
Moded Flat GHC and Its

New Generation Computing, Vol. 13, No. 1 (1994), pp. 3{43.

Message-Oriented Implementation Technique

Kazunori Ueda

y

Institute for New Generation Computer Technology

4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Masao Morita

Mitsubishi Research Institute

3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan

Abstract

Concurrent processes can be used both for programming computation and

for programming storage. Previous implementations of Flat GHC, however,

have been tuned for computation-intensive programs, and perform poorly for

storage-intensive programs (such as programs implementing recon�gurable

data structures using processes and streams) and demand-driven programs.

This paper proposes an optimization technique for programs in which pro-

cesses are almost always suspended. The technique compiles uni�cation for

data transfer into message passing. Instead of reducing the number of process

switching operations, the technique optimizes the cost of each process switch-

ing operation and reduces the number of cons operations for data bu�ering.

The technique is based on a mode system which is powerful enough to

analyze bidirectional communication and streams of streams. The mode sys-

tem is based on mode constraints imposed by individual clauses rather than

on global data
ow analysis, enabling separate analysis of program modules.

The introduction of a mode system into Flat GHC e�ectively subsets Flat

GHC; the resulting language is called Moded Flat GHC. Moded Flat GHC

programs enjoy two important properties under certain conditions: (1) reduc-

tion of a goal clause retains the well-modedness of the clause, and (2) when

execution terminates, all the variables in an initial goal clause will be bound

to ground terms. Practically, the computational complexity of all-at-once

mode analysis can be made almost linear with respect to the size n of the

program and the complexity of the data structures used, and the complexity

of separate analysis is higher only by O(logn) times. Mode analysis provides

useful information for debugging as well.

Benchmark results show that the proposed technique well improves the

performance of storage-intensive programs and demand-driven programs com-

pared with a conventional native-code implementation. It also improves the

performance of some computation-intensive programs. We expect that the

y

Author's current address: Department of Information and Computer Science,

Waseda University, 4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169, Japan.

E-mail: ueda@c�.waseda.ac.jp.

{ 1 {

proposed technique will expand the application areas of concurrent logic lan-

guages.

Keywords: Concurrent logic programming, Moded Flat GHC, Static mode

system, Constraint-based program analysis, Message-oriented implementa-

tion.

1. Introduction

Guarded Horn Clauses (GHC) [16][17][19] is a simple concurrent logic lan-

guage born from the research on parallelism in logic programming. Its subset,

Flat GHC [19] [21], can be viewed naturally as a process description language

in which the static property of a process (implemented by a multiset of body

goals), namely the relationship between input and output information, is ex-

pressed in terms of its logical reading and in which the dynamic property,

namely the causality between input and output information, is speci�ed us-

ing the guard construct. Readers who are unfamiliar with (Flat) GHC and

concurrent logic programming are referred to [14], [15], [18] and [19].

A prominent feature of Flat GHC and other concurrent logic languages

viewed as process description languages is that they use uni�cation (or its re-

stricted forms such as matching) for interprocess communication. Externally,

a process is viewed as an abstract entity that observes and generates substi-

tutions. Internally, the behavior of individual body goals, a multiset of which

implements a process, is de�ned in terms of other goals using guarded clauses.

Each of the guarded clauses making up a program (also referred to as pro-

gram clauses) can be regarded as a conditional rewrite rule of goals in a goal

clause. It is the guard part of a clause that speci�es what substitution should

be observed before the rewriting. A substitution is generated by spawning a

uni�cation body goal whose behavior is language-de�ned.

Flat GHC is di�erent from GHC in that guard goals are restricted to

� uni�cation goals and

� calls to test predicates, namely predicates de�ned by clauses with empty

bodies.

However, this restriction is not really restrictive as a process description lan-

guage [20]. We have found that it is more natural to distinguish between

test predicates that de�ne rewrite conditions and non-test predicates that de-

�ne processes; they have very di�erent characteristics. Thus, in this paper,

we make a clearer distinction by assuming that predicates (other than the

prede�ned predicate `=' for uni�cation) are divided into:

� test predicates which are de�ned by clauses with empty bodies and can

be called only from clause guards, and

� non-test predicates which are de�ned by clauses with possibly non-empty

bodies and can be called only from clause bodies.

Concurrent logic languages employ the notion of streams, implemented

as lists, for interprocess communication. Unlike most concurrent languages,

{ 2 {

nt

-

node([],

-

,

-

, L,R) :- true | L=[], R=[].

nt

-

node([search(K,V)|Cs],K, V1,L,R) :- true |

V=V1, nt

-

node(Cs,K,V1,L,R).

nt

-

node([search(K,V)|Cs],K1,V1,L,R) :- K<K1 |

L=[search(K,V)|L1], nt

-

node(Cs,K1,V1,L1,R).

nt

-

node([search(K,V)|Cs],K1,V1,L,R) :- K>K1 |

R=[search(K,V)|R1], nt

-

node(Cs,K1,V1,L,R1).

nt

-

node([update(K,V)|Cs],K,

-

, L,R) :- true |

nt

-

node(Cs,K,V,L,R).

nt

-

node([update(K,V)|Cs],K1,V1,L,R) :- K<K1 |

L=[update(K,V)|L1], nt

-

node(Cs,K1,V1,L1,R).

nt

-

node([update(K,V)|Cs],K1,V1,L,R) :- K>K1 |

R=[update(K,V)|R1], nt

-

node(Cs,K1,V1,L,R1).

t

-

node([]) :- true | true.

t

-

node([search(K,V)|Cs]) :- true | V=undefined, t

-

node(Cs).

t

-

node([update(K,V)|Cs]) :- true |

nt

-

node(Cs,K,V,L,R), t

-

node(L), t

-

node(R).

Program 1. A program de�ning binary trees of processes.

a sequence of messages communicated is just a data structure manipulated

by uni�cation, which contributes much to the simplicity and the
exibility

of the languages. Unidirectional (data-driven) communication, bidirectional

(demand-driven) communication, and furthermore, streams of streams can be

programmed quite easily.

It has been claimed, however, that uni�cation is too ine�cient for inter-

process communication. Upon uni�cation, a straightforward implementation

should determine the direction of data
ow and also check against the possi-

bility of failure. These operations, which can be costly particularly in parallel

implementations, are not needed in other concurrent languages. Another ar-

gument against interprocess communication by uni�cation is that its straight-

forward implementation performs dynamic memory allocation (cons) that ne-

cessitates some sort of garbage collection. These considerations motivated us

to explore the possibility of static analysis of complex data
ow, which is one

of the two major topics of the paper. A mode system will be introduced into

Flat GHC for this purpose. The resulting language seems to be an important

subset of Flat GHC and hence will be called Moded Flat GHC. This topic will

be discussed in detail in Section 2.

Another motivation comes from our desire to expand the application ar-

eas of concurrent logic languages. So far, concurrent logic languages have

been used mainly for writing computation-intensive programs in which pro-

cesses do not suspend frequently. However, those languages could be used also

for programming storage such as dynamic data structures using processes as

building blocks. For instance, given Program 1, a process t

-

node(S) (for ter-

minal node; nt

-

node for non-terminal node) acts as a binary tree database

that accepts search and update commands through the stream S.

{ 3 {

Processes in storage-intensive programs are almost always dormant but

should respond quickly to incoming messages which may not arrive succes-

sively. However, currently available implementations such as those described

in [9] and [10], which are tuned for computation-intensive programs, perform

poorly for storage-intensive programs because of their heavy process switching

overhead. New implementation techniques that optimize the latency rather

than the throughput of interprocess communication are badly needed for ex-

ecuting those programs e�ciently. This is another major topic of the paper,

which will be discussed in Section 3.

This paper is a revised and extended version of an earlier paper [22]. In

particular, the mode system �rst proposed in [22] is described here in much

more detail, with proofs of important properties and a study of the cost of

mode analysis.

2. Moded Flat GHC

The �rst step towards the optimization of interprocess communication is to

analyze what forms of communication will take place when a program is exe-

cuted. This section presents a mode system for Flat GHC programs that gen-

eralizes our previous system [11] (which classi�ed the arguments of a predicate

simply into input and output) to handle complex data
ow. This generaliza-

tion is very important because the
exibility of uni�cation-based interprocess

communication is the primary raison d'être of concurrent logic languages.

The purpose of our mode system is to infer \which goal will determine

which part of a data structure, if each part is to be determined at all," rather

than to infer the instantiation states of the arguments of goals as in [4]. The

mode system is very di�erent also from that of PARLOG [2] and of DEC-10

Prolog [5], as will be discussed in Section 2.7.

Because our mode system is intended for static analysis, it is impossible

to analyze the data
ow of all meaningful Flat GHC programs. We chose to

assume that programmers obey the following conventions:

(1) Interprocess communication is cooperative rather than competitive; that

is, when several occurrences of the same variable (each occurring in some

goal) have been generated in the course of execution, exactly one of them

is the output occurrence which can determine its top-level function sym-

bol and all the others are input occurrences. In other words, a goal clause,

whether it is the one given initially or is derived by repeated, concurrent

reductions, has exactly one output occurrence for each variable in the

clause.

(2) The mode of an occurrence of a variable in a goal g can depend on and

only on the predicate symbol of g and the principal function symbols

of all terms containing that occurrence. (We call those symbols ances-

tor symbols.) This means that the mode of an argument of a predicate

is uniquely given, but the mode of an argument of a function can de-

pend on the context in which the function occurs. For example, consider

the commands search(K,V) and update(K,V) used in Program 1. The

{ 4 {

modes of the second arguments V can depend (and actually depend) on

the command names, but cannot on the values of the �rst arguments K.

The exception to the above rule is the prede�ned predicate `=' for uni�ca-

tion, whose di�erent occurrences (calls) in a program can have di�erent

modes. The predicate `=' is said to be overloaded in this sense.

The introduction of a mode system into Flat GHC is e�ectively the sub-

setting of Flat GHC; the resulting language is called Moded Flat GHC. So a

question arises as to whether this subsetting seriously a�ects GHC program-

ming. Fortunately, most GHC programs written so far are written, or can be

easily rewritten, following these conventions. One reason for this is that GHC

provides no means to recover from the failure of uni�cation body goals.

On Convention (1), we must note that some programs we have seen use

the `stop signal' technique. In those programs, several processes p

1

; : : : ; p

n

share a variable v and agree upon a constant c that v will be bound to. When

some p

i

�nds that the other processes need no longer to work, it noti�es

them by binding v to c. All of the p

i

's are possible producers of the binding,

though the failure of uni�cation cannot happen. One way to conform those

programs to Convention (1) is to use an n-ary arbiter process which the p

i

's

can ask (via distinct variables) to bind v to c. Such an arbiter process can

be implemented e�ciently by applying the message-oriented implementation

technique (described in Section 3) to many-to-one non-stream communication,

though the detail is beyond the scope of this paper.

We have seldom seen programs excluded by Convention (2). However,

an example can be contrived from Program 1 by replacing all the occur-

rences of the terms search(K,V) and update(K,V) by the three-element lists

[search,K,V] and [update,K,V], respectively. With this change, the com-

mand names search and update are not ancestor symbols of K and V any

more, and the modes of the arguments of the two commands become indistin-

guishable. Thus Convention (2) encourages programmers to use meaningful

function symbols only and discourages the excessive use of list structures.

2.1 The Mode System

As usual, we �rst �x the vocabulary with which programs are written and

executed. Let Pred, Fun, and Var be disjoint sets of predicate, function, and

variable symbols, respectively (we do not distinguish between constant and

function symbols). Let Atom be the set of atoms, and Term the set of terms,

over Pred, Fun, and Var. For each p 2 Pred with the arity n

p

, let N

p

be the

set f1; 2; : : : ; n

p

g. N

f

is de�ned similarly for each f 2 Fun. Furthermore,

we de�ne the sets of paths P

Term

(for terms) and P

Atom

(for atoms) using

disjoint union as follows:

P

Term

= (

X

f2Fun

N

f

)

�

; P

Atom

= (

X

p2Pred

N

p

)� P

Term

:

An element of P

Term

can be written as a string hf

1

; j

1

i : : : hf

n

; j

n

i, and an

element of P

Atom

can be written as hp; iiq, where q 2 P

Term

. (As usual, con-

catenation of strings and string elements is represented by juxtaposition.)

{ 5 {

The empty sequence in P

Term

will be written as �. Paths are intended to

specify variables or function symbols constructing terms, atoms and pos-

sible instances thereof. That is, with each term t we associate a function

e

t : P

Term

! Var [Fun [f?g (? standing for `unde�ned') for accessing its

constituent symbols by means of paths, which is de�ned as follows:

8

>

>

<

>

>

:

e

t(�) =

�

f; if t is of the form f(t

1

; : : : ; t

n

);

t; otherwise (i.e., if t is a variable);

e

t(hf; jiq) =

�

e

t

j

(q); if t is of the form f(t

1

; : : : ; t

n

) and j 2 N

f

;

?; otherwise.

The function for accessing constituent symbols of an atom is de�ned similarly.

In our setting, each element of a path, being of a dependent type, is indexed

explicitly by a predicate or function symbol. This is because we must be able

to specify constituent symbols of all possible instances of terms or atoms.

Finally, we de�ne the set of modes M as

M = P

Atom

! fin; outg;

where we assume in 6= out for the codomain. This means that a mode assigns

either of in or out to every possible path of every possible instance of every

possible goal.

Some miscellaneous de�nitions for notational convenience:

� For a mode m2M and a path p2P

Atom

, m=p denotes a function, called

a submode of m, from P

Term

to fin ; outg, such that

8q 2 P

Term

�

(m=p)(q) = m(pq)

�

:

� The inverse of a mode m, denoted m, is de�ned as a function such that

8p 2 P

Atom

�

m(p) 6= m(p)

�

:

Submodes of a submode and the inverse of a submode are de�ned simi-

larly.

� By IN we denote a submode such that

8q 2 P

Term

�

IN (q) = in

�

;

and by OUT we denote IN .

2.2 Mode Analysis

The purpose of mode analysis is to �nd a mode m 2M that satis�es all the

constraints (listed below) syntactically imposed by the pair of a program P

(a set of program clauses) and a goal clause G to activate P . When such a

mode exists, the pair of P and G is said to be well-moded, and the mode m

is called a well-moding of the pair. Well-modedness is de�ned in the same

{ 6 {

manner for each of P and G, or more generally, for a set of (program and/or

goal) clauses which we will call program fragments henceforth.

A program fragment may fail to have any well-moding, in which case it is

considered to be non-well-moded. This happens when, for some path p, m(p)

is constrained to both in and out , or tom(p). A well-moded program fragment

usually has many well-modings. This is because the paths of a goal which are

not examined or instantiated can be given either mode values. So we choose

to express modes implicitly in terms of mode constraints. Constraint-based

representation requires an appropriate constraint satisfaction algorithm that

reduces a set of constraints and checks if the set is consistent or not. However,

the design of a constraint satisfaction algorithm is a separate issue and will

be discussed in Sections 2.4 and 2.5.

To simplify the analysis, we assume that programs and initial goal clauses

(from which execution commences) satisfy the following normal form condi-

tions:

(i) No uni�cation goals exist in guards.

(ii) The multiset of uni�cation goals in the body of a clause is of the form

v

1

= t

1

; : : : ; v

n

= t

n

, where

� the v

i

's are distinct variables occurring in the head of the clause,

� the v

i

's do not occur in any of the t

j

's or other goals in the body,

and

� if some t

i

is a variable, it occurs in the head.

For instance, Program 1 is in a normal form. A clause not in a normal

form is �rst normalized in the way described in Appendix. For goal clauses,

Condition (i) is simply irrelevant, and Condition (ii) means that they contain

no uni�cation goals. Because of Condition (i), by uni�cation goals we always

mean uni�cation body goals henceforth. Strictly speaking, Condition (ii) is

not essential for the analysis, but it may turn a non-well-moded program into

a well-moded one without changing its behavior. Note that a goal clause

obtained as a result of reduction may not enjoy Condition (ii), because the

reduction of a non-uni�cation goal may spawn uni�cation goals.

Furthermore, to cope with the overloading of the predicate `=', we assume

that all its occurrences in a program are virtually indexed as `=

1

', `=

2

', : : : .

This treatment is necessary because it is very common in a Flat GHC program

that di�erent uni�cation body goals have di�erent modes. Fortunately, this

treatment does not complicate the analysis because the predicate `=' has a

�xed meaning given by the language and imposes a strong constraint on the

possible modes of its arguments (see Constraint (BU) below). Note that

uni�cation goals spawned upon reduction inherit the indices of the uni�cation

predicates in the program.

Now we list the constraints* imposed by each clause C in a program

* The names of the constraints (HF), (HV), (GV), (BU), (BF), and (BV)

stand for head function, head variable, guard variable, body uni�cation, body

function, and body variable, respectively.

{ 7 {

fragment. Recall that C is either of the form h :- G | B (guarded clause) or

the form :- B (goal clause), where G and B are multisets of atoms. While

we apply all of these constraints to clauses de�ning non-test predicates, we

apply only (HF), (HV), and (GV) to clauses de�ning test predicates.** To

goal clauses, only (BU), (BF), and (BV) are applicable because they have no

guards.

(HF) 8p 2 P

Atom

�

e

h(p) 2 Fun) m(p) = in

�

(if the symbol at p in h is a function symbol, m(p) = in),

(HV) 8p; p

0

2 P

Atom

�

e

h(p) 2Var ^ p 6= p

0

^

e

h(p) =

e

h(p

0

)) m=p = IN

�

(if the symbol at p in h is a variable occurring elsewhere in h, then

8q 2 P

Term

�

m(pq) = in

�

, namely m=p = IN),

(GV) 8p; p

0

2 P

Atom

8a 2G

�

e

h(p) 2 Var ^

e

h(p) = ea(p

0

)

) 8q 2 P

Term

�

m(p

0

q) = in) m(pq) = in

��

(if the same variable occurs both at p in h and at p

0

in G, then

8q 2 P

Term

�

m(p

0

q) = in) m(pq) = in

�

),

(BU) 8k > 0 8t

1

; t

2

2 Term

�

(t

1

=

k

t

2

) 2B) m=h=

k

; 1i = m=h=

k

; 2i

�

(the two arguments of a uni�cation body goal have exactly inverse sub-

modes),

(BF) 8p 2 P

Atom

8a 2B

�

ea(p)2 Fun) m(p) = in

�

(if the symbol at p in a body goal is a function symbol, m(p) = in),

(BV) Let v be a variable occurring exactly n (� 1) times in h and B at

p

1

; : : : ; p

n

, of which the occurrences in h are at p

1

; : : : ; p

k

(k � 0). Then

�

R

�

fm=p

1

; : : : ;m=p

n

g

�

; if k = 0;

R

�

fm=p

1

; m=p

k+1

; : : : ;m=p

n

g

�

; if k > 0;

where the unary predicate R over �nite multisets of submodes is a `co-

operativeness' relation de�ned as

R(S)

def

= 8q 2 P

Term

9s 2 S

�

s(q) = out ^ 8s

0

2 Snfsg

�

s

0

(q) = in

��

:

Note that Constraint (BV) ignores the second and the subsequent occur-

rences of v in h and any of the occurrences in G. The other occurrences of

v are called channel occurrences. Note also that s can depend on q in the

above de�nition of R. Intuitively, Constraint (BV) means that each function

symbol occurring in a possible instance of v will be determined by exactly

one of the channel occurrences of v.

The relation R enjoys the following properties:

R

�

fsg

�

, s = OUT ;(P1)

R

�

fs

1

; s

2

g

�

, s

1

= s

2

;(P2)

R

�

fIN g [S

�

, R

�

S

�

;(P3)

** Since (BU) and (BF) are simply not applicable to test predicates, the

point here is that (BV) is not applied to test predicates.

{ 8 {

R

�

fOUTg [S

�

, 8s

0

2 S

�

s

0

= IN

�

;(P4)

R

�

fs; sg [S

�

, s = IN ^R

�

S

�

;(P5)

R

�

fs; sg [S

�

, 8s

0

2 S

�

s

0

= IN

�

;(P6)

R

�

fsg [S

1

�

^R

�

fsg [S

2

�

) R

�

S

1

[S

2

�

;(P7)

R

�

S

1�i�n

fs

i

g

�

) R

�

S

1�i�n

fs

i

=qg

�

; q 2 P

Term

:(P8)

Proofs are all straightforward. Property (P7) is reminiscent of Robinson's

resolution principle.

Properties (P1) and (P2) say that Constraint (BV) becomes much sim-

pler when v has at most two channel occurrences. If it has exactly two channel

occurrences at p

1

and p

2

, which is usually the case, Constraint (BV) is equiv-

alent to m=p

1

= m=p

2

or m=p

1

= m=p

2

, depending on whether one of the

occurrences is in the head or the both occur in the body. This means that the

variable v is used for one-to-one communication. When v has only one channel

occurrence at p, Constraint (BV) is equivalent to m=p = IN or m=p = OUT ,

depending on whether the occurrence is in the head or the body.

2.3 Rationale of the Constraints

Rationale of the six mode constraints are appropriate here. We consider non-

test predicates �rst. Test predicates will be considered later, since they are

quite di�erent from non-test predicates.

In concurrent logic programming, a body goal (or more precisely, the

process implemented by a body goal), de�ned by a non-test predicate, can be

considered an information processing device with inlets and outlets of infor-

mation that we call terminals. A variable is considered a one-to-n (n � 0)

communication channel connecting its occurrences, and each channel occur-

rence of a variable is considered to be plugged into a terminal of a goal. A

variable occurring both in the head and in the body of a program clause is

considered a channel that conveys information between a goal (which the head

matches) and its subgoals. A function symbol is considered an unconnected

plug that acts as the source or the absorber of atomic information, depending

on whether it occurs in the body or the head. While channels and terminals of

electric devices usually have array structures, those in our setting have nested

structures. That is, a variable that connects the terminals at p

1

, : : : , p

n

also

connects the terminals at p

1

q, : : : , p

n

q, for all q 2 P

Term

.

A terminal of a goal always has its counterpart. The counterpart of a

terminal at p on the caller side of a non-uni�cation goal is the one at the same

path on the callee side, and the counterpart of a terminal at h=

k

; 1iq in the �rst

argument of a uni�cation goal is the one at h=

k

; 2iq in the second argument.

Reduction of a goal is considered the removal of the pairs of corresponding

terminals whose connection has been established.

The mode constraints are concerned with the direction of information

ow (i) in channels and (ii) at terminals. The two underlying principles are:

(i) When a channel (a variable) connects n terminals of which at most one

{ 9 {

is in the head, exactly one of the terminals is the outlet of information

and the others are inlets. In other words, when a variable has n channel

occurrences in a clause, it is used for one-to-(n� 1) communication.

(ii) Of the two corresponding terminals of a goal, exactly one is the outlet of

information and the other is an inlet.

Constraint (BV) comes from Principle (i). An input (output) occurrence

of a variable in the head of a clause is considered an outlet (inlet) of informa-

tion from inside the clause, respectively, and this is why we invert the mode

of the clause head in considering Constraint (BV). Constraint (BV) takes into

account only one of the occurrences of v in the head. Multiple occurrences of

the same variable in the head are for equality checking before commitment,

and the only thing that matters after commitment is whether the variable

occurs also in the body and conveys information to the body goals.

Constraints (HF) and (HV) come from Principle (ii). For non-uni�cation

goals, m(p) should be constrained to in when some clause may examine the

value of the path p, because the examination must be done at the outlet of

information on the callee side of a goal. Hence Constraints (HF) and (HV).

The strong constraint imposed by Constraint (HV) is due to the semantics

of Flat GHC: when a variable occurs twice or more in a clause head, these

occurrences must receive identical, though arbitrary, terms from the caller.

Constraint (BU) is exactly the application of Principle (ii) to uni�cation

body goals. Any value fed through some path h=

k

; iiq in one of its argu-

ments will come out through the corresponding path h=

k

; 3� iiq in the other

argument.

Constraint (BF) also comes from Principle (ii). A non-variable symbol on

the caller side of a goal must appear only at the inlet of information, because

the information will go out from the corresponding outlet.

Now we consider Constraint (GV) on guard goals, which are de�ned by

test predicates. The idea here is that the paths of a goal g whose value may be

examined by the guard goals of a clause called by g are constrained to in . An

alternative to the consequent of Constraint (GV) would be to use a stronger

form m=p

0

= m=p instead of 8q 2 P

Term

�

m(p

0

q) = in) m(pq) = in

�

.

However, test predicates should be generic in terms of modes, and our choice

avoids the unnecessary propagation of constraints from non-test predicates to

test predicates.

Almost all implementations of Flat GHC restricts guard goals to calls to

prede�ned test predicates. Those predicates are regarded as de�ned virtually

by a set of clauses like

6 >5 :- true | true;

for which the mode constraints are considered.

When guard goals exist, Constraint (BV) could be weakened. Suppose a

variable v occurs both in the head of a clause C and its guard goals. Then

the guard goals may guarantee that, when a goal commits to C, the variable

v has been bound to a non-variable term. For instance, when C is of the form

p(X, : : :) :- X> 0 | : : : ;

{ 10 {

X will have been bound to a constant upon commitment. In such a case,

constraints on the paths hp; 1iq (q 2 P

Term

nf�g) are super
uous, and hence

the quanti�ed variable in the de�nition of R need not range over those paths.

In general, let T

v

be any set of terms which includes all the possible

values of v upon commitment to C, and P

T

v

be the set

P

Term

��

p 2 P

Term

�

�

8t 2 T

v

�

e

t(p) = ?

�	

:

Informally, P

T

v

excludes (some of) the irrelevant paths. Using P

T

v

, we can

slightly change the de�nition of R to

R(S)

def

= 8q 2 P

T

v

9s 2 S

�

s(q) = out ^ 8s

0

2 Snfsg

�

s

0

(q) = in

��

:

Note that P

T

v

is equal to P

Term

if T

v

= Term, namely if no information is

available on the possible values of v. However, if it can be inferred that a set

of constants can be used as T

v

(as in the example of X >0), P

T

v

becomes a

singleton set f�g. By �nding a small T

v

, a mode analyzer can avoid imposing

unnecessary mode constraints and rejecting meaningful programs. However,

the basic properties of well-moded programs we will discuss in Section 2.6 do

not depend on what T

v

is used by the analyzer, as long as the analyzer uses

a correct one.

2.4 Managing and Solving Mode Constraints

This section shows how the mode constraints of a simple program can be

represented and manipulated using graphs and uni�cation. General cases not

covered by the example will be addressed in the next section.

Let us consider Program 2, a simple stack program and its driver.*** The

predicate terminate is used for processing remaining stack elements when the

stack is being terminated. In this particular case, terminate just discards

all the elements because the stack is used for storing ground terms (integers).

However, when the stack stores streams connected to some other processes,

the streams in the stack should be closed upon termination of the stack so

that the receiver processes can terminate themselves.

The program uses three prede�ned predicates: =:=, =\=, and subtract,

so we need to know the mode constraints they impose. We assume that they

accept integers, but not integer expressions. Then the mode constraints they

impose are:

m(h=:=; ii) =m(h=\=; ii) = in ; for i = 1; 2;

m(hsubtract; 1i) =m(hsubtract; 2i) = in ; m(hsubtract; 3i) = out :

*** The second argument of stack for storing elements does not use list

constructors. This is because we need to distinguish between constructors

for streams and those for non-stream data structures later in Section 3.

Which list constructors are used for the second argument does not a�ect

our mode analysis at all.

{ 11 {

drive(M,S) :- M=:=0 | S=

1

[]. (i)

drive(M,S) :- M=\=0 |

S=

2

[push(M),pop(N)|S1], subtract(N,1,N1), drive(N1,S1). (ii)

stack([], D) :- true | terminate(D). (iii)

stack([push(X)|S],D) :- true | stack(S,p(X,D)). (iv)

stack([pop(X)|S], p(Y,D1)) :- true | X=

3

Y, stack(S,D1). (v)

terminate(D) :- true | true. (vi)

Program 2. A stack program and its driver.

Let `.' denote the function symbol of a non-empty list. The constraints

we can obtain directly from the predicate drive are:

(1) 8q 2 P

Term

�

m(h=:=; 1iq) = in) m(hdrive; 1iq) = in

�

by (GV) applied to M in (i),

(2) m=h=

1

; 1i = m=h=

1

; 2i by (BU) applied to =

1

in (i),

(3) m(h=

1

; 2i) = in by (BF) applied to [] in (i),

(4) m=hdrive; 1i = IN by (BV) applied to M in (i),

(5) m=hdrive; 2i = m=h=

1

; 1i by (BV) applied to S in (i),

(6) 8q 2 P

Term

�

m(h=\=; 1iq) = in) m(hdrive; 1iq) = in

�

by (GV) applied to M in (ii),

(7) m=h=

2

; 1i = m=h=

2

; 2i by (BU) applied to =

2

in (ii),

(8) m(h=

2

; 2i) = in by (BF) applied to the outer . in (ii),

(9) m(h=

2

; 2ih.; 1i) = in by (BF) applied to push in (ii),

(10) m(h=

2

; 2ih.; 2i) = in by (BF) applied to the inner . in (ii),

(11) m(h=

2

; 2ih.; 2ih.; 1i) = in by (BF) applied to pop in (ii),

(12) m(hsubtract; 2i) = in by (BF) applied to 1 in (ii),

(13) m=hdrive; 1i = m=h=

2

; 2ih.; 1ihpush; 1i by (BV) applied to M in (ii),

(14) m=hdrive; 2i = m=h=

2

; 1i by (BV) applied to S in (ii),

(15) m=h=

2

; 2ih.; 2ih.; 1ihpop; 1i = m=hsubtract; 1i

by (BV) applied to N in (ii),

(16) m=hsubtract; 3i = m=hdrive; 1i by (BV) applied to N1 in (ii),

(17) m=h=

2

; 2ih.; 2ih.; 2i = m=hdrive; 2i by (BV) applied to S1 in (ii).

By eliminating constraints on the predicate `=' and other prede�ned pred-

icates, we obtain the following constraints on m=hdrive; 1i and m=hdrive;

2i:

m=hdrive; 1i = IN ; m(hdrive; 2i) = out ;

m(hdrive; 2ih.; 1i) = out ; m=hdrive; 2ih.; 1ihpush; 1i = m=hdrive; 1i;

{ 12 {

m(hdrive; 2ih.; 2i) = out ; m(hdrive; 2ih.; 2ih.; 1i) = out ;

m(hdrive; 2ih.; 2ih.; 1ihpop; 1i) = in;

m=hdrive; 2ih.; 2ih.; 2i =m=hdrive; 2i:

For instance, m(hdrive; 2i) = out follows from (2), (3) and (5); m=hdrive;

2ih.; 2ih.; 2i =m=hdrive; 2i follows from (7), (14) and (17).

If the system knows that M=:=0 and M=\=0 will not succeed for non-

constant values of M, the weakened version of Constraint (BV) (Section 2.3)

gives us m(hdrive; 1i) = in instead of m=hdrive; 1i = IN in (4), which is

exactly the same as the constraint deducible from Constraint (GV).

Similarly, we can obtain the following constraints from stack:

m(hstack; 1i) = in ; m(hstack; 1ih.; 1i) = in ;

m=hstack; 1ih.; 1ihpush; 1i =m=hstack; 2ihp; 1i;

m=hstack; 1ih.; 1ihpop; 1i = m=hstack; 2ihp; 1i;

m=hstack; 1ih.; 2i = m=hstack; 1i;

m(hstack; 2i) = in ; m=hstack; 2ihp; 2i =m=hstack; 2i;

m=hterminate; 1i =m=hstack; 2i:

The conjunction of all these constraints forms a kind of feature structure that

can be represented as a (directed, possibly cyclic, and possibly unconnected)

feature graph [12] as illustrated in Figure 1. We call it a mode graph.

In our setting, each feature of the resulting structure is the pair of a

predicate or function symbol and its argument position, which is shown in

Figure 1 by the label on an edge. A sequence of features forms a path both

in the sense of our mode system and in the graph-theoretic sense. A node is

possibly labeled with a mode value to which any paths terminating with that

node is constrained.

An edge with a bullet is a `mode inversion' edge: When a path passes an

odd number of bulleted edges, that path is said to be inverted, and the mode

value of the path should be understood to be inverted. Thus the number of

bulleted edges on a path determines the polarity of the path. A universally

quanti�ed constraint of the formm=p

1

= m=p

2

orm=p

1

= m=p

2

is represented

by a shared node with two (or more) incoming paths with possibly di�erent

polarities. When the polarities of the two incoming paths are di�erent, the

shared node stands for complementary submodes; otherwise the node stands

for identical submodes.

A universally quanti�ed constraint of the formm=p = IN orm=p = OUT

is represented using a node labeled `ground'. A node labeled `ground' indicates

that all paths ending with or passing beyond that node are constrained to in

or out , depending on whether the number of bulleted edges passed before

reaching the node is even or odd.

A mode m and its mode graph (as in Figure 1) can be regarded as

having omitted the information on the mode values of whole atoms (rather

than their arguments) which are always in ; predicate symbols of goals are

always determined by the callers.

{ 13 {

<d,1> <d,2>

<•,1> <•,2>

<u,1>

<•,1> <•,2>

<o,1>
<t,1><s,1> <s,2>

<•,1> <•,2>

<o,1> <u,1>

<p,1> <p,2>

d : drive
s : stack
t : terminate
o : pop
u : push
p : p
• : list constructor
 : mode inversion
 : input
 : unknown yet
 : input down to
 ground level

Figure 1. Mode constraints obtained separately from drive and stack.

Given the mode graph ofm and a path p, the node at p and all nodes and

edges reachable from that node forms a subgraph representing the submode

m=p. We call it the submode graph of m=p, and the node at p the root of the

submode graph.

As the mode of drive in Figure 1 indicates, our framework does not

necessarily require that di�erent elements of a stream must have the same

mode constraint.

The concrete values of m(hstack; 1ih.; 1ihpush; 1i), m(hstack; 1ih.; 1i

hpop; 1i), andm(hstack; 2ihp; 1i) cannot be determined solely by stack; they

are determined only by supplying a context in which the predicate stack

is used or by giving the de�nition of terminate. For example, if a goal

clause or some other program clause contains the body goals drive(10,S)

and stack(S,none) and S does not occur elsewhere in the clause, the two

submodes, m=hdrive; 2i and m=hstack; 1i, are constrained to exactly in-

verse submodes. Hence m(hstack; 1ih.; 1ihpush; 1i) and m(hstack; 2ihp; 1i)

are constrained to in , and m(hstack; 1ih.; 1ihpop; 1i) is constrained to out .

Figure 2 illustrates the mode graph with these additional constraints.

The predicate terminate imposes a strong mode constraint by Constraint

(BV):

m=hterminate; 1i = IN :

{ 14 {

<t,1><s,1> <s,2>

<•,1> <•,2>

<o,1> <u,1>

<p,1> <p,2>

<d,1> <d,2>

Figure 2. Mode constraints after merging a new constraint.

<t,1><s,1> <s,2>

<•,1> <•,2>

<o,1> <u,1>

<d,1> <d,2>

Figure 3. Mode constraints after merging another constraint.

Merging this constraint into the mode graph in Figure 2 results in the graph

in Figure 3.

The mode of a predicate may not be uniquely determined even when a

complete context is provided. However, all that we need is the information

relevant to code generation. For instance, the value of m(hdrive; 2ihf; iiq) is

not constrained at all for any function symbol f other than `.', i 2 N

f

, and

for any q 2 P

Term

, but this causes no problem.

Predicates de�ned by mutual recursion can be handled exactly in the

same way and without any additional mechanism. The path-based mode

system can deal with streams of streams also. Consider the clause

create

-

stacks([S|Ss]) :- true |

stack(S,none), create

-

stacks(Ss).

{ 15 {

From this clause, we obtain the constraints m=hcreate

-

stacks; 1ih.; 1i =

m=hstack; 1i andm=hcreate

-

stacks; 1ih.; 2i =m=hcreate

-

stacks; 1i. Hence

all the elements of a stream occurring as the argument of create

-

stacks have

a common submode which is identical to the submode of a stream occurring

as the �rst argument of stack.

When a well-moded program is activated by a top-level goal clause, it

must be checked �rst if the mode constraints imposed by the goal clause are

consistent with the mode of the program.

2.5 Cost of the Analysis

In this section, we discuss the time complexity of mode analysis, starting with

simple yet important cases.

For the time being, we focus on non-test predicates and assume the fol-

lowing:

(i) no clause has guard goals, and

(ii) no clause contains three or more channel occurrences of a variable.

These assumptions guarantee that the mode constraints can be expressed as

a set of primitive constraints of the following forms for some p, p

1

and p

2

:

(1) m(p) = in (or m(p) = out);

(2) m=p

1

=m=p

2

(or m=p

1

= m=p

2

);

(3) m=p = IN (or m=p = OUT):

The �rst form can be represented in a mode graph by labeling the node at

p as in . The second can be represented by the sharing of a node. The third

can be represented by labeling the node at p as `ground'. The forms in the

parentheses can be represented using inverted paths. Hence, mode graphs

explained in Section 2.4 su�ce for the class of programs we are considering.

Note also that each of these primitive constraints can itself be represented as

a very simple mode graph. Figures 1 to 3 can be regarded as the results of

merging many simple mode graphs representing primitive constraints.

2.5.1 Merging Two Mode Graphs

As Figures 1 to 3 indicate, the merging of two sets of mode constraints rep-

resented as mode graphs is very close to the uni�cation of feature graphs [12]

which is in turn very close to the uni�cation of rational terms [8].****

We have a di�erence, however: The mode values of corresponding paths

must be uni�ed as well as the graph structures, taking into account both the

polarities of the paths and the labels of the nodes at the ends of the paths.

**** A rational term is a possibly in�nite term which has a �nite set of

subterms [3].

{ 16 {

In particular, nodes labeled `ground' must be dealt with properly. First,

uni�cation of two one-node submode graphs with `ground' nodes simply suc-

ceeds or fails, depending on the polarities of the paths leading to those

`ground' nodes. Second, a one-node submode graph G

1

with a `ground' node

and a submode graph G

2

whose root is not labeled `ground' can be uni�ed by

(re-)labeling all the nodes in G

2

as `ground', where it is of course necessary

to check if the previous labeling (if any) of those nodes is consistent with the

new labeling. Outgoing arcs from a node newly labeled as `ground' can be

removed. A node that has thus lost all its incoming arcs becomes a garbage

node, whose outgoing arcs can be removed in the same manner. Note that

some of the nodes in G

2

may be shared by other paths; such nodes do not

become garbage and must be (re-)labeled properly.

On the time complexity, we �rst note that a practical algorithm for the

uni�cation of two feature graphs achieves almost linear time complexity with

respect to the size l of the graphs to be uni�ed [1][8]. That is, the time com-

plexity is O(l ��(l)), where � is the inverse of the Ackermann function. The

uni�cation algorithm represents the sharing of a node using invisible point-

ers (which are implicit in Figures 1{3) managed by the union-�nd algorithm.

Access to a shared node may involve the dereferencing of those invisible point-

ers, which is why the algorithm is almost but not precisely linear.

Therefore, if we focus on the merging of two graph structures and ignore

the handling of node values, the cost is almost linear with respect to the size of

the graphs. The size of the graphs to be merged depends on the complexity

of the data structures used in the program (in terms of the size of their

recursive de�nition) but not on the size of the data structures formed. For

instance, streams of streams are a more complex data structure than streams

of constants.

The size l of the mode graph depends also on the size of the program,

because larger programs will use more predicate symbols. However, the com-

plexity of the most complex data structure in a program may not necessarily

grow as the size of the program grows. We will thus restate the time com-

plexity of the same algorithm using more parameters:

(1) the numbers w

1

, w

2

of top-level features (i.e., features of the form hp; ii,

where p 2 Pred and i 2 n

p

) occurring in the two mode graphs,

(2) the number c of top-level features occurring in the both mode graphs,

and

(3) the maximum size d of the submode graphs whose roots are at the paths

of the form hp; ii (p 2 Pred, i 2 n

p

).

Note that w

i

re
ects the size of the program and d re
ects the maximum

complexity of the data structures. By using hash tables (for random access)

as well as linked lists (for sequential access) for representing the sets of top-

level features, the average complexity of merging two mode graphs becomes

O

�

min(w

1

; w

2

) + cd��(l)

�

. The term min(w

1

; w

2

) re
ects the cost of merging

the sets of top-level features, while the term cd��(l) re
ects the cost of merging

submode graphs with common top-level features. The term �(l) re
ects the

cost of dereferencing invisible pointers, but this can be considered virtually

{ 17 {

constant because � grows extremely slowly.

The di�erence between the merging of mode graphs and the uni�cation

of feature graphs does not a�ect the time complexity. First, the label of a

node and the polarity of an arc can be handled in constant time each time

an arc is followed. Second, the handling of a node labeled `ground' does not

increase the time complexity, either. The uni�cation of a graph with a single

node labeled `ground' and another graph is essentially the depth-�rst search

of the latter graph which may involve implicit dereferencing, but this can be

done within the above-mentioned time complexity.

2.5.2 Analyzing a Whole Program

Now we are in a position to consider the time complexity of the mode

analysis of a whole program. We are still assuming the two assumptions at

the beginning of Section 2.5.

We note that the number of primitive constraints imposed is O(n), where

n is the size of the program in terms of the number of symbols. This is because

(i) for each function or variable symbol in a clause, each of Constraints (HF),

(HV), (BF), and (BV) imposes at most one primitive constraint, and (ii)

Constraint (BU) applies to each uni�cation goal in the body. We also note

that at most two top-level features occur in each primitive constraint.

As in the merging of two mode graphs, let us consider two aspects sep-

arately, namely the merging of these O(n) sets of top-level features, and the

merging of submode graphs with common top-level features. First, the time

complexity of merging the O(n) sets of top-level features one by one is O(n),

because merging two sets of sizes w

1

and w

2

costs O(min(w

1

; w

2

)) time and

min(w

1

; w

2

) � 2. However, for large programs, we may want to compute the

mode graphs of individual program modules separately and merge them later

in an arbitrary order, because in incremental program development, we don't

want to analyze a large program from scratch. In the event that the sets of

top-level features are merged in an order in which the two sets to be merged

are always almost equal, the cost can become O(n log n).

Second, we consider the cost of merging submode graphs with common

top-level features. Suppose some top-level feature hp; ii occurs in k primitive

constraints. Then the merging of submode graphs rooted at hp; ii will oc-

cur k � 1 times, irrespective of the order in which the primitive constraints

are merged. Since at most two top-level features occur in each primitive con-

straint, the merging of submode graphs is performed O(n) times in total. The

time complexity of one merging operation is O(d��(n)), where d is the size

of the largest submode graph to be merged. The term �(n) re
ects the fact

(proof omitted) that the number of invisible pointers involved is O(n). So the

total cost of submode graph merging is O(nd��(n)).

To summarize, when the primitive mode constraints are merged all at

once, the cost of the analysis is O(nd��(n)), and when the primitive mode

constraints are merged in an arbitrary order, the cost is O(n logn+nd��(n)).

In the latter case, however, the contribution of the term n logn to the total

cost is expected to be much smaller than that of nd��(n).

{ 18 {

For the class of programs being considered, the total correctness of the

above analysis algorithm is almost immediate from the total correctness of

the underlying uni�cation algorithm for feature graphs [1].

2.5.3 General Cases

How can we cope with clauses with guard goals and/or variables with three

or more channel occurrences?

When clauses may have guard goals, Constraint (GV) must be considered

as well. We have not fully studied the general and e�cient treatment of guard

goals, but in practice, it su�ces to consider the cases where

� guard goals are all calls to prede�ned test predicates,

� the size of the mode graph of each prede�ned test predicate is O(d) (and

therefore �nite), and

� the mode graphs have been obtained before the analysis of non-test pred-

icates.

When the above three conditions are met, Constraint (GV) on a variable

v occurring at p

h

in the head and at p

g

in the guard of a clause can be imple-

mented by (1) making a copy of the submode graph of m=p

g

and (2) merging

the obtained copy and the current submode graph of m=p

h

. The copying

operation is to avoid the propagation of constraints to test predicates, but it

can be done in O(d) time. (Dereferencing of invisible pointers is unnecessary

here, because the invisible pointers can be eliminated from the mode graphs

beforehand.) In addition, with Constraint (GV), the number of top-level fea-

tures to be merged is still O(n). So Constraint (GV) does not increase the

time complexity obtained in Section 2.5.2.

When some variable has three or more channel occurrences in a clause,

the constraint associated with that variable cannot be solved immediately

using uni�cation. In many cases, however, such a constraint can be reduced

to a unary or binary constraint (constraint involving only one or two paths,

respectively) with the aid of other constraints, in which event the generate-

and-test search of well-moding is not needed. We anticipate that this is almost

always the case in practice. For example, a predicate p that may spawn sibling

processes q sharing the same input data would have a clause of the form

p(X, : : :) :- : : : | q(X, : : :), p(X, : : :):

From this clause, we can immediately infer m=hq; 1i = IN , using the implicit

constraint that the mode of the predicate p is common to all calls to it. The

submode m=hp; 1i is not constrained at all.

The best strategy of constraint solving is thus to solve unary and bi-

nary constraints �rst, delaying non-binary constraints. Unfortunately, some

programs still require generate-and-test search or a more powerful set of re-

duction rules to solve non-binary constraints. An example is the following set

{ 19 {

of clauses, which is non-well-moded:

p1 :- true | r(X), s(X), t(X).

p2 :- true | q(X), s(X), t(X).

p3 :- true | q(X), r(X), t(X).

p4 :- true | q(X), r(X), s(X).

However, such powerful constraint solving seems to be necessary only for the

analysis of pathological programs and hence will not justify the implementa-

tion e�ort. A much more promising way is to avoid generate-and-test search

completely by letting programmers declare, in some form or other, the modes

of the paths where variables with three or more channel occurrences may

occur. The declared mode constraints are used for reducing constraints asso-

ciated with these variables. This is a reasonable solution, because (1) only a

small number of variables have three or more channel occurrences in a clause

and (2) those variables almost always have simple data
ow that is easy to

declare.

2.6 Well-Moded Programs Do Not Go Wrong

Here we �rst present and prove the basic theorem concerning one-step re-

duction of a goal clause, namely the execution of a uni�cation goal or the

replacement of a non-uni�cation goal by the body goals of a program clause.

Lemma 1. Let m be a well-moding of a clause C, and let t

1

=

k

t

2

be a

uni�cation (body) goal in C. Then there exists an i such that (i) m(h=

k

;

ii) = out and (ii) t

i

is a variable.

Proof. (i) is immediate from Constraint (BU), and (ii) is immediate from (i)

and the contrapositive of Constraint (BF).

Let v be a variable and t a term. We say that the extended occur check

for uni�cation between v and t fails if t is v or t contains v.

Theorem 1. Let m be a well-moding of a program P and a goal clause G.

Suppose G is reduced by one step into a goal clause G

0

, where the reduced

goal g 2G is not a uni�cation goal for which the extended occur check fails.

Then m is a well-moding of P and G

0

as well.

Proof. We have two cases. For notational convenience, we identify a goal

clause with the multiset of the body goals it contains.

Case (i): The reduction reduces a non-uni�cation goal g using a clause C 2P

(renamed using fresh variables) of the form h :- : : : | B. The synchronization

rule of GHC states that there is a substitution � such that g = h�. Note that

G

0

= G n fgg [B�, where `n' and `[' are multiset di�erence and union,

respectively.

We must consider Constraint (BV) imposed by the variable symbols oc-

curring in g 2G and Constraint (BF) imposed by the occurrences of function

symbols introduced to B� (2G

0

) by �. (These occurrences originate in the

{ 20 {

occurrences of the same function symbols in g.) Constraints imposed by the

other variable symbols in G

0

and constraints imposed by the other occurrences

of function symbols in G

0

(which are already in Gnfgg and/or B) are exactly

the same as those before reduction. Hence we consider each symbol in g,

namely eg(p) (p 2 P

Atom

) such that eg(p) 6= ?:

(a) eg(p) is a function symbol f . Then either (1)

e

h(p) = f , or (2) there exist

p

0

2 P

Atom

and q 2 P

Term

such that p = p

0

q and

e

h(p

0

) is a variable (say

v). In Case (1), the occurrence disappears upon reduction and Constraint

(BF) becomes inapplicable. So we need only to consider Case (2), which

may introduce new occurrences of f to B�. Suppose v occurs n (� 0)

times in B at r

1

, : : : , r

n

, and let g

j

be the goal to which the occurrence at

r

j

belongs. This means

f

g

i

�(r

i

q) = f holds in G

0

for i = 1, : : : , n. For m

to be a well-moding of G

0

, m(r

i

q) = in must hold because of Constraint

(BF). However, this can be derived as follows:

(1) m(p) = in by Constraint (BF) applied to f in G,

(2) R

�

fm=p

0

g [

S

1�i�n

fm=r

i

g

�

by Constraint (BV) applied to v in C,

(3) R

�

fm=pg [

S

1�i�n

fm=r

i

qg

�

by (2) and Property (P8),

(4) m(r

i

q) = in; 1 � i � n by (1) and (3).

(b) eg(p) is a variable w occurring l (� 1) times in g at p

1

(= p), p

2

, : : : , p

l

,

and m (� 0) times in G n fgg at p

l+1

, : : : , p

l+m

. Because there is a

substitution � such that g = h�, for each p

i

(1 � i � l), there exist paths

p

0

i

2P

Atom

and q

i

2P

Term

such that p

i

= p

0

i

q

i

and

e

h(p

0

i

) is a variable (say

v

i

). Suppose v

i

occurs n

i

(� 0) times in B at r

i1

, : : : , r

in

i

. Then,

(1) R

�

S

1�i�l+m

fm=p

i

g

�

by Constraint (BV) applied to w in G,

(2) R

�

fm=p

i

g [

S

1�j�n

i

fm=r

ij

q

i

g

�

; 1 � i � l

by Constraint (BV) applied to v

i

in C, and Property (P8),

(3) R

�

S

1�i�l

S

1�j�n

i

fm=r

ij

q

i

g [

S

l+1�i�l+m

fm=p

i

g

�

by (1), (2), and Property (P7).

Here, we �rst consider the case where none of the v

i

's has two or more

occurrences in h. Then w will occur n

1

+ � � � + n

l

times in B� at r

ij

q

i

(1 � i � l, 1 � j � n

i

), and Property (3) above is exactly Constraint

(BV) applied to w in G

0

.

Next, we consider the case where some v

k

occurs twice or more in h.

Let K be the set of such k's. In this case, w may occur less than n

1

+

� � � + n

l

times, because two occurrences of w in g may be received by

di�erent occurrences of the same variable in h and introduced to B� not

independently. However,

(4) m=p

0

k

= IN ; k 2K by Constraint (HV) applied to v

k

in C ,

(5) R

�

fm=p

0

k

g [

S

1�j�n

k

fm=r

kj

g

�

; k 2K

{ 21 {

by Constraint (BV) applied to v

k

in C ,

(6) m=r

kj

= IN ; k 2K; 1 � j � n

k

by (4), (5), and Property (P4),

(7) m=r

kj

q

k

= IN ; k 2K; 1 � j � n

k

by (6).

This means that Constraint (BV) applied to w in G

0

can ignore occur-

rences of w introduced to B� by the v

k

's (k 2 K), because in general,

R(S [fIN g) , R(S) holds (Property (P3)). On the other hand,

(8) R

�

S

1�i�l; i=2K

S

1�j�n

i

fm=r

ij

q

i

g [

S

l+1�i�l+m

fm=p

i

g

�

by (3), (7), and Property (P3).

This is exactly Constraint (BV) applied to w in G

0

, with the occurrences

of w introduced by the v

k

's (k 2K) ignored.

Case (ii): The reduction executes a uni�cation goal t

1

=

k

t

2

. By Lemma 1,

there exists an i such that t

i

is a variable and m(h=

k

; ii) = out . Without loss

of generality, we can assume i = 1 (that is, uni�cation is always assignment to

the left-hand side variable). By the assumption of the extended occur check,

the term t

2

is not, or does not contain, the variable t

1

. Hence G

0

=

�

G n

ft

1

=

k

t

2

g

�

�, where � = ft

1

 t

2

g. Suppose the variable t

1

occurs n (� 0)

times elsewhere in G at r

1

, : : : , r

n

. We consider the symbols in t

2

, namely

the

e

t

2

(q)'s (q 2 P

Term

) such that

e

t

2

(q) 6= ?:

(a)

e

t

2

(q) is a function symbol f . Then

(1) m(h=

k

; 2iq) = in by Constraint (BF),

(2) m(h=

k

; 1iq) = out by (1) and Constraint (BU),

(3) m(r

i

q) = in; 1 � i � n

by (2) and Constraint (BV) applied to t

1

in G.

By executing t

1

=

k

t

2

, f is made to occur newly at r

1

q, : : : , r

n

q in G

0

.

However, as shown above, m satis�es Constraint (BF) imposed by these

occurrences.

(b)

e

t

2

(q) is a variable w (6= t

1

) occurring l (� 1) times in t

1

=

k

t

2

at p

1

�

= h=

k

;

2iq

�

, p

2

, : : : , p

l

and m (� 0) times in G n ft

1

=

k

t

2

g at p

l+1

, : : : , p

l+m

.

Let q

i

be such that h=

k

; 2iq

i

= p

i

, for 1 � i � l. Then

(1) R

�

S

1�i�l+m

fm=p

i

g

�

by Constraint (BV) applied to w in G,

(2) R

�

fm=h=

k

; 1iq

i

g [

S

1�j�n

fm=r

j

q

i

g

�

; 1 � i � l

by Constraint (BV) applied to t

1

in G, and Property (P8),

(3) m=h=

k

; 1iq

i

= m=p

i

; 1 � i � l by Constraint (BU) applied to =

k

,

(4) R

�

S

1�i�l

S

1�j�n

fm=r

j

q

i

g [

S

l+1�j�l+m

fm=p

j

g

�

by (1), (2), (3), and Property (P7).

However, Property (4) is exactly Constraint (BV) applied to w in G

0

.

Note that Theorem 1 does not hold when the reduced goal g is of the

form v=v. Consider the case:

G : :- p(A,A), q(A),

P : fp(X,Y) :- true | X=Yg.

{ 22 {

The program P imposes the constraint m=hp; 1i = m=hp; 2i which, combined

with Constraint (BV) applied to the goal clause G, gives us m=hq; 1i = IN .

However, by reducing p(A,A) and then A=A, the goal clause becomes

:- q(A);

which violates the constraint m=hq; 1i = IN . The problem here is that the

goal of the form v=v eliminates the output occurrence of v in the goal clause

without providing any value to the occurrences of v outside the goal v = v.

Fortunately, uni�cation goals of the form v = v are not used in any practical

programs. Moreover, we can easily detect them by slightly extending the

occur check (if it is implemented at all).

Alternatively, goals of the form v = v can be allowed in Theorem 1 if a

variable is disallowed to have more than two channel occurrences in a clause.

This alternative, however, does not work in Theorem 2 below.

Theorem 1, together with Constraint (BV) applied to goal clauses, guar-

antees that well-moded programs follow Convention (1) shown in the begin-

ning of Section 2 unless the extended occur check fails.

Note that the use of the weakened version of Constraint (BV) shown in

Section 2.3 does not a�ect Theorem 1.

From Lemma 1 and Theorem 1, a uni�cation goal in a goal clause (derived

as a result of reduction) is always uni�cation between a variable and a term,

from which the following important corollary follows:

Corollary 1. If the pair of a program and a goal clause is well-moded and

the extended occur check does not fail, the pair does not cause uni�cation

failure (failure of uni�cation body goals).

The exclusion of uni�cation of the form v=v allows us to obtain another

strong theorem:

Theorem 2. Let m be a well-moding of a program P and a goal clause

G. Assume the execution of G has succeeded (that is, G has been reduced

to an empty multiset of goals) without causing the failure of the extended

occur check. Then, in that execution, a uni�cation goal of the form v=

k

t such

that m(h=

k

; 1i) = out , or a uni�cation goal of the form t=

k

v such that m(h=

k

;

2i) = out , must have been executed, for any variable v occurring in G.

Proof. By Constraint (BV), v has exactly one output occurrence in G. Let g

be the goal containing that occurrence, and p the path such that eg(p) = v and

m(p) = out . Without loss of generality, we can assume that m(h=

k

; 1i) = out

holds for all uni�cation goals in P and G. Since the theorem vacuously holds if

G is an empty clause, we can assume that G is non-empty and has succeeded.

So we consider the �rst reduction from G to some goal clause G

0

, and classify

it into the following four cases:

(i) The goal g is of the form v=

k

t (that is, p = h=

k

; 1i), and the reduction

reduces g.

(ii) The goal g is of the form w=

k

t such that p = h=

k

; 2iq for some q (that

is, t contains an output occurrence of v), and the reduction reduces g.

{ 23 {

Suppose w occurs n (� 0) times in Gnfw=

k

tg at r

1

, : : : , r

n

. Then

(1) m(h=

k

; 2iq) = out by assumption,

(2) m(h=

k

; 1iq) = in by (1) and Constraint (BU),

(3) R

�

fm=h=

k

; 1i; m=r

1

; : : : ; m=r

n

g

�

by Constraint (BV) applied to w in G,

(4) 9k � n

�

m(r

k

q) = out

�

by (2) and (3),

(5) n > 0 by (4).

Hence G

0

retains at least one occurrence of v, because those n occurrences

of w are rewritten to t by the reduction.

(iii) The goal g is a non-uni�cation goal, and the reduction reduces g using a

clause h :- : : : | B. Then there must be paths p

0

2P

Atom

and q 2 P

Term

such that p = p

0

q and

e

h(p

0

) is a variable (say w). Suppose w occurs n

(� 0) times in B at r

1

, : : : , r

n

. Then

(1) m(p

0

q) = out by assumption,

(2) R

�

fm=p

0

; m=r

1

; : : : ; m=r

n

g

�

by Constraint (BV) applied to w in h :- : : : | B,

(3) 9k � n

�

m(r

k

q) = out

�

by (1) and (2),

(4) n > 0 by (3).

Hence G

0

retains at least one occurrence of v, because v occurs newly in

G

0

at r

1

q, : : : , r

n

q.

(iv) The reduction reduces a goal g

0

other than g. Note that g

0

does not

contain an output occurrence of v because g contains it. The variable v

will not be rewritten by the reduction, because only a uni�cation goal of

the form v=

k

t which has an output occurrence of v can rewrite v. So G

0

contains an instance of g which has an output occurrence of v.

To summarize, by the reduction from G to G

0

, either

(a) a uni�cation goal of the form v=

k

t was executed, or

(b) G

0

retained an output occurrence of v.

In Case (b), the above argument applies also to the reduction of G

0

because,

by Theorem 1, m is a well-moding of G

0

as well. However, by assumption, G

was �nally reduced into an empty multiset of goals. So Case (a) must have

eventually happened.

The following corollary follows from Theorem 2:

Corollary 2. Under the assumptions of Theorem 2, the product of all sub-

stitutions generated by uni�cation (body) goals maps all the variables in G

to ground terms.

Proof. We again assume that m(h=

k

; 1i) = out for all uni�cation goals in P .

By Theorem 2, for any variable v occurring in G, a goal of the form v=

k

t such

that m(h=

k

; 1i) = out must have been executed, rewriting v to t. There are

two cases:

{ 24 {

(a) t is ground. Then the corollary is immediate.

(b) t contains one or more variables v

1

, : : : , v

n

. Let G

0

be the goal clause

whose reduction executed the goal v=

k

t. (G

0

is equal to G i� v=

k

t was

the �rst goal executed.) By Theorem 1, m is a well-moding of G

0

. So

the corollary holds for v and G if it holds for v

1

, : : : , v

n

and G

0

.

However, in a successful execution of G, in which only a �nite number of uni-

�cation goals are executed, the recursion in Case (b) cannot happen in�nitely

many times. Hence the product of all substitutions generated by executing

uni�cation goals must have �nally mapped v to a ground term.

Thus, under the extended occur check, the groundness property follows

from the termination property.

One may suspect that the following pair of clauses forms a counterexam-

ple of Corollary 2:

:- p(A).

p(X) :- true | X=f(Y).

However, our mode system excludes the pair, because the goal clause imposes

the constraint m=hp; 1i = OUT , while the program clause imposes the con-

straintm=hp; 1ihf; 1i = IN . To make the above example well-moded, we must

supply a goal that instantiates Y, for instance in the following manner:

:- p(A), q(A).

p(X) :- true | X=f(Y).

q(f(Y)) :- true | Y=g.

2.7 Discussions

The mode analysis described above is based on mode constraints locally im-

posed by individual program clauses rather than on global data
ow analy-

sis using iterative abstract interpretation. This means that it is inherently

amenable to separate compilation of large programs, though the code for uni-

�cation whose mode cannot be determined locally should be supplied at link

time. Alternatively, one could declare the modes of global predicates of pro-

gram modules so that more object code can be determined at compile time.

In this case, mode analysis at link time acts as mode checking that checks

the consistency of the declared constraints. Thus the constraint-based mode

system provides us with a uni�ed framework for mode declaration, mode

checking and mode inference.

The mode system described here is quite di�erent from the mode system

of PARLOG. Basically, PARLOG modes are for moving output uni�cation to

clause bodies when compiling into Kernel PARLOG. Declaring an argument as

input does notmean that the principal function symbol will not be determined

by a callee, and the program

mode p(?). (`?' stands for input)

p(X) :- true : X=5.

{ 25 {

is a correct PARLOG program which corresponds to a GHC program

p(X) :- true | X=5.

The modes of DEC-10 Prolog are very di�erent also; they are the dec-

laration of the time-of-call instantiation states of arguments. On the other

hand, our mode system is concerned with eventual rather than time-of-call

properties, though output paths in a well-moded program are guaranteed to

be uninstantiated at the time of call.

Mode analysis is useful also for debugging purposes. In GHC program-

ming, a variable with only one channel occurrence very often indicates a

program error, unless its value is checked in the guard of the clause. This can

happen, for instance, when a programmer misspells variable names:

p(X0, : : :):- : : : |q(XO,X1), p(X1, : : :). (XO must have been X0)

In this case, the two variables X0 and XO impose strong constraints, namely

m=hp; 1i = IN and m=hq; 1i = OUT . They are very di�erent from the con-

straintm=hp; 1i = m=hq; 1i obtained from the correct clause, which are highly

likely to be inconsistent with constraints obtained from other clauses.

Also, programmers often forget to close streams after use:

p([], Ys) :- true | true. (The body must have been Ys=[])

p([X|Xs1],Ys) :- : : : | Ys=[: : :|Ys1], p(Xs1,Ys1):

This is detected as a mode error, because the (erroneous) base-case clause

imposes the constraint m=hp; 2i = IN , while the recursive clause says m(hp;

2i) = out .

Note that the proofs in Section 2.6 do not use Constraints (HF) or (GV).

These constraints need not be imposed if the purpose of the mode system is

just to guarantee the basic properties proved in Section 2.6. However, they

are well-motivated as we argued in Section 2.3, and can be useful for �nding

bugs and reducing non-binary constraints.

Implementation details of the mode system are beyond the scope of this

paper, but we give one remark here. A user-friendly mode analyzer should

not simply say \no" for non-well-moded programs. The system should tell

why the program is non-well-moded. It must be helpful if the system �nds a

(nearly) minimal set of clauses whose mode constraints are inconsistent.

3. A Message-Oriented Implementation Technique

The mode system in Section 2 has two major applications to implementa-

tion: One is the optimization of conventional implementations based on what

we call process-oriented scheduling, and the other is a new implementation

technique based on message-oriented scheduling [11]. This paper focuses on

multiprocessing within one processor, though the techniques we propose here

can be utilized also in parallel implementations [23].

Since the rest of this section deals with message-oriented scheduling, here

we brie
y discuss the optimization of process-oriented implementation. In

{ 26 {

process-oriented scheduling, mode information enables us to compile a uni�-

cation body goal into assignment to a variable (assuming that the extended

occur check always succeeds).

Furthermore, in some cases we can easily guarantee that the variable has

been fully dereferenced and that no goals are suspending on that variable [11].

Consider an n-ary predicate p whose recursive clause C is of the form

p(: : : ,X0) :- : : : | X0=[: : :|X], p(: : : ,X):

The clause imposes the constraint m(hp; ni) = out and hence the last argu-

ment of any call to p must be a variable. Assume that a goal p(: : : ,A) is

about to be executed. Instead of p(: : : ,A), suppose we execute p(: : : ,A

0

),

a goal whose last argument is replaced by a fresh variable A

0

. The clause C

will reduce that goal to A

0

=[: : : |A

00

] and p(: : : ,A

00

), namely assignment to

a fresh variable and a recursive call having another fresh variable as the last

argument. Thus, by starting execution with a fresh output variable, uni�ca-

tion body goals executed during repetitive tail recursion are guaranteed to be

assignments to fresh variables on which no goals are suspending. The con-

nection between A and A

0

must be established eventually, but it can be done

by executing the goal A=A

0

only once when the repetitive tail recursion has

succeeded, suspended, or has been swapped out (that is, a recursive subgoal

is put into an appropriate goal queue in order to execute another goal in the

same or another queue).

In general, when starting or resuming the execution of a goal g, we can

replace (some of) the output occurrences of variables v

1

, : : : , v

n

in g by fresh

variables u

1

, : : : , u

n

and delay the uni�cation between the v

i

's and the u

i

's

until all the subgoals of g have succeeded, suspended, or been swapped out.

This is an interesting application of anti-substitution [16].

3.1 Process- vs. Message-Oriented Scheduling

In conventional, process-oriented scheduling, a scheduler tries to reduce the

number of process switching operations. Once a goal starts or resumes ex-

ecution, its subgoals run as long as possible (unless they are swapped out)

before another goal in some goal queue gains control. A stream connecting

goals acts as a bu�er whose contents are processed all at once whenever pos-

sible. Process-oriented scheduling can be rephrased as throughput-oriented

scheduling.

Message-oriented scheduling is at the other extreme. Whenever a goal

sends a message to another, it does not bu�er the message but transfers

control to the receiver goal so that the receiver may consume the message

immediately. (We suppose for a while that interprocess communication is

one-to-one, which is the case with Program 1.) The receiver should be ready

to receive and handle the message. To this end, message-oriented scheduling

tries to run the consumer of a stream ahead of its producer and to make the

consumer suspend, while process-oriented scheduling would try to run the

producer ahead of the consumer. Mode analysis enables the identi�cation of

{ 27 {

the producer and the consumer of a stream. Message-oriented scheduling can

be rephrased as response-oriented scheduling, because quicker responses can

be expected in bidirectional communication.

3.2 A Simple Example

For example, consider a process that simply copies the contents of the input

stream to the output stream:

p([], Y) :- true | Y=[].

p([A|X1],Y) :- true | Y=[A|Y1], p(X1,Y1).

Of the two body goals of the recursive clause, process-oriented scheduling

�rst executes Y=[A|Y1] to bu�er the datum A, and then executes p(X1,Y1)

e�ciently with the aid of last-call optimization [24].

In contrast, message-oriented scheduling executes Y=[A|Y1] as message

passing; that is, it transfers both control and the datum A to the consumer of

the stream Y. The possible source of e�ciency is the e�cient transfer of control

and data which does not use a goal queue or a data bu�er. Furthermore, it

turns out that the tail-recursive goal p(X1,Y1) is compiled into no operations,

as will be discussed soon.

To achieve the e�cient transfer of control and data, we implement a

stream not as a linked data structure but as a special two-word cell (called a

communication cell) pointing to

� the code (the resumption address) and

� the environment (the goal record)

of the consumer goal (Figure 4). A communication cell is allocated, and its

entries are initialized, by executing the consumer goal of Y prior to the inter-

process communication. A message to be transferred is placed on a hardware

register called a communication register. For a goal p to send a message m to

a goal q through a stream s, the goal p �rst loads m on the communication

register, and then executes the code of q pointed to by the �rst �eld of the

communication cell for s, using the goal record for q pointed to by the second

�eld of the communication cell for s as the environment. We could apply

the same implementation technique to non-stream data structures also, but

this paper focuses on stream communication in which larger advantage can

be expected from the repetitive use of the same communication cells.

In the recursive clause, the execution of p(X1,Y1) involves no operations

(until the next message arrives at the input stream). This is because

� its goal record can be inherited from the parent goal,

� the �rst argument recorded in the inherited goal record continues to point

to the same communication cell,

� the second argument also continues to point to the same communication

cell, and

� the goal will be immediately suspended at the same instruction at the

beginning of the code of p.

{ 28 {

sender’s
goal

record

receiver’s
goal

record

sender’s
code

receiver’s
code

comm. reg.
(hardware)

comm. cell

put
mes.

get
mes.

(p) (s) (q)

Figure 4. Immediate message send.

Because no linked data structure is formed, the end of a stream is repre-

sented as a special message (say eos), not as the constructor of empty lists.

Thus the execution of a process de�ned by the predicate p will proceed

as follows: First of all, p creates a communication cell for the input stream

and suspends until a message is sent. As soon as a message is sent through

the input stream, p resumes execution and �rst checks if the message is eos

or not. If it is not eos, the body of the recursive clause will

(1) let the `current' goal record be the one pointed to by the communication

cell for the second argument, and

(2) transfer control to the code pointed to by that communication cell.

Control need not be returned to the recursive clause because no operations

remain to be done for the current message. When the next message arrives

later, the execution of p's code is resumed from the address from where execu-

tion was resumed for the current message. Moreover, the message A need not

be loaded to the communication register because it has already been loaded

when control is transferred to this clause. The body of the recursive clause is

thus compiled into a very e�cient code.

If the message is eos, the body of the base-case clause will send another

eos to the output stream. It will also deallocate the current goal record.

A process-oriented implementation often caches (part of) a goal record

on hardware registers, but this should not be done in a message-oriented

implementation in which process switching takes place frequently and caching

operations would incur large overhead.

3.3 Message-Oriented Scheduling in General Cases

A number of questions may arise when generalizing the above implementa-

tion technique: How can a compiler distinguish between variables representing

streams and those representing non-stream data? How to cope with commu-

nication that is not one-to-one? Shouldn't a stream sometimes act as a bu�er?

{ 29 {

This section will discuss basic ideas on these issues. Detailed description at

the intermediate code level is given in [23], which deals with parallel execution

as well.

3.3.1 Identifying Stream Communication

A compiler must be able to distinguish between variables representing streams

and those representing non-stream data. A constraint-based type system

similar to the mode system in Section 2 can be employed for this purpose.

The type system will infer constraints on a well-typing function � : P

Atom

!

fstream;nonstreamg, where

� �(p) = stream means that only the constructors of empty and non-empty

streams ([] and `.') can occur at p, and

� �(p) = nonstream means that the constructors of streams cannot occur

at p.

For a type � and a path p 2 P

Atom

, �=p : P

Term

! fstream; nonstreamg

denotes a function such that 8q 2 P

Term

�

(�=p)(q) = �(pq)

�

. The function �

should always satisfy the constraint

8p 2 P

Atom

�

� (p) = stream) �(ph.; 2i) = stream

�

;

to enable the special treatment of repetitive communication with streams. In

addition, � should satisfy the following type constraints syntactically imposed

by each clause C in a program fragment, where C is either of the form h :-

G | B or the form :- B:

(HBF

�

) 8p 2 P

Atom

8a 2 fhg [B

��

ea(p)2 f[];.g) �(p) = stream

�

^

�

ea(p) 2 Funnf[];.g) �(p) = nonstream

��

(HBV

�

) 8p; p

0

2P

Atom

8a; a

0

2 fhg [B

�

ea(p)2Var ^ ea(p) =

e

a

0

(p

0

)) �=p = �=p

0

�

(GV

�

) 8p; p

0

2 P

Atom

8a 2G

�

e

h(p) 2 Var ^

e

h(p) = ea(p

0

)

) 8q 2 P

Term

�

m(p

0

q) = in) � (pq) = �(p

0

q)

��

(BU

�

) 8k > 08t

1

; t

2

2 Term

�

(t

1

=

k

t

2

) 2B) �=h=

k

; 1i = �=h=

k

; 2i

�

Constraint (GV

�

), which depends on the mode system, does not con-

strain the type values of the paths that will not be examined by guard goals.

As an example, we consider Program 2 again. We assume that the type

constraints for the prede�ned predicates are:

� (h=:=; ii) = � (h=\=; ii) = nonstream; for i = 1; 2;

� (hsubtract; ii) = nonstream; for i = 1; 2; 3:

Then, the constraints obtained from the clauses in Program 2 are:

� (hdrive; 1i) = nonstream; � (hdrive; 2i) = stream;

� (hdrive; 2ih.; 1i) = nonstream; �(hdrive; 2ih.; 1ihpush; 1i) = nonstream;

� (hdrive; 2ih.; 2i) = stream; �(hdrive; 2ih.; 2ih.; 1i) = nonstream;

{ 30 {

� (hdrive; 2ih.; 2ih.; 1ihpop; 1i) = nonstream;

� =hdrive; 2ih.; 2ih.; 2i = �=hdrive; 2i;

� =h=

1

; 1i = �=h=

1

; 2i = �=hdrive; 2i; �=h=

2

; 1i = �=h=

2

; 2i = �=hdrive; 2i;

� (hstack; 1i) = stream; � (hstack; 1ih.; 1i) = nonstream;

� =hstack; 1ih.; 1ihpush; 1i = �=hstack; 2ihp; 1i;

� =hstack; 1ih.; 1ihpop; 1i = �=hstack; 2ihp; 1i;

� =hstack; 1ih.; 2i = �=hstack; 1i;

� (hstack; 2i) = nonstream; � =hstack; 2ihp; 2i = �=hstack; 2i;

� =hterminate; 1i = �=hstack; 2i;

� =h=

3

; 1i = �=h=

3

; 2i = �=hstack; 2ihp; 1i:

The basic theorem of our typing scheme is analogous to Theorem 1:

Theorem 3. Let � be a well-typing of a program P and a goal clause G.

Suppose G is reduced by one step into a goal clause G

0

, where the reduced

goal g 2 G is not a uni�cation goal for which the extended occur check fails.

Then � is a well-typing of P and G

0

as well.

We omit the proof, which is analogous to, and simpler than, the proof of

Theorem 1.

The type system proposed in [25] could be used also, though that system

is based on type checking rather than type inference.

3.3.2 One-To-Many/Zero Communication

Another question is how to cope with communication that is not one-to-one.

A stream may have two or more consumers or no consumer at all (one-to-

many/zero communication), and a goal may consume two or more streams in

various ways (many-to-one communication). This subsection discusses one-

to-many/zero communication and the next subsection discusses many-to-one

communication.

An obvious way to implement one-to-many/zero communication is to

transform it into repetitive one-to-one communication. For example, when a

goal commits to the clause

consumer([kill|X]) :- true | true;

a dummy process is created which eats up the messages in X.

When a stream has two or more consumers initially or when a single con-

sumer splits into two or more, a process for distributing messages is created.

Consider the clause

p :- true | q(Xs), r(Xs), s(Xs):

If the variable Xs is for stream communication from q to r and s, the above

clause is compiled into:

p :- true | q(Xs), r(Ys), s(Zs), distribute(Xs,Ys,Zs).

distribute([] ,Ys,Zs) :- true | Ys=[], Zs=[].

distribute([X|Xs],Ys,Zs) :- true |

Ys=[X|Ys1], Zs=[X|Zs1], distribute(Xs,Ys1,Zs1).

{ 31 {

Here we have assumed that the element X distributed in the second clause

of distribute is not, or does not contain, a stream. This is what the type

system must guarantee. If X is a stream or contain streams, the second clause

of distribute must spawn another distributor for the variable X occurring

three times in the clause.

There may be more e�cient ways of handling one-to-many/zero commu-

nication, but we will not go into details since our primary concern is to imple-

ment one-to-one communication as e�ciently as possible. One possibility is to

use an ordinary, linked-list implementation of streams for one-to-many/zero

communication.

3.3.3 Many-To-One Communication

Implementation of many-to-one communication, namely implementation of

processes with more than one input stream, is important since many-to-one

communication is ubiquitous in concurrent programming in GHC. We should

consider two cases: non-selective message receiving and selective message re-

ceiving.

By non-selective message receiving we mean the receiving of a message

that can be handled immediately. An example is message receiving found in

an indeterminate merge program:

merge([A|X1],Y,Z) :- true | Z=[A|Z1], merge(X1,Y,Z1).

merge(X,[A|Y1],Z) :- true | Z=[A|Z1], merge(X,Y1,Z1).

Non-selective message receiving can be implemented exactly in the same way

as one-to-one communication. The communication cells of di�erent input

streams point to di�erent resumption addresses for handling incoming mes-

sages, and messages in one input stream are handled independently of mes-

sages in the other input streams.

By selective message receiving we mean message receiving found in the

order-preserving merging of two streams of integers:

omerge([A|X1],[B|Y1],Z) :- A< B |

Z=[A|Z1], omerge(X1,[B|Y1],Z1).

omerge([A|X1],[B|Y1],Z) :- A>=B |

Z=[B|Z1], omerge([A|X1],Y1,Z1).

Two numbers, one from each input stream, are necessary for the �rst com-

mitment. Suppose the �rst number is sent through the �rst stream. Then the

omerge goal records it and waits for another number to be sent through the

second stream. However, the second number may be sent through the �rst

stream again. In that event, the omerge goal should bu�er that number for

later use. Bu�ered messages, if any, must be used �rst whenever a process is

ready to accept new ones.

Figure 5 shows a straightforward implementation of bu�ered message

sending. A communication cell is made to point to the code for bu�ering and

the descriptor of a bu�er, and the previous contents of the communication

{ 32 {

sender’s
goal

record

receiver’s
goal

record

sender’s
code

receiver’s
code

comm. reg.
(hardware)

comm. cell

buffer
descriptor

queue of
buffered elements

code for buffering
(p) (s) (q)

Figure 5. Bu�ered message send.

cell are saved in the bu�er descriptor. The code will put the content of the

communication register into the bu�er pointed to by the descriptor. Note

that whether the receiver bu�ers a message or not makes no di�erence to the

sender's protocol. Although bu�ered message sending in message-oriented

scheduling is more costly than bu�ered communication in process-oriented

scheduling, most messages can be sent without bu�ering and no overhead is

incurred for those messages.

Another example that requires bu�ering is the append program:

append([], Y,Z) :- true | Z=Y.

append([A|X1],Y,Z) :- true | Z=[A|Z1], append(X1,Y,Z1).

Messages sent through the second input stream must be bu�ered until the �rst

input stream is closed; then they must be forwarded to the output stream Z.

In either example, it is the responsibility of a receiver goal, rather than of a

stream, to bu�er incoming messages that cannot be handled immediately.

3.3.4 When Bu�ering Is Required

In general, the bu�ering of messages is required for streams through which

messages not ready to be handled may possibly be sent. Selective message

receiving discussed in Section 3.3.3 is one possible reason for this, but the

need of bu�ering can arise for other reasons also:

(i) Suspension on non-stream data. A receiver goal may suspend upon non-

stream data. In particular, it may suspend upon the content of a message

which has been sent before su�ciently instantiated. This can happen in

the last six clauses of nt

-

node in Program 1. In that event, subsequent

messages must be bu�ered until the message in question has been han-

dled.

{ 33 {

(ii) The producer of a stream running ahead of the consumer. It is not always

possible to run the consumer of a stream ahead of the producer. Consider

two goals g1(X,Y) and g2(Y,X), of which g1 consumes X and g2 consumes

Y. We must execute these goals in such a way that no messages are lost.

One solution to this example is

(1) �rst to make sure that g1 bu�ers incoming messages from X,

(2) then to run g2 until it suspends, and

(3) �nally to run g1.

(iii) Circular process structure. A message sent by a process p may possibly

arrive at p itself or may cause another message to be sent back to p.

Suppose p is going to send two messages b

1

and c

1

in response to an

incoming message a

1

, using the following clause:

p([a|X1],Y,Z) :- true | Y=[b|Y1], Z=[c|Z1], p(X1,Y1,Z1).

(The su�xes here are to distinguish between di�erent messages with the

same content.) We assume b

1

is sent �rst. Control will be transferred

to b

1

's receiver, which may cause subsequent message sends in its turn.

However, control will eventually return to the above clause, which is still

taking care of p's response to a

1

, when all those message sends have been

done and all newly spawned non-uni�cation goals have suspended. Then

the message c

1

will be sent.

The problem here is that the sending of b

1

may cause another mes-

sage a

2

to arrive at p before c

1

is sent. If a

2

is received and b

2

and

c

2

are sent in response before c

1

is sent, the order of messages on the

second output stream is inverted. The process p should therefore bu�er

messages sent through the input stream until c

1

is sent.

Fortunately, we do not have to prepare for message inversion when

only one message is sent in response to each incoming message. To gen-

eralize, suppose

(a) a process should send n messages in response to an incoming mes-

sage but hasn't received any message in response to the �rst n � 1

messages, and

(b) the tail-recursive goal for responding to the next incoming message

requires no operations to be performed after the nth message send

(as in the example of Section 3.2).

Then, the last message can be sent without preparing for bu�ering.

Moreover, control need not be returned to the process after the message

has been handled by the receiver. This could be called last-send opti-

mization, which is analogous to last-call optimization of Prolog [24]. The

example in Section 3.2 is the case where n = 1 and hence last-send opti-

mization is enabled regardless of the process structure. When Condition

(a) does not hold, bu�ering must be continued during the last message

send, and the bu�ered incoming messages must be processed after sending

the last message. Condition (b) is usually satis�ed by recursive clauses in

which tail-recursive goals take the rest of the input/output streams of the

{ 34 {

parent goals. A recursive goal may involve some operations (the setting

of non-stream arguments, for example), but they do not disable last-call

optimization as long as they can be moved before the last message send

by instruction reordering.

3.4 Preliminary Evaluation

Initial performance evaluation using hand-compiled intermediate codes (which

were mechanically translated into native codes of VAX11/780) was quite en-

couraging. First, using Program 1, we measured the processing time of 800

search commands given to a binary process tree with 721 nonterminal nodes,

and compared the result with the numbers on a native-code, process-oriented

implementation on VAX11/780, GHC/V [10]:

Message-oriented: 0.75 sec.

Process-oriented, batch: 1.04 sec.

Process-oriented, interactive: 2.09 sec.

`Batch' means that 800 commands were given at a time (hence no suspension),

and `interactive' means that each command was issued after receiving the

result of the previous command (hence suspension happened every time a

command passed a tree node). The way commands were given made no

di�erence in message-oriented scheduling.

For this program, message-oriented scheduling was more e�cient than

process-oriented scheduling even when all the commands were given at a time.

The reason seems to be that message-oriented scheduling does not perform

cons for each message. It is noteworthy that a binary tree program in C

using records, pointers, and recursion took 0.31 seconds for the same data on

the same machine. Another point to note is that the message-oriented object

code knows when each communication cell can be explicitly deallocated.

Second, we measured how much message-oriented scheduling improved

the performance of a demand-driven program. The statistics obtained from

data-driven and demand-driven prime number generators to compute 168

primes up to 1000 are as follows:

data-driven demand-driven

Message-oriented: 0.83 sec. 1.38 sec.

Process-oriented: 1.23 sec. 4.96 sec.

Third, we tried a typical benchmark program, naive reverse. GHC/V,

employing 32-bit words, ran naive reverse at 33kRPS (kilo-reductions per

second), and this number improved to 53kRPS by the technique described in

the beginning of Section 3. Our message-oriented implementation, employing

64-bit words, ran naive reverse at 55kRPS and improved the space complexity

(from O(n

2

) to O(n), n being the input size). It is interesting to see how a

naive reverse program runs under message-oriented scheduling [23].

{ 35 {

Unfortunately, not all programs we tried were made more e�cient. An

8-queens program, which made heavy use of one-to-many communication

naively implemented as repetitive one-to-one communication (Section 3.3.2),

ran about 3 times slower than on GHC/V. However, we expect that the

process-oriented and the message-oriented implementation techniques can

naturally co-exist in a single implementation, since our preliminary imple-

mentation was actually obtained by modifying GHC/V.

4. Conclusion and Related Work

We have proposed a new implementation technique of Flat GHC that con-

trasts sharply with previous techniques. One of the contributions of this

work is that the use of Flat GHC processes for programming dynamic, mu-

table data structures was shown to be more realistic as one might expect.

Although our primary goal was to optimize storage-intensive programs and

demand-driven programs, the proposed technique worked quite well also for

computation-intensive programs which did not use one-to-many communi-

cation. The technique avoids conses for interprocess communication except

when bu�ering is essential, which is another important aspect of the tech-

nique. Our recent work has shown that the technique can be utilized also in

�ne-grain parallel implementations [23].

The technique is based on a mode system which is simple and yet pow-

erful enough to analyze most programs. Although it could be used just as

a tool for program analysis, it was designed to be used as a language con-

struct that could be included in Flat GHC. The resulting language is called

Moded Flat GHC. Well-moded programs enjoy desirable properties as proved

in Section 2.6. The mode system helps both optimization and the static de-

tection of program errors. Furthermore, it will make the use of native codes

more realistic. Native-code implementation is a less realistic choice for most

(concurrent) logic programming languages because in those languages, the

codes must prepare for many possible exceptional situations.

Our mode system could be understood in the framework of abstract inter-

pretation, though we believe the constraint-based presentation is simpler and

more comprehensive for our system. The assumptions on our programming

conventions (Section 2) enabled us to compute modes in a way similar to the

uni�cation of rational trees. Iterative computation of �xpoints, which is used

in abstract interpretation to capture the properties of recursive programs, is

thus avoided.

Some concurrent logic languages such as Strand [6] introduce an assign-

ment primitive (v := t) instead of uni�cation to generate bindings. However,

without compile-time mode analysis, an assignment goal must still check if

the left-hand side is a variable. In our framework, the assignment primitive

can be considered as identical to uni�cation except that it implicitly declares

that m(h:=; 1i) = out and (consequently) m(h:=; 2i) = in .

Concurrent languages Doc [7], A

0

UM [26] and Janus [13] attempt to

simplify the implementation of concurrent logic languages by allowing each

variable to occur only twice and letting programmers distinguish between

{ 36 {

input and output occurrences using annotations. Again, these annotations

can be regarded as mode declarations, the consistency of which needs to

be checked statically or dynamically. The annotations may contribute to

readability and/or ease of compilation, but they are optional because they

can be inferred in principle.

Acknowledgments

We are indebted to Koichi Furukawa, Kenji Horiuchi, Mark Korsloot, Evan

Tick, Ehud Shapiro, and anonymous referees for valuable discussions, com-

ments and suggestions.

References

[1] A��t-Kaci, H. and Nasr, R., LOGIN: A Logic Programming Language

with Built-In Inheritance. J. Logic Programming, Vol. 3, No. 3 (1986),

pp. 185{215.

[2] Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic.

ACM. Trans. Prog. Lang. Syst., Vol. 8, No. 1 (1986), pp. 1{49.

[3] Colmerauer, A., Prolog and In�nite Trees. In Logic Programming,

Clark, K. L. and T�arnlund, S. -

�

A. (eds.), Academic Press, London, 1982,

pp. 231{251.

[4] Debray, S. A., Static Inference of Modes and Data Dependencies in Logic

Programs. ACMTrans. Prog. Lang. Syst., Vol. 11, No. 3 (1989), pp. 418{

450.

[5] Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and

Warren, D. H. D., DECsystem-10 Prolog User's Manual. Dept. of

Arti�cial Intelligence, Univ. of Edinburgh, 1983.

[6] Foster, I. and Taylor, S., Strand: A Practical Parallel Programming

Language. In Proc. 1989 North American Conf. on Logic Programming,

Lusk, E. L. and Overbeek, R. A. (eds.), MIT Press, Cambridge, MA,

1989, pp. 497{512.

[7] Hirata, M., Programming Language Doc and Its Self-Description or, X =

X is Considered Harmful. In Proc. 3rd Conf. of Japan Society of Software

Science and Technology, 1986, pp. 69{72.

[8] Ja�ar, J., E�cient Uni�cation over In�nite Terms. New Generation

Computing, Vol. 2, No. 3 (1984), pp. 207{219.

[9] Kimura, Y. and Chikayama, T., An Abstract KL1 Machine Instruction

Set. In Proc. 1987 Symp. on Logic Programming, IEEE Computer

Society, 1987, pp. 468{477.

[10] Morita, M., Yoshimitsu, H., Dasai, T. and Ueda, K., GHC Compiler

on a General-Purpose Computer. In Proc. 35th Annual Convention IPS

Japan, Information Processing Society of Japan, 1987, pp. 759{760 (in

Japanese).

[11] Morita, M. and Ueda, K., Optimization of GHC Programs. In Proc. the

Logic Programming Conference '89, ICOT, Tokyo, 1989, pp. 203{214 (in

Japanese).

{ 37 {

[12] Pereira, F. C. N., Grammars and Logics of Partial Information. In Proc.

Fourth Int. Conf. on Logic Programming, Lassez, J. -L. (ed.), MIT Press,

1987, pp. 989{1013.

[13] Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards

Distributed Constraint Programming. In Proc. 1990 North American

Conference on Logic Programming, Debray, S. and Hermenegildo, M.

(eds.), MIT Press, 1990, pp. 431{446.

[14] Shapiro, E. Y. (ed.), Concurrent Prolog: Collected Papers, Vol. 1{2, The

MIT Press, Cambridge, MA, 1987.

[15] Shapiro, E., The Family of Concurrent Logic Programming Languages.

Computing Surveys, Vol. 21, No. 3 (1989), pp. 413{510.

[16] Ueda, K., Guarded Horn Clauses. Doctoral Thesis, Faculty of

Engineering, Univ. of Tokyo, 1986.

[17] Ueda, K., Guarded Horn Clauses: A Parallel Logic Programming

Language with the Concept of a Guard. ICOT Tech. Report TR-208,

1986, ICOT. Also in Programming of Future Generation Computers,

Nivat, M. and Fuchi, K. (eds.), North-Holland, Amsterdam, 1988,

pp. 441{456.

[18] Ueda, K., Parallelism in Logic Programming. In Information Processing

89, Ritter, G. X. (ed.), North-Holland, Amsterdam, 1989, pp. 957{964.

[19] Ueda, K., Designing A Concurrent Programming Language. In Proc.

InfoJapan'90, Information Processing Society of Japan, 1990, pp. 87{94.

[20] Ueda, K. and Chikayama, T., Design of the Kernel Language for the

Parallel Inference Machine. The Computer Journal, Vol. 33, No. 6 (1990),

pp. 494{500.

[21] Ueda, K. and Furukawa, K., Transformation Rules for GHC Programs.

In Proc. Int. Conf. on Fifth Generation Computer Systems 1988, ICOT,

Tokyo, 1988, pp. 582{591.

[22] Ueda, K. and Morita, M., A New Implementation Technique for Flat

GHC. In Proc. Seventh Int. Conf. on Logic Programming, Warren,

D. H. D. and Szeredi, P. (eds.), MIT Press, 1990, pp. 3{17.

[23] Ueda, K. and Morita, M., Message-Oriented Parallel Implementation of

Moded Flat GHC. In Proc. Int. Conf. on Fifth Generation Computer

Systems 1992, ICOT, Tokyo, 1992, pp. 799{808. Revised version in New

Generation Computing, Vol. 11, Nos. 3{4 (1993), pp. 323{341.

[24] Warren, D. H. D., An Improved Prolog ImplementationWhich Optimises

Tail Recursion. In Proc. Logic Programming Workshop, T�arnlund, S. -

�

A.

(ed.), Debrecen, Hungary, 1980, pp. 1{11.

[25] Yardeni, E. and Shapiro, E., A Type System for Logic Programs. In [14],

Vol. 2, pp. 211{244.

[26] Yoshida, K. and Chikayama, T., A

0

UM | A Stream-Based Concurrent

Object-Oriented Language, in Proc. Int. Conf. on Fifth Generation

Computer Systems 1988, ICOT, Tokyo, 1988, pp. 638{649. Also in New

Generation Computing, Vol. 7, Nos. 2{3 (1990), pp. 127{157.

{ 38 {

Appendix. Normalization of Clauses [21]

We �rst consider the normalization of program clauses. Let the program

clause to be normalized be

h :- G

U

[G

N

| B

U

[B

N

;

where h is the clause head, G

U

the multiset of uni�cation guard goals, G

N

the multiset of non-uni�cation guard goals, B

U

the multiset of uni�cation

body goals, and B

N

the multiset of non-uni�cation body goals. If G

U

[B

U

is unsolvable, the clause is not normalizable. We do not de�ne the well-

modedness of a program with an unnormalizable clause.

Otherwise, we �rst `execute' G

U

and the clause is changed into

h� :- G

N

� | B

U

� [B

N

�;

where � is an idempotent mgu of the simultaneous equations G

U

.

Then we `execute' the uni�cation body goals B

U

�. Let � be an idempo-

tent mgu (that can be represented as a set of bindings of the form v t) of

B

U

� which satis�es the condition

8(v t) 2 �

�

v 2 V

h�

^ t 2 Var) t 2 V

h�

�

;

where V

a

stands for the set of variables occurring in the atom a. In other

words, no variable-to-variable binding in � can replace a variable in h� by a

variable not in h�. The mgu � with this property can be constructed from an

arbitrary idempotent mgu of B

U

� [21].

Let �j

a

be the restriction of a substitution � to an atom a, which is

de�ned as

�j

a

=

�

(v t) 2 �

�

�

v 2 V

a

	

:

Also, when � is idempotent and is of the form

S

n

i=1

fv

i

 t

i

g, by � we denote

the set of equations

S

n

i=1

fv

i

= t

i

g, which obviously has an idempotent mgu

�. Then �j

h�

stands for the output uni�cation goals of the clause. So the

normalized clause is

h� :- G

N

� | �j

h�

[B

N

��:

Note that � need not be applied to the guard part, because the guard part

has been reduced when uni�cation body goals are executed.

To normalize a goal clause of the form

:- B

U

[B

N

;

we simply `execute' B

U

. If B

U

is unsolvable, the clause is not normalizable.

Otherwise, the normalized clause is

:- B

N

�;

where � is an idempotent mgu of B

U

.

{ 39 {

