
Linearity Analysis of Concurrent Logic

Programs ⋆

Kazunori UEDA

Department of Information and Computer Science
Waseda University

3–4–1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
E-mail: ueda@ueda.info.waseda.ac.jp

Abstract. Automatic memory management and the hiding of the no-
tion of pointers are the prominent features of symbolic processing lan-
guages. They make programming easy and guarantee the safety of mem-
ory references. For the memory management of linked data structures,
copying garbage collection is most widely used because of its simplicity
and desirable properties. However, if certain properties about runtime
storage allocation and the behavior of pointers can be obtaind by static
analysis, a compiler may be able to generate object code closer to that of
procedural programs. In the fields of parallel, distributed and real-time
computation, it is highly desirable to be able to identify data structures
in a program that can be managed without using garbage collection. To
this end, this paper proposes a framework of linearity analysis for a con-
current logic language Moded Flat GHC, and proves its basic property.
The purpose of linearity analysis is to distinguish between fragments of
data structures that may be referenced by two or more pointers and those
that cannot be referenced by two or more pointers. Data structures with
only one reader are amenable to compile-time garbage collection or local
reuse. The proposed framework of linearity analysis is constraint-based
and involves both equality and implicational constraints. It has been
implemented as part of klint v2, a static analyzer for KL1 programs.

1 Introduction

In whatever programming language, variables can be viewed as a means of com-
munication as well as a means of storage. When viewed as a means of commu-
nication,

– assigning a value to a variable at some point in a time space amounts to
sending, and

– reading the value of a variable at another point in the time space amounts
to receiving.

⋆ To appear In Proc. International Workshop on Parallel and Distributed Comput-
ing for Symbolic and Irregular Applications, Ito, T. and Yuasa, T. (eds.), World
Scientific, 2000, pp. 253–270.

2 Kazunori UEDA

A value once assigned is usually read at least once before it is altered by
subsequent assignments.1 The communication is one-to-one when the value is
read exactly once, while it is one-to-many when the value is read more than
once.

When the value to be communicated is non-atomic, it is usually created on a
heap and a variable holds a pointer to it rather than the value itself. The ‘final’
reader of a non-atomic value can free the storage occupied by the value or reuse
it for other purposes. In order to achieve recycling, however, the implementation
must be able to judge whether each read operation is the final one on the current
value of the variable. Since this is difficult in general, a heap is usually managed
using runtime garbage collection.

However, suppose a compiler guarantees, by static analysis, that some vari-
able is used only for one-to-one communication. Then the storage occupied by
the value can be freed or recycled immediately after it is read. In a concurrent
setting, it is usually difficult to identify the final read operation on a variable
used for one-to-many communication, but good news about one-to-one commu-
nication is that a read operation is always final.

This paper is concerned with concurrent logic programming in which log-
ical (or single-assignment) variables are used as communication channels, and
proposes a theoretical framework, called linearity analysis, that distinguishes
between one-to-one and one-to-many communcation. We are particularly inter-
ested in Moded Flat GHC, [8] a concurrent logic language with strong moding,
because its mode system infers information flow of logical variables and simplifies
linearity analysis.

We have found, from concurrent logic programs written so far, that most
logical variables are used for one-to-one communication. [10] In particular, vir-
tually all of the variables with complex protocols such as incomplete messages
and streams of streams are one-to-one. This suggests that linearity analysis can
provide fundamental information for optimizing memory management.

2 Concurrent Logic Languages and Linearity Analysis

GHC (Guarded Horn Clauses) is a concurrent logic language whose syntax is
shown in Figure 1. For simplicity, we assume that program clauses contain no
guard goals (i.e., conditions of rewriting specified between ‘:-’ and ‘|’), but this
restriction is not essential for the theoretical framework developed in this paper.

The operational semantics of GHC models the concurrent reduction of goals
starting with an initial goal clause. Reduction of a current goal clause involves
either of the following:

– rewriting of a non-unification goal to (zero or more) goals, possibly after
observing a required substitution (ask), or

– execution of a unification goal, which may publish a substitution (tell).

1 In the case of single-assignment variables, the value once assigned will not be altered
forever.

Linearity Analysis of Concurrent Logic Programs 3

✎ ☞
(Program) P ::= set of C (1)

(Program Clause) C ::= A:-| B (2)
(Body) B ::= multiset of G (3)
(Goal) G ::= T1 = T2 | A (4)

(Non-unification Goal) A ::= p(T1, . . . ,Tn),
p is a predicate other than ‘=’ (5)

(Term) T ::= (as in first-order logic) (6)
(Goal Clause) Q ::= :- B (7)

✍ ✌
Fig. 1. Syntax of a subset of GHC

We review one-step reduction from a goal clause Q to Q′. For notational sim-
plicity, we identify a goal clause with the multiset of body goals in the goal
clause.

– Reduction of a non-unification goal g∈Q using a clause (renamed using fresh
variables) “h:-| B”: The synchronization rule of GHC tells that there must
be a substitution θ such that g = hθ, and Q′ = Q\{g} ∪Bθ, where ‘\’ and
‘∪’ are multiset difference and union, respectively.

– Reduction of a unification goal (t1 = t2) ∈ Q: Q′ = (Q\(t1 = t2))θ, where θ
is the most general unifier of t1 and t2. We assume that the program is well-
moded, [8] in which case the unification does not fail except due to occur
check.

In either case, reduction in general involves the rewriting of a variable (say v)
to a term t (6= v). In the reduction of a non-unification goal, v must be a variable
in the (renamed) program clause, while in the reduction of a unification goal, v
must be a variable in the goal clause. When v has more than one input occurrence
(occurrence that is rewritten to t as the result of reduction), or equivalently,
when v is used for one-to-many communication, the number of pointers from
Q′ to t is increased. (Throughout the paper, we assume that assignment of a
structured value is done by sharing rather than by copying.) The purpose of
linearity analysis is to statically analyze exactly where shared data structures
may occur—in which predicates, in which arguments, and in which part of the
data structures taken by those arguments.

A data structure that has not been referenced by a variable for one-to-many
communication is never shared by two or more readers. A compiler can know
exactly when it is read finally and becomes garbage, and generate object code
that returns the structure to a free list or recycles it locally.

3 Terminology

Definition. We say that an occurrence of a variable is a channel occurrence if
it is the leftmost occurrence in a clause head or an occurrence in a clause body.

4 Kazunori UEDA

A variable can be thought of as a communication channel for one-shot or
repetitive communication (the most typical of repetitive communication is stream
communication), and a channel occurrence can be thought of as an endpoint of a
channel. The condition ‘leftmost’ is rather arbitrary; the motivation is that only
one of the (possibly many) occurrences of a variable can be called a channel
occurrence. The condition does not imply that the arguments in a clause head
are processed from left to right.

Definition. A variable that has at most two channel occurrences in a program
clause or a goal clause is called a linear variable, and a variable that possibly
has three or more occurrences is called a nonlinear variable.

Thus it is always safe to say some variable is nonlinear, but the purpose of
linearity analysis is to detect as many linear variables as possible.

Example. In the quicksort program shown in Figure 2, all the variables except
X in the second clause of ternary qsort are linear.

✎ ☞
:- module main.
qsort(Xs,Ys) :- true | qsort(Xs,Ys,[]).

qsort([], Ys0,Ys) :- true | Ys=Ys0.
qsort([X|Xs],Ys0,Ys3) :- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1), Ys1=[X|Ys2],
qsort(L,Ys2,Ys3).

part(_,[], S, L) :- true | S=[], L=[].
part(A,[X|Xs],S0,L) :- A>=X | S0=[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S, L0) :- A< X | L0=[X|L], part(A,Xs,S,L).

✍ ✌
Fig. 2. A quicksort program

Strong moding guarantees that each variable generated during program ex-
ecution has exactly one output occurrence, namely an occurrence that can de-
termine its top-level value. This means that a variable with exactly two channel
occurrences is used for one-to-one communication, and a variable with only one
channel occurrence is used for one-to-zero communication.

Definition. A path is a sequence of pairs, of the form 〈symbol , arg〉, of func-
tion/predicate symbols and argument positions. In this paper, we regard con-
stant symbols as nullary function symbols. Paths are used to specify occurrences
of variables or function symbols in a goal or a term. Let PAtom be the set of all
paths for specifying occurrences in goals, and PTerm the set of all paths for
specifying occurrences in terms.

For example, a function symbol b occurs in a goal p(f(a,b),C) at 〈p, 1〉〈f,
2〉 ∈ PAtom . An empty sequence in PTerm specifies the principal function symbol
of a term in question.

Linearity Analysis of Concurrent Logic Programs 5

4 Linearity Annotation

To distinguish between non-shared and shared data structures in a computa-
tional model without the notion of pointers, we consider giving a linearity an-
notation 1 or ω to every occurrence of a function symbol f appearing in (initial
or reduced) goal clauses and body goals in program clauses.2 The annotations
appear as f1 or fω in the theoretical framework, though the purpose of linearity
analysis is to reason about the annotations and compile them away so that the
program can be executed without having to maintain linearity annotations at
run time.

Intuitively, the principal function symbol of a structure possibly referenced
by more than one pointer must have the annotation ω, while a structure always
pointed to by only one pointer in its lifetime can have the annotation 1. Another
view of the annotation is that it models a one-bit reference counter that is not
decremented once it reaches ω.

The annotations must observe the following closure condition: If the principal
function symbol of a term has the annotation ω, all function symbols occuring
in the term must have the annotation ω. In contrast, a term with the princi-
pal function symbol annotated as 1 can contain a function symbol with either
annotation, which means that a subterm of a non-shared term may possibly be
shared.

Given linearity annotations, the operational semantics is extended to handle
them so that they may remain consistent with the above intuitive meaning.

1. The annotations of function symbols in program clauses and initial goal
clauses are given according to how the structures they represent are imple-
mented. For instance, consider the following goal clause:

:- p([1,2,3,4,5],X), q([1,2,3,4,5],Y).

If the implementation chooses to create a single instance of the list [1,2,3,4,5]
and let the two goals share them, the function symbols (there are 11 of them
including []) must be given ω. If two instances of the list are created and
given to p and q, either annotation is compatible with the implementation.

2. Suppose a substitution θ = {v1← t1, . . . , vn← tn} is applied upon one-step
reduction from Q to Q′.

(a) When vi is nonlinear, the substitution instantiates more than one occur-
rence of vi to ti and makes ti shared. Accordingly, all data structures
inside ti (i.e., the subterms of ti) become shared as well. So, prior to
rewriting the occurrences of vi by ti, we change all the annotations of
the function symbols constituting ti to ω.

(b) When vi is linear, θ does not increase the number of references to ti. So
we rewrite vi by ti without changing the annotations in ti.

2 The notation is after related work [4, 7] on different computational models.

6 Kazunori UEDA

5 Linearity Constraints

The linearity of a well-moded program can be characterized using a linearity
function.

Definition. A linearity function is a function from PAtom to the binary codomain
{nonshared , shared}.

In this paper, we write λ to stand for a linearity function.
The motivation of a linearity function is to distinguish between those paths

where function symbols with ω can appear and those where function symbols
with ω cannot appear. Suppose we can prove that a function symbol with ω
cannot appear at p such that λ(p) = nonshared . Then the (sole) reader of the
data structure at a nonshared path can safely discard the top-level structure after
accessing its elements. (There is one subtle point in this optimization, which will
be discussed in Section 7.)

The above property can be established by enforcing linearity constraints on
the function λ. Linearity constraints imposed by each program clause h :-| B
or a goal clause :- B are shown in Figure 3. The linearity constraints refer to
the mode of a program represented by a function m. The mode constraints [8]
on a well-moding m are given in Figure 4. Here, a submode m/p is defined as
a function satisfying (m/p)(q) = m(pq). The function m/p represents the part
of m viewed at the path p. The functions IN and OUT are constant functions
that always return in and out , respectively. An overline ‘ ’ inverts the polarity
of a mode, a submode, or a mode value. We omit the motivations of each mode
constraints and properties they enjoy. [8]

✎ ☞
(BFλ) If a function symbol fω occurs at the path p in B, then

λ(p) = shared.
(LVλ) If a linear variable occurs both at p1 and p2, then

∀q ∈ PTerm(m(p1q) = in ∧ λ(p1q) = shared ⇒ λ(p2q) = shared)
(if p1 is a head path);

∀q ∈ PTerm(m(p1q) = out ∧ λ(p1q) = shared ⇒ λ(p2q) = shared)
(if p1 is a body path).

(NVλ) If a nonlinear variable occurs at p, then
∀q ∈ PTerm(m(pq) = out ⇒ λ(pq) = shared) (if p is a head path);
∀q ∈ PTerm(m(pq) = in ⇒ λ(pq) = shared) (if p is a body path).

(BUλ) For a unification body goal =k,
∀q ∈ PTerm(λ(〈=k, 1〉q) = λ(〈=k, 2〉q)).

✍ ✌
Fig. 3. Linearity constraints imposed by a clause h:-| B

To allow different unification goals to have different modes and/or linearities,
which is a limited form of polymorphism, each unification goal in program clauses
and an initial goal clause is given a unique serial number. In this paper, goals

Linearity Analysis of Concurrent Logic Programs 7

✓ ✏
(HF) If a function symbol occurs at p in h, then m(p) = in.
(HV) If a variable occurring p in h occurs elsewhere in h, then

m/p = IN .
(BU) For a unification body goal =k, m/〈=k, 1〉 = m/〈=k, 2〉.
(BF) If a function symbol occurs at p in B, then m(p) = in.
(BV) Let a variable v occur n (≥ 1) times in h and B at p1, . . . , pn, of which

the occurrences in h are at p1, . . . , pk (k ≥ 0). Then

{

R
(

{m/p1, . . . , m/pn}
)

, k = 0;

R
(

{m/p1, m/pk+1, . . . , m/pn}
)

, k > 0;

where R(S) is a ‘cooperativeness’ relation which states that, for all paths
q, ∃s ∈ S

(

s(q) = out ∧ ∀s′ ∈ S\{s}
(

s′(q) = in

))

holds.

✒ ✑
Fig. 4. Mode constraints imposed by a clause h:-| B

other than unification are assumed to be monomorphic; that is, different goals
with the same predicate symbol have the same modes and linearities. This is for
the sake of simplicity and it is possible to incorporate mode polymorphism [2]
and in the same way linearity polymorphism.

The function λ satisfying the linearity constraints is computed statically using
program clauses and an initial goal clause. Linearity constraints in Figure 3 are
trivially satisfied by letting λ(p) = shared for all p. However, the purpose of
linearity analysis is to compute the ‘smallest’ λ satisfying linearity constraints,
where the partial ordering is defined as

λ1 ≤ λ2 ⇔ ∀p ∈ PAtom (λ1(p) = shared ⇒ λ2(p) = shared).

How to solve linearity constraints to compute the smallest λ will be discussed
in Section 8.

6 Subject Reduction Theorem

This section gives a fundamental property that a linearity function enjoys.

Definition. Let v be a variable and t a term. We say that the extended occur
check for unification between v and t fails if t is v or t contains v.

Theorem 1 (subject reduction). Suppose λ satisfies the linearity con-
straints of a program P and a goal clause Q, and Q is reduced in one step to Q′,
where the reduced goal g ∈Q is not a unification goal for which extended occur
check fails. Then λ satisfies the linearity constraints of Q′ as well.

Proof. Based on extensive case analysis. The cases can be divided into two
based on whether the goal reduced is a non-unification goal or unification.

8 Kazunori UEDA

[Case 1] The reduction has rewritten a non-unification goal g using a (renamed)
clause C ∈ P of the form “h:-| B”.

What we must consider are the constraints (LVλ) and (NVλ) imposed by the
variables occurring in g∈Q and the constraints (BFλ) imposed by the occurrences
of function symbols brought into Bθ (⊆ Q′) by θ (these occurrences originate
from the occurrences of the function symbols in g). Constraints imposed by the
other variables in Q′ and those imposed by other occurrences of functions, which
were already in either Q \ {g} or B, need not be considered because they are
exactly the same as those in Q. This means it suffices to consider all the symbols
in g.

1. A function symbol fκ (κ ∈ {1, ω}) occurs at the path p in g. Then, either
– the function f occurs at p in h, or
– there exist p′ ∈ PAtom and q ∈ PTerm such that p = p′q and a variable

(say v) occurs at p′ in h.
In the former case, (BFλ) is not applicable because the occurrence disappears
upon reduction. So it suffices to consider the latter case, which may introduce
new occurrences of f into Bθ (⊆ Q′). Suppose v occurs n (≥ 0) times in B
at r1, . . . , rn, and let gj be the goal to which the jth occurrence belongs.

Then fκ′

occurs in the goal giθ at riq, for i = 1 . . . , n, where κ′ = κ if n ≤ 1
and κ′ = ω if n > 1 by Rule 2a in Section 4. We must show that Q′ enjoys
(BFλ).

(a) When n ≤ 1 (v is linear): It suffices to consider the case n = 1. If κ = ω,
λ(riq) = shared must hold, but this can be derived as follows:
i. λ(p) = shared , by (BFλ) applied to fω in Q,
ii. m(p) = in, by (BF) applied to fω in Q,
iii. λ(p) = shared ⇒ λ(riq) = shared , by 1(a)ii and (LVλ) applied to v

in C,
iv. λ(riq) = shared , by 1(a)i and 1(a)iii.

(b) When n > 1 (v is nonlinear): Since κ′ = ω, we must show that λ(riq) =
shared holds.
i. m(p) = in, by (BF) applied to fκ in Q,
ii. m(riq) = in, by 1(b)i and (BV) applied to v in C,
iii. λ(riq) = shared , by 1(b)ii and (NVλ) applied to v in C.

2. A variable w occurs at p in g. Suppose w occurs l (≥ 1) times in g at p1(= p),
p2, . . . , pl and m (≥ 0) times in Q\{g} at pl+1, . . . , pl+m.
Because there exists θ such that g = hθ, for each pi (1 ≤ i ≤ l), there exists
a prefix p′i ∈ PAtom of pi such that a variable (say vi) occurs at p′i in h, and
a path qi ∈ PTerm such that pi = p′iqi. Suppose vi occurs ni (≥ 0) times in
B at ri1, . . . , rini

. Then w is made to occur at rijqi (1 ≤ i ≤ l, 1 ≤ j ≤ ni)
in Bθ.3

When some vi is nonlinear, w in Q′ becomes nonlinear as well. We consider
those paths where w occurs, namely

3 The variable w may occur less than n1 + · · ·+ nl times because the two occurrences
of w in g may be received by different occurrences of the same variable in h and
brought to Bθ not independently.

Linearity Analysis of Concurrent Logic Programs 9

– rijqi (1 ≤ i ≤ l, 1 ≤ j ≤ ni) (brought by θ) and
– pl+1, . . . , pl+m (inherited from Q\{g}).

(a) For the occurrences brought by θ,
i. ∀q ∈ PTerm (m(rijq) = in ⇒ λ(rijq) = shared), by (NVλ) applied to

vi in C,
ii. ∀q ∈ PTerm(m(rijqiq) = in ⇒ λ(rijqiq) = shared), by 2(a)i,

so (NVλ) is satisfied for the paths of w brought by θ.
(b) For the occurrences inherited from Q\{g}, if w is nonlinear in Q, (NVλ)

applied to Q′ is immediate from (NVλ) applied to Q. If w is linear in
Q, we have m ≤ 1 and now it suffices to consider the case where m = 1,
namely the case where w occurs at p(= p1) in g and p2 elsewhere. The
goal is to show ∀q ∈ PTerm(m(p2q) = in ⇒ λ(p2q) = shared), so we first
assume m(p2q) = in for some q. Then
i. m(pq) = out , by assumption and (BV) applied to w in Q,
ii. λ(pq) = shared , by 2(b)i and (NVλ) applied to vi in C,
iii. λ(p2q) = shared , by 2(b)i, 2(b)ii and (LVλ) applied to w in Q.
So (NVλ) is satisfied for the occurrences of w inherited from Q\{g}.

When all the vi’s are linear, w is linear in Q′ if it is linear in Q, and nonlinear
in Q′ otherwise. For each case, the linearity constraints to be satisfied by Q′

can be shown to hold with similar arguments.

[Case 2] The reduction has executed a unification goal t1 =k t2. By the assump-
tion of well-modedness, there exists an i such that m(〈=k, i〉) = out . Without
loss of generality, we can assume i = 1, in which case unification degenerates
to assignment to the left-hand side variable. By the assumption of extended oc-
cur check, t2 is not identical to the variable t1 or a term containing t1. So Q′

is equal to
(

Q \ {t1 =k t2}
)

{t1← t2}. Let the variable t1 occur n (≥ 0) times
in Q \ {t1 =k t2} at r1, . . . , rn. Then each symbol in t2 is duplicated n times
and occurs in Q′. It suffices to show that these occurrences enjoy the linearity
constraints (BFλ), (LVλ), and (NVλ).

1. A function symbol fκ occurs at 〈=k, 2〉q. The constraint (BFλ) tells that it
suffices to consider the case κ = ω.
(a) λ(〈=k, 2〉q) = shared , by (BFλ) applied to fω in Q,
(b) λ(〈=k, 1〉q) = shared , by 1a and (BUλ) applied to Q,
(c) m(〈=k, 2〉q) = in, by (BF) applied to fω in Q,
(d) m(〈=k, 1〉q) = out , by 1c and (BU) applied to Q,
(e) m(riq) = in (1 ≤ i ≤ n), by 1d and (BV) applied to t1 in Q,
(f) when t1 is linear, λ(r1q) = shared , by 1b, 1d and (LVλ) applied to t1 in

Q,
(g) when t1 is nonlinear, λ(riq) = shared (1 ≤ i ≤ n), by 1e and (NVλ)

applied to t1 in Q.
By executing unification t1 =k t2, fω is made to occur newly at r1q, . . . , rnq
in Q′. However, as shown above, λ satisfies (BFλ) imposed by those new
occurrences.

10 Kazunori UEDA

2. A variable w (6= t1) occurs at 〈=k, 2〉q. Suppose w occurs l (≥ 1) times in
the goal t1 =k t2 at 〈=k, 2〉q1, 〈=k, 2〉q2, . . . , 〈=k, 2〉ql and m (≥ 0) times in
Q\{t1 =k t2} at pl+1, . . . , pl+m. By executing t1 =k t2, w is made to occur
newly at r1qi, . . . , rnqi (1 ≤ i ≤ l). So it suffices to examine the linearity
constraints of these paths.
When t1 is nonlinear in Q, w in Q′ becomes nonlinear as well. However, by
(NVλ) applied to t1 in Q, ∀s∈PTerm(m(rjs) = in ⇒ λ(rjs) = shared) holds
for 1 ≤ j ≤ n, which implies (NVλ) applied to the new occurrences of w in
Q′.
When t1 and w are both linear in Q, w remains linear in Q′. We consider
the less obvious case of l = 2 and m = 0, namely the case where the other
occurrence of w in Q is also in t2. (The other case where l = 1 and m = 1 is
easier and thus omitted.) The goal is to show ∀q ∈ PTerm (m(riqiq) = out ∧
λ(riqiq) = shared ⇒ λ(r3−iq3−iq) = shared), for i = 1, 2. Without loss of
generality we can focus on the case i = 1, so we first assume m(r1q1q) = out
and λ(r1q1q) = shared for some q. Then

(a) λ(〈=k, 1〉q1q) = shared , by (LVλ) applied to t1 in Q,
(b) λ(〈=k, 2〉q1q) = shared , by 2a and (BUλ),
(c) m(〈=k, 1〉qiq) 6= m(riqiq), by (BV) applied to t1,
(d) m(〈=k, 1〉q1q) = in, by the assumption and 2c,
(e) m(〈=k, 2〉q1q) = out , by 2d and (BU),
(f) λ(〈=k, 2〉q2q) = shared , by 2b, 2e and (LVλ) applied to w in Q,
(g) λ(〈=k, 1〉q2q) = shared , by 2f and (BUλ),
(h) m(〈=k, 2〉q2q) = in, by 2e and (BV) applied to w in Q,
(i) m(〈=k, 1〉q2q) = out , by 2h and (BU),
(j) λ(r2q2q) = shared , by 2g, 2i, and (LVλ) applied to t1 in Q.

When t1 is linear in Q and w is nonlinear in Q, w is in general nonlinear in
Q′. In this case also, (NVλ) imposed by w in Q′ can be derived in a similar
manner from the linearity constraints of Q. Q.E.D.

Thus we have established that data structures occurring at a nonshared path
in a goal in the course of computation are never shared.

7 Applications of Linearity Analysis

Linearity analysis provides fundamental information for the optimization of
memory management that can potentially lead to novel applications of con-
current logic languages.

1. Local reuse of data structures. The sole reader of a data structure can recycle
the structure it has read—for instance to create a new data structure. This
enables update-in-place of data structures in a language without the notion
of destructive assignments. Features like Lisp’s nconc and rplacd need not
be exposed to programmers any more.

Linearity Analysis of Concurrent Logic Programs 11

Local reuse may not necessarily have an impact on the performance of list
processing on a single-processor machine, but it is essential in array process-
ing in single-assignment languages. Despite their importance, arrays tend to
be ignored in declarative languages. Since copying an array in each ‘update’
operation would be prohibitive, multi-version structures were often adopted
as reasonable implementation of mutable arrays. However, if array variables
are guaranteed to be linear, the implementation need not bother to cre-
ate multi-version structures. Thus static linearity analysis seems essential to
make declarative languages competitive with procedural languages in terms
of performance. Linearity analysis enables not only update-in-place but also
in-place splitting and merging of arrays. This opens up the possibility of
parallel updating of a single array allocated on shared memory. [9]
However, for concurrent logic programs, linearity analysis alone is not al-
ways sufficient for the local reuse of data structures due to the flexibility of
logical variables. It is sufficient for the optimization of numeric or character
arrays in which only instantiated data can be stored. When a data structure
is allowed to contain uninstantiated logical variables and the writers of unin-
stantiated variables point directly to the (empty) slots of the data structure,
the structure cannot be recycled until all the empty slots are filled and read.
To enable local reuse in the presence of partially instantiated data struc-
tures, analysis of instantiation states should be used together with linearity
analysis.

2. Distributed implementation. In distributed applications in which pointers
across sites can be limited to pointers to non-shared data, global garbage
collection becomes unnecessary and the management of global pointers such
as exporting and importing [5] can be greatly simplified. This opens up the
possibility of using declarative languages in network programming applica-
tions in which program analysis and verification is still extremely difficult.

3. Real-time and embedded applications. In applications such as robot control, in
which (soft) real-time processing is essential, an alternative to stop-and-copy
garbage collection must be employed. A number of incremental and concur-
rent garbage collection algorithms have been proposed, [3] but compile-time
garbage collection, where applicable, seems to be the most desirable solu-
tion to the problem. Linearity analysis is expected to play an important
role in resource analysis as well—particularly the analysis of the amount of
storage needed to execute a program. We believe that declarative program-
ming with resource analysis will be a realistic tool for embedded and hard
real-time applications.

8 Implementation—klint v2

A static analyzer for KL1 programs called klint v2 [11] features both mode and
linearity analyses. This section outlines the implementation of klint v2.

Basically, mode and linearity analyses are constraint satisfaction problems
that can be solved using very similar techniques. In klint v2, a set of mode

12 Kazunori UEDA

constraints is represented using a feature graph called a mode graph, [8] and
solving a set of mode constraints means to merge (small feature graphs repre-
senting) new constraints into the ‘current’ mode graph, which is done mostly as
unification over feature graphs. Non-binary constraints, which cannot be solved
by unification, are imposed only by non-linear variables, and all the other con-
straints can be merged into the current mode graph within almost linear time
with respect to the size of the mode graph. [8] For non-binary constraints, klint
v2 first postpones them in the hope that they become unary or binary by the in-
formation from other constraints. It turns out that many non-binary constraints
are simplified finally.

When some constraints remain non-binary after solving all unary or binary
constraints, klint v2 assumes that nonlinear variables involved have simple, one-
way dataflow rather than bidirectional dataflow such as in message streams with
reply boxes. Thus, if a nonlinear variable occurs at p and m(p) is known to be
in or out , klint v2 imposes a stronger constraint m/p = IN or m/p = OUT ,
respectively. This means that a mode graph computed by klint v2 is not always
most general, but the strengthening of constraints reduces most non-binary con-
straints to unary ones. Our observation is that virtually all nonlinear variables
have been used for one-way communication and the strengthening causes no
problem in practice.

Following mode analysis, klint v2 creates another feature graph called a lin-
earity graph. Given the result of mode analysis, (BFλ) and (NVλ) are unary
and (BUλ) is binary. However, (LVλ) is still a implicational constraint of the
form λ(p1q) = shared ⇒ λ(p2q) = shared . Since most variables in a program are
linear, it is unrealistic to implement an implicational constraint using delaying.

If the implication can be strengthened to a bidirectional one as in

– (LV′

λ) ∀q ∈ PTerm (λ(p1q) = shared ⇔ λ(p2q) = shared),

the constraint can be solved using unification. Obviously (LV′

λ)⇒ (LVλ) holds,
and this approximation works well in detecting linear paths for most programs.
However, consider a numeric array used as a shared look-up table. Such an array
may well remain non-shared during initialization and then becomes shared. The
change of the sharing property in the lifetime of a data structure is appropriately
handled by (LVλ) using one-way constraint propagation, but with the approxi-
mated version (LV′

λ), the structure is regarded as shared since its creation. This
is undesirable because the initialization phase may very well want to exploit the
efficiency of update-in-place.

klint v2 circumvents this problem as follows. Since the data structures whose
sharing property changes in their lifetime have simple dataflow (i.e., no bidirec-
tional communication), we employ the full version (LVλ) only when m/p1 and
m/p2 are known to be IN or OUT , and the approximate version (LV′

λ) other-
wise. Suppose p1 is a head path and m/p1 is known to be IN . Then the first
constraint of (LVλ) is simplified to

∀q, r ∈ PTerm(λ(p1q) = shared ⇒ λ(p2qr) = shared).

Linearity Analysis of Concurrent Logic Programs 13

It turns out that this constraint is easy to implement using the notion of a
propagator; that is, when λ(p1q) is constrained to shared , it is propagated to
the graph node representing p2. A propagator is simply a graph edge (from p1

to p2) representing a ‘null’ feature, in contrast with other edges that represent
〈symbol , arg〉 features. A propagator is an essential tool for the eager evaluation
of the constraint.

A graph node marked shared must express the closure condition ∀p∈PAtom∀q∈
PTerm(λ(p) = shared ⇒ λ(pq) = shared), but this can be represented in much
the same way as the representation of constant submode functions IN and OUT .

As an example, we show the result of linearity analysis of the quicksort
program shown in Figure 2 (Section 3).

*** Linearity Graph ***

node(0): (unconstrained)

<(main:qsort)/2,1> ---> node(24)

<(main:qsort)/2,2> ---> node(16)

<(main:qsort)/3,1> ---> node(24)

<(main:qsort)/3,2> ---> node(16)

<(main:qsort)/3,3> ---> node(16)

<(main:part)/4,1> ---> SHARED

<(main:part)/4,2> ---> node(24)

<(main:part)/4,3> ---> node(24)

<(main:part)/4,4> ---> node(24)

node(24): (unconstrained)

<cons,2> ---> node(24)

node(16): (unconstrained)

<cons,1> ---> SHARED

<cons,2> ---> node(16)

This is a textual representation of the linearity graph of quicksort. The paths
indicated SHARED, namely

1. the first argument of part,
2. the elements of the list at the second argument of binary qsort, and
3. the elements of the lists at the second and the third arguments of ternary

qsort

become shared no matter whether the input list from the first argument of
binary qsort is non-shared or shared. However, all these paths are known to
have scalar (integer) values by type analysis subsequently performed by klint
v2. On the other hand, the list skeletons returned by the quicksort program is
guaranteed to be non-shared.

9 Related Work

Study of the memory management of concurrent logic languages has a long
history. A method that uses a one-bit reference counter called MRB (multiple

14 Kazunori UEDA

reference bit) for each pointer was designed for Flat GHC [1] and adopted in
a KL1 implementation on a Parallel Inference Machine. [5] Roughly speaking,
linearity analysis proposed in this paper tries to compile away MRBs and related
operations by analyzing the value of MRBs statically.

Janus [6] establishes the linearity property by allowing each variable to oc-
cur only twice. Our technique allows both linear and nonlinear variables and
distinguishes between them by static analysis.

Various techniques for the distributed implementation of concurrent logic
languages were proposed, [5] including import and export tables of pointers and
weighted export counting. We are not claiming that all these techniques become
unnecessary, but the management of data structures guaranteed to be non-shared
by linearity analysis is greatly simplified.

Kobayashi proposes a type system with linearity information for the π-
calculus. [4] In functional programming, Turner et al. introduce linearity an-
notation to the type system. [7] All these pieces of work could be considered the
application of ideas with similar motivations to different computational models.
In functional programming, the difficulty lies in the variety of evaluation rules
and higher-order functions, while in concurrent logic programming, the difficulty
lies in the treatment of arbitrarily complex information flow expressed by logical
variables. Note that the mode and the linearity systems of Moded Flat GHC are
essentially type systems in a broad sense.

10 Conclusions and Future Work

We have proposed a framework of linearity analysis for the concurrent logic lan-
guage Moded Flat GHC and studied its fundamental property. Linearity analysis
can be used with mode and type analyses to generate object code closer to that
of procedural programs. Also, it opens up the possibility of writing distributed,
embedded, and real-time software in a very simple concurrent programming lan-
guage such as Moded Flat GHC and compiling them into safe and efficient code
with systematic static analysis. Our future plan is to apply concurrent logic lan-
guages to the above areas where compilation into efficient code requires serious
physical considerations.

Acknowledgments

The author is indebted to Masahiro Yasugi for their comments on earlier versions
of this paper. This work is partially supported by Grant-In-Aid ((A)(1)09245101
and (C)(2)11680370) for Scientific Research, Ministry of Education, and Waseda
University Grant (98A-575) for Special Research Projects.

References

1. Chikayama, T. and Kimura, Y., Multiple Reference Management in Flat GHC.
In Logic Programming: Proc. of the Fourth Int. Conf (ICLP’87), The MIT Press,
1987, pp. 276–293.

Linearity Analysis of Concurrent Logic Programs 15

2. Cho, K. and Ueda, K., Diagnosing Non-Well-Moded Concurrent Logic Programs.
In Proc. 1996 Joint Int. Conf. and Symp. on Logic Programming (JICSLP’96),
The MIT Press, 1996, pp. 215–229.

3. Jones, R. and Lins, R., Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons, Chichester, England, 1996.

4. Kobayashi, N., Pierce, B. C. and Turner, D. N., Linearity and the Pi-calculus. In
Proc. 23rd ACM SIGACT-SIGPLAN Symp. on Principles of Programming Lan-
guages (POPL’96), ACM, 1996, pp. 358–371.

5. Nakajima, K., Inamura, U., Ichiyoshi, N., Rokusawa, K. and Chikayama, T., Dis-
tributed Implementation of KL1 on the Multi-PSI/V2. In Proc. Sixth Int. Conf.
on Logic Programming, The MIT Press, 1989, pp. 436–451.

6. Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed Con-
straint Programming. In Proc. 1990 North American Conference on Logic Program-
ming, Debray, S. and Hermenegildo, M. (eds.), The MIT Press, 1990, pp. 431–446.

7. Turner, D. N., Wadler, P. and Mossin, C., Once Upon a Type. In Proc. Sev-
enth Int. Conf. on Functional Programming Languages and Computer Architecture
(FPCA’95), ACM, 1995, pp. 1–11.

8. Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generation Computing, Vol. 13, No. 1 (1994), pp. 3–43.

9. Ueda, K., Moded Flat GHC for Data-Parallel Programming. In Proc. FGCS’94
Workshop on Parallel Logic Programming, ICOT, Tokyo, 1994, pp. 27–35.

10. Ueda, K., Experiences with Strong Moding in Concurrent Logic/Constraint Pro-
gramming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems,
LNCS 1068, Springer, 1996, pp. 134–153.

11. Ueda, K., klint — Static Analyzer for KL1 Programs. Available from
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html, 1998.

