also to appear in J. Programming

Languages Design and Implementation.

9. Ueda, K. and Morita, M., Message-Oriented Parallel Implementation of Moded

Flat GHC. New Generation Computing, Vol. 11, Nos. 3{4 (1993), pp. 323{341.

10. Ueda, K., I/O Mode Analysis in Concurrent Logic Programming. In Proc. Int.

Workshop on Theory and Practice of Parallel Programming (TPPP'94), Ito, T.

and Yonezawa, A. (eds.), LNCS 907, Springer, 1995, pp. 356{368.

This article was processed using the L

a

T

E

X macro package with LLNCS style

