
Proc. 1996 Joint International Conference and

Symposium on Logic Programming (JICSLP'96),

M. Maher (ed.), The MIT Press, 1996, pp.215-229.

Diagnosing Non-Well-Moded

Concurrent Logic Programs

Kenta CHO and Kazunori UEDA

Department of Information and Computer Science

Waseda University

3-4-1, Okubo, Shinjuku-ku, Tokyo 169, Japan

fcho,uedag@ueda.info.waseda.ac.jp

Abstract

Strong moding and constraint-based mode analysis are expected to play fun-

damental roles in debugging concurrent logic/constraint programs as well as

in establishing the consistency of communication protocols and in optimiza-

tion. Mode analysis of Moded Flat GHC is a constraint satisfaction problem

with many simple mode constraints, and can be solved e�ciently by uni�-

cation over feature graphs. In practice, however, it is important to be able

to analyze non-well-moded programs (programs whose mode constraints are

inconsistent) and present plausible \reasons" of inconsistency to the pro-

grammers in the absence of mode declarations.

This paper discusses the application of strong moding to systematic and

e�cient static program debugging. The basic idea, which turned out to work

well at least for small programs, is to �nd a minimal inconsistent subset from

an inconsistent set of mode constraints and indicate the symbol(occurrence)s

in the program text that imposed those constraints. A bug can be pinpointed

better by �nding more than one overlapping minimal subset. These ideas

can be readily extended to �nding multiple bugs at once. For large programs,

strati�cation of predicates narrows search space and produces more intuitive

explanations. Strati�cation plays a fundamental role in introducing mode

polymorphism as well.

1 Introduction

One of the prominent features of concurrent logic/constraint programming

languages is that they allow us to describe interprocess communication

with complicated protocols quite easily. Data structures with complicated

data
ow, such as streams of messages with reply boxes and streams of

streams, can be expressed without any extensions to their simple, basic com-

putation model.

However, most implementations of concurrent logic languages detect fun-

damental bugs, such as connecting two streams with di�erent communication

protocols, as run-time errors. These should ideally be detected statically.

Static type systems, if available, may detect some of those bugs, but do not

su�ce to ensure the consistency of communication protocols used in a whole

program. Thus we need a framework of information
ow analysis|a mode

system. Mode analysis is very useful for program optimization as well as for

the static detection of bugs [9].

1

Most frameworks of mode analysis proposed so far for concurrent and or-

dinary logic programming languages were based on abstract interpretation.

In contrast, the mode system proposed by one of the authors [9] is constraint-

based, that is, mode analysis means to solve a system of mode constraints

imposed by individual symbols or symbol occurrences in a program. Since

the analyzer does not have to trace execution paths, the framework is par-

ticularly useful for the analysis of parallel and concurrent languages in which

primitive operations are only partially ordered. Another advantage is that

it is inherently amenable to the separate analysis of large programs.

Moded Flat GHC [9] takes those advantages of the constraint-based mode

system and incorporates it as a language construct rather than just as a

framework for program analysis.

1

An e�cient algorithm of mode analysis has already been established for

well-moded programs [9]. However, it was not clear how to �nd, for a non-

well-moded program, a plausible \reason" of mode errors e�ciently. Since

the principal mode of a program is determined by the conjunction of all mode

constraints, non-well-modedness means that the conjunction is inconsistent

(that is, there are no modes satisfying all the constraints). However, simply

reporting that the conjunction of all the mode constraints is inconsistent does

not help debugging large programs. The purpose of this paper is to propose

practical algorithms that locate the reasons of mode errors as precisely and

e�ciently as possible.

One may wonder how many of the bugs can be detected by rather simple

mode analysis, but our experience has shown that that surprisingly many of

them can [10]. Bugs which cannot be identi�ed by mode analysis are likely

to be related to problems with algorithms.

2 Strong Moding and Mode Analysis

This section outlines the mode system of Moded Flat GHC and the associ-

ated mode analysis. Due to space limitations, readers unfamiliar with Moded

Flat GHC are referred to [8] for introduction and [9, 10] for technical details

and proofs of fundamental properties.

The purpose of the mode system of Moded Flat GHC is to assign to

each predicate argument a polarity structure that de�nes the direction of

information
ow of each part of data structures. The polarity structure

is computed by mode analysis so that each part of data structures will be

instantiated cooperatively, namely by exactly one goal.

A mode in our mode system is a function from the set of paths for

specifying each \part" of data structures to the two-valued codomain

fin; outg. Paths here are strings of pairs, of the form hsymbol; argi, of pred-

icate/function symbols and argument positions. Formally, the set P

Term

of

paths for terms and the set P

Atom

of paths for atomic formulae are de�ned

1

Strong moding can be incorporated in ordinary logic programming languages as well

[7], but it is particularly important in concurrent logic programming because most con-

current logic programs have �xed data
ow and make more restricted use of uni�cation.

However, the diagnosis technique proposed in this paper is quite general.

2

using disjoint union as:

P

Term

= (

X

f2Fun

N

f

)

�

; P

Atom

= (

X

p2Pred

N

p

)� P

Term

;

where Fun/Atom are the sets of function/predicates symbols, andN

f

/N

p

are

the sets of possible argument positions (numbered from 1) for the symbols

f/p.

The purpose of the mode system is to �nd a modem : P

Atom

! fin; outg

under which every piece of communication is cooperative. Such a mode is

called a well-moding. Intuitively, in means the inlet of information and out

means the outlet of information.

Well-modings can be computed by solving mode constraints imposed by

(i) the occurrences of function symbols and (ii) the variable symbols in a

program and an initial goal clause. A program does not usually de�ne a

unique well-moding but has many of them. So the purpose of mode analysis

is to compute the set of all well-modings in the form of a principal (i.e.,

most general) mode. Principal modes can be expressed naturally by mode

graphs, as described later in this section.

Given a mode m, we de�ne a submode m=p, namely m viewed at the

path p, as a function satisfying (m=p)(q) = m(pq). We also de�ne IN and

OUT as submodes always returning in and out , respectively. An overline

` ' inverts the polarity of a mode, a submode, or a mode value.

A Flat GHC program is a set of clauses of the form h:- G | B, where h

is an atomic formula and G and B are multisets of atomic formulae. Con-

straints imposed by a clause h:- G | B are summarized in Figure 1, where

e

a(p) means a symbol occurring at the path p in an atomic formula a, Var

is the set of variable symbols, and Term is the set of terms de�ned over

Fun and Var . Rule (BU) numbers uni�cation body goals because the mode

system allows di�erent body uni�cation goals to have di�erent modes. This

is a special case of mode polymorphism we will discuss in Section 6.

As an example, consider the following program for stream merging:

m([],Y,Z):- true | Z=

1

Y.

m(X,[],Z):- true | Z=

2

X.

m([A|X],Y,Z0):- true | Z0=

3

[A|Z], m(X,Y,Z).

m(X,[A|Y],Z0):- true | Z0=

4

[A|Z], m(X,Y,Z).

The third clause, for example, imposes the following eight constraints

(\." stands for the constructor of non-empty lists):

m(hm; 1i) = in by (HF) applied to \."

m=h=

3

; 1i = m=h=

3

; 2i by (BU) applied to =

3

m(h=

3

; 2i) = in by (BF) applied to \."

m=hm; 1ih.; 1i = m=h=

3

; 2ih.; 1i by (BV) applied to A

m=hm; 1ih.; 2i = m=hm; 1i by (BV) applied to X

m=hm; 2i = m=hm; 2i by (BV) applied to Y

m=hm; 3i = m=h=

3

; 1i by (BV) applied to Z0

m=h=

3

; 2ih.; 2i = m=hm; 3i by (BV) applied to Z

3

(HF) 8p 2 P

Atom

(

e

h(p) 2 Fun) m(p) = in)

(If a function symbol occurs at p in h, m(p) = in.)

(HV) 8p 2 P

Atom

(

e

h(p) 2Var ^ 9p

0

6=p(

e

h(p) =

e

h(p

0

))) m=p = IN)

(If the symbol at p in h is a variable occurring elsewhere in h, m=p = IN .)

(GV) 8p; p

0

2P

Atom

8a2G(

e

h(p)2Var ^

e

h(p) =

e

a(p

0

)) 8q2P

Term

(m(p

0

q) =

in) m(pq) = in))

(If the same variable occurs both at p in h and at p

0

in G, then m(pq) = in

if the path m(p

0

q) is examined in a guard goal.)

(BU) 8k > 0 8t

1

; t

2

2 Term((t

1

=

k

t

2

) 2B) m=h=

k

; 1i = m=h=

k

; 2i)

(The two arguments of a uni�cation body goal have opposite submodes.)

(BF) 8p 2 P

Atom

8a 2 B(

e

a(p) 2 Fun) m(p) = in)

(If a function symbol occurs at p in a body goal, m(p) = in.)

(BV) Let v be a variable occurring exactly n (� 1) times in h and B at

p

1

; : : : ; p

n

, of which the occurrences in h are at p

1

; : : : ; p

k

(k � 0).

Then

�

R(fm=p

1

; : : : ;m=p

n

g); if k = 0;

R(fm=p

1

; m=p

k+1

; : : : ;m=p

n

g); if k > 0;

where the unary predicate R over �nite multisets of submodes repre-

sents \cooperative communication" between paths and can be de�ned

as

R(S)

def

= 8q 2 P

Term

9s 2 S(s(q) = out ^ 8s

0

2 Snfsg (s

0

(q) = in)):

Figure 1: Constraints imposed by a clause h:- G | B

From the entire de�nition, we obtain 24 constraints. Elimination of the

constraints on =

k

, however, leaves only four constraints:

m(hm; 1i) = in; m=hm; 1ih.; 2i = m=hm; 1i;

m=hm; 2i = m=hm; 1i; m=hm; 3i = m=hm; 1i:

We could regard the above set of constraints itself as representing the

principal mode of the program, but the principal mode can be represented

more explicitly in terms of a mode graph (Figure 2). Mode graphs are a

kind of features graphs (feature structures with cycles) [1] in which

1. paths represent paths in P

Atom

,

2. the node corresponding to the path p represents the value m(p),

3. arcs are labelled with the pair hsymbol; argi of predicate/function sym-

bols and argument positions, and may have \negative signs" (denoted

\�" in Figure 2) that invert the interpretation of the mode values of

the paths beyond those arcs, and

4

<m,1> <m,2> <m,3>

< . ,1> < . ,2>

Figure 2: The mode graph of a stream merging program

4. binary constraints of the forms m=p

1

= m=p

2

and m=p

1

= m=p

2

are

represented by the sharing of nodes.

Mode analysis proceeds by merging many simple mode graphs represent-

ing individual mode constraints. Thus its decidability is guaranteed by the

decidability of the uni�cation algorithm for feature graphs. The principal

mode of a well-moded program, represented as a mode graph, is uniquely

determined, as long as all the mode constraints imposed by the program are

unary (i.e., constraint on the mode value of, or the submode at, a particu-

lar path) or binary (i.e., constraint between the submodes at two particular

paths).

Rule (GV) in Figure 1 contains a conditional mode constraint. How-

ever, we assume that guard goals are calls to built-in predicates whose mode

graphs have been obtained beforehand. Thus the constraints actually im-

posed by Rule (GV) will be of the unary form m(p) = in or m=p = IN .

The rule will become simpler by allowing polymorphic guard goals, as will

be discussed in Section 6.

Rule (BV) may impose constraints between three or more constraints,

which cannot be represented as mode graphs by themselves. However, by

delaying them, most of them can be reduced to unary/binary ones by other

constraints [10]. Theoretically, some non-binary constraints may remain

unreduced, for which it is most practical to let programmers declare the

submodes of relevant paths.

The cost of mode analysis is almost proportional to the size n of the

program and to the size d of the subgraph of the entire mode graph rooted

at each predicate argument [9]. The size d re
ects the complexity of commu-

nication protocols used in the program. To be precise, the time complexity

is O(nd��(n)), where � is the inverse of the Ackermann function.

We have analyzed various GHC/KL1 programs including the mode an-

alyzer itself [10]. We have observed that, although larger programs have

larger mode graphs because they use more predicate symbols, the value of d

does not become so large (say several tens of nodes) even for programs using

quite complicated communication protocols. Thus we expect that the mode

graphs of very large programs are, in general, wide and shallow, which is to

say most nodes can be reachable within several steps from the root.

5

3 Non-Well-Moded Programs

Programs that do not have well-modings are called non-well-moded. Since

Moded Flat GHC programs must observe the principle of cooperative com-

munication, non-well-modedness indicates that the communication protocols

speci�ed by the program are faulty. For instance, the following quicksort

program is non-well-moded:

qsort(Xs,Ys):- true | qsort(Xs,Ys,[]).

qsort([], Ys0,Ys):- true | Ys=

1

Ys0.

qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1), Ys2=

2

[X|Ys1], qsort(L,Ys2,Ys3).

(the uni�cation goal should have been Ys1=

2

[X|Ys2])

The �rst clause imposes the constraint (among others)

(1) m(hqsort; 3i) = in by (BF) applied to \[]",

while the second clause imposes

(2) m=h=

1

; 1i = m=hqsort; 3i by (BV) applied to Ys,

(3) m=h=

1

; 2i = m=h=

1

; 1i by (BU) applied to =

1

,

(4) m=hqsort; 2i = m=h=

1

; 2i by (BV) applied to Ys0.

The third clause is �rst normalized to

qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1), qsort(L,[X|Ys1],Ys3).

and imposes

(5) m=hqsort; 2i = in by (BF) applied to\|".

The set of those �ve constraints are inconsistent. Constraints (1){(4)

together entail m(hqsort; 2i) = out ; which is clearly inconsistent with Con-

straint (5).

We consider explaining the reasons of mode errors in terms of minimal

inconsistent subsets of the set of mode constraints, because such subsets will

be useful for locating errors. If we �nd multiple inconsistent subsets that

are disjoint, they are considered as indicating di�erent bugs in the program.

Thus the technique can be used for locating multiple bugs at once.

Let us get back to the quicksort example. Observe that all proper subsets

of Constraints (1){(5) are consistent. Hence the �ve constraints form a mini-

mal inconsistent subset. Since the quicksort program imposes 53 constraints

in total, including constraints from the predicate part, we have succeeded

in �nding an adequately small subset.

Once a minimal inconsistent subset is found, how can one pinpoint a

bug? It is reasonable in a moded framework to assume that programmers

6

have intended modes of their programs (though not declared explicitly). In

the above example, the programmer should be able to �nd that Constraint

(5) is wrong because the second argument of qsort is intended to return the

result of sorting. The analyzer tells what symbol occurrence in what clause

imposes that constraint, which is the exact location of the bug.

A programmer may not always �nd it easy to tell whether each single

constraint in a minimal subset conforms to the intended mode. However, the

analyzer can present various consequences of a minimal subset of constraints

as follows: Suppose the minimal subset S contains constraints from n (> 1)

clauses. Then, it can be divided into n disjoint subsets S

1

; : : : ; S

n

based

on what clauses imposed what constraints. Because S is minimal, each of

S

1

; : : : ; S

n

is consistent. So we can form a mode graph for each S

i

to make

the consequences entailed by S

i

explicit and �nd what clause contains a bug.

The mode constraints imposed by a program usually have redundancy.

That is, a single bug could be explained by many possible minimal incon-

sistent subsets. However, a subset corresponding to a local portion of a

program is likely to be a better explanation than a subset corresponding to

a larger or scattered portion, because it re
ects the program structure better

and facilitates debugging. So, after describing basic algorithms in Section 4,

we consider in Section 5 how to divide programs into layers based on the

structure of process de�nitions and search minimal subsets locally within

each process de�nition.

4 Finding Minimal Subsets

We consider various algorithms for �nding a minimal inconsistent subset of a

inconsistent set of mode constraints C = fc

1

; : : : ; c

n

g. This section presents

simple algorithms for �nding a single inconsistent subset and extend them

to �nd multiple disjoint subsets.

4.1 The Basic Algorithms

Let C = fc

1

; : : : ; c

n

g be an inconsistent set of constraints. Algorithm 1 below

�nds a single minimal inconsistent subset from C. In the algorithm, the

merging of constraint sets and the checking of consistency are realized as the

uni�cation of mode graphs and the checking of its success/failure. Although

the algorithm is quite general, its e�ciency hinges upon the fact that there

is a pair of e�cient algorithms for computing the union of constraint sets

and checking its consistency.

� Algorithm 1

S fg;

while S is consistent do

D S; i 0;

while D is consistent do

i i+ 1; D D [fc

i

g

end;

S S [fc

i

g

end

7

The set S thus obtained is a minimal inconsistent subset. To see why, let

S

j

/D

j

/i

j

be the values of S/D/i at the end of the jth iteration of the outer

loop, and k be the size of S. It su�ces to show that the set S

k

n fc

i

j

g =

fc

i

1

; : : : ; c

i

j�1

; c

i

j+1

; : : : ; c

i

k

g is consistent for any i

j

, but it is easy to see that

� D

j

n fc

i

j

g is consistent (because the inner loop was not exited when

D = D

j

nfc

i

j

g), and

� S

k

nfc

i

j

g = fc

i

1

; : : : ; c

i

j�1

; c

i

j+1

; : : : ; c

i

k

g � D

j

nfc

i

j

g, because

{ D

j

nfc

i

j

g = S

j�1

[fc

1

; c

2

; : : : ; c

i

j

�1

g,

{ S

j�1

= fc

i

1

; c

i

2

; : : : ; c

i

j�1

g, and

{ fc

i

j+1

; : : : ; c

i

k

g � fc

1

; c

2

; : : : ; c

i

j

�1

g (because i

1

> i

2

> : : : > i

k

).

Hence all proper subsets of S are consistent.

Now we consider the complexity of the above algorithm. As explained

in Section 2, it takes O(nd��(n)) time to merge n mode constraints. The

time complexity of �nding a minimal subset with k elements out of n mode

constraints is O(nkd � �(n)), because

� in each iteration, we must merge at most n constraints until inconsis-

tency arises, and

� it takes k iterations until a minimal subset with k elements is obtained.

Usually, k is a small value independent of the program size, as we will see

in Section 7.

A variant of the above algorithm will compute a better minimal subset.

Let C = fc

1

; : : : ; c

n

g be such that i < j implies that the symbol (occurrence)

imposing c

i

occurs textually before the symbol (occurrence) imposing c

j

.

Then it is likely that a minimal subset can be formed from a rather small

range of the sequence c

1

; : : : ; c

n

, and such a local subset is considered a good

explanation. If this is the case, scanning S in alternate directions will be

more e�cient and compute a better solution:

� Algorithm 1

0

S fg; i 0; j 1;

while S is consistent do

D S;

while D is consistent do

i i+ j; D D [fc

i

g

end;

S S [fc

i

g; j �j

end

4.2 Finding Multiple Independent Minimal Subsets

Algorithms 1 and 1

0

compute a single minimal inconsistent subset S of C.

To compute multiple, independent minimal subsets, we can simply re-apply

the algorithms after removing the elements of S from C. This enables the

analyzer to detect as many independent bugs as possible at once. Note that

Algorithm 2 below uses a self-contradictory constraint as a sentinel.

8

� Algorithm 2

c

0

 false;

while true do

let c

1

; : : : ; c

m

be the elements of C;

i m+ 1; j �1; S fg;

while S is consistent do

D S;

while D is consistent do

i i+ j; D D [fc

i

g

end;

S S [fc

i

g; j �j

end;

if i = 0 then exit

else

report(S); C CnS

�

end

5 Diagnosing Strati�ed Programs

Algorithms in Section 4 �nd minimal subsets from the entire set of con-

straints without reference to the logical structure of the programs to be

analyzed. However, the set of constraints can be very large. If we divide

the set of constraints taking the problem domain (= program analysis) into

account and analyze the obtained subsets separately, we may be able to

reduce the amount of computation and obtain more useful information for

debugging.

5.1 Call Graphs and Process Graphs

When dividing Flat GHC programs according to their logical structures,

clauses de�ning a concurrent process by means of self or mutual recursion

can be considered to form a process de�nition.

A program de�nes a directed graph, called a call graph, that describes

the caller-callee relationship between predicates. A call graph is a directed

graph such that each node v corresponds to a Flat GHC predicate, and

an arc e from a node v to a node v

0

means that the predicate v calls the

predicate v

0

directly from a clause body.

The strongly connected components of a call graph exactly correspond to

process de�nitions in the above sense. Processes de�ned by mutual recursion

are naturally recognized in this way. A non-recursive predicate that spawns

one or more subprocesses is regarded as a process by itself.

It is well-known that division into strongly connected components is

uniquely determined and can be done in O(n + a) time, where n is the

number of nodes and a is the number of arcs in the graph.

Division into strongly connected components is regarded as the division

of graph nodes into equivalence classes. The quotient graph obtained by

contracting the arcs inside strongly connected components is called a pro-

cess graph. A process graph is a dag representing the dependency relation

9

between processes. Henceforth we confuse a node of a process graph with

the process de�nition represented by the node.

5.2 Program Strati�cation

Since the process graph G of a program is acyclic, the partial order de�ned

by G can be used for stratifying the program. We de�ne the layer number

L(v) of the node v as:

L(v) = max(fL(v

0

) j v

0

2 Adj

+

(v)g [f0g) + 1 ;

where Adj

+

(v) means the set of destination nodes of the arcs from v. Note

that the above de�nition assigns 1 to nodes without outgoing arcs.

5.3 Finding Relative Minimal Subsets

Bugs of strati�ed programs can be classi�ed into (1) those within each layer

and (2) those across layers. Since bugs of the �rst kind can be found simply

by checking each node of a process graph independently, we consider how to

deal with bugs of the latter kind, assuming that each process de�nition is

well-moded.

How to �nd a minimal subset from a strati�ed program depends on how

we consider non-well-modedness across layers. We adopt bottom-up analysis,

that is, we choose to check process de�nitions from lower layers (those with

smaller numbers). Bottom-up analysis lends itself to the analysis of large

programs that may use existing program libraries.

Suppose bottom-up analysis has found an inconsistency in an attempt to

merge constraints from the kth layer and those from lower layers. Since each

process de�nition in the kth layer is consistent by assumption and di�erent

process de�nitions in the same layer are independent, the kth layer itself is

consistent. Hence the reason of inconsistency can be attributed to either (or

both) of the following:

� The kth layer wrongly uses the lower layers.

� The lower layers, though well-moded, have an unintended principal

mode.

It is rather di�cult to tell which, but a reasonable solution is to ask the

programmer to check the kth layer �rst before suspecting lower layers. This

is reasonable because a concise explanation should be considered �rst. Lo-

cating bugs inside well-moded layers is somewhat beyond the principal scope

of mode analysis, though their mode graphs will provide useful information.

Bottom-up analysis considerably limits search space by �nding from a

process de�nition a minimal subset of constraints that are inconsistent with

the set B of constraints from lower layers. Such a subset is called a minimal

subset relative to B. In the following algorithm, C(v) initially holds the set

of constraints imposed by the node v of the process graph.

10

� Algorithm 3

for k 1 to the highest layer number do

for each v in fv j L(v) = kg do

B

S

v

0

2Adj

+

(v)

C(v

0

);

apply Algorithm 2

0

(shown below);

C(v) B [C(v)

end

end

Algorithm 2

0

reports and removes minimal inconsistent subsets of the set

C(v) of constraints relative to B:

� Algorithm 2

0

c

0

 false;

while true do

let c

1

; : : : ; c

m

be the elements of C(v);

i m+ 1; j �1; S B;

while S is consistent do

D S;

while D is consistent do

i i+ j; D D [fc

i

g

end;

S S [fc

i

g; j �j

end;

if i = 0 then exit

else

S SnB;

report(S); C(v) C(v)nS

�

end

In an actual implementation, S and D are represented during iterations

as mode graphs which are destructively updated by the set union opera-

tions. The results to be reported should be represented again by the set of

constraints, but this can be obtained e�ciently by recording what c

i

's have

been added to S by the assignment S S [fc

i

g.

6 Strati�cation and Mode Polymorphism

When two or more processes share a process de�nition in a lower layer,

Algorithm 3 may cause a problem.

Consider a program that uses a \generic" (or polymorphic) predicate

such as stream merging (Section 2) in various modes. When such a predicate

is called from di�erent places, the process graph will contain a shared node.

Suppose a process de�nition at the node v and another de�nition at v

0

use

a predicate p polymorphically. Then the analyses of the node v and of v

0

will succeed because they are independent, but the analysis of a higher-level

node that uses both v and v

0

will detect the inconsistent use of p as an error.

11

However, we can regard predicates at lower layers as polymorphic when

called from higher layers. To allow strati�cation-based polymorphism, we

need to create a copy of the mode graph of a polymorphic predicate for each

call to that predicate. This can be achieved by indexing each polymorphic

call (as we have done for uni�cation goals) and creating a copy of the mode

graph for each polymorphic call, modifying their paths according to the

indices.

So, we assume that

1. for each polymorphic predicate p, the preprocessing phase numbers all

calls to p from higher layers from 1 upwards, and

2. the �rst element of each path in P

Atom

is of the form hp

s

; ii, where s

is a sequence of natural numbers and can be omitted if empty.

Also, let C

k

(v) be a modi�ed copy of the mode constraints C(v) such that

the �rst elements of the paths are changed from the form hp

s

; li to hp

sk

; li.

� Algorithm 3

0

The same as Algorithm 3, except that the assignment B

S

v

0

2Adj

+

(v)

C(v

0

) is replaced by:

B fg;

for each indexed (i.e., polymorphic) body goal g in v do

let k be the index of g;

let v

0

be the node de�ning the polymorphic predicate;

B B [C

k

(v

0

)

end

Although we have focused on the strati�cation of predicates called from

clause bodies, the same idea could be applied to test predicates called from

guards. This is useful for introducing polymorphism to test predicates, un-

der which Rule (GV) in Figure 1 does not have to use implication any more

to avoid the \back propagation" of mode constraints to generic guard pred-

icates.

7 Experiments

We have made some initial experiments to see how the basic algorithms help

bug location and how large minimal subsets can be.

First, we applied Algorithm 1

0

to 20 erroneous programs, each containing

a single near-miss bug such as

1. \tell" uni�cation speci�ed in a clause head (as in Prolog) rather than

in a body,

2. misspelling of a variable name, and

3. wrong order of arguments.

12

All those bugs will impose constraints inconsistent with those from correct

clauses.

Sixteen of the 20 programs we used were small and imposed less than

100 constraints each, while the remaining four programs imposed about 500

constraints each. The sizes of the minimal inconsistent subsets varied from

2 to 8, with the average being 3.75. The sizes of minimal subsets were

independent of the total number of constraints. Thus we have ascertained

that the parameter k in the complexity measure in Section 4.1 is a rather

small constant.

We have also ascertained that multiple bugs can be detected at once if

they are not too close to each other. However, since our algorithm removes

some correct constraints together with incorrect constraints when �nding

the �rst bug, it is possible that the second bug does not cause inconsistency

any more. Fortunately, this will not happen so often because the mode con-

straints imposed by a program usually contain redundancy and the number

of removed correct constraints is usually small.

We have not yet analyzed very large programs, but thanks to the

constraint-based approach, large programs can (and will) be analyzed in

smaller pieces. Strati�cation will automatically divide a program into pieces,

too. Thus we can expect that our positive results will apply to larger pro-

grams quite well.

It would be unrealistic to search for all minimal inconsistent subsets

covering a single bug because it requires much more computation. However,

it will be less unrealistic to compute several inconsistent subsets which share

some constraint. If the program contains a single bug, a constraint shared

by all minimal subsets is likely to indicate the bug. For instance, suppose

we wrote the stream merging program as:

m([],Y,Z):- true | Z=

1

Y.

m(X,[],Z):- true | Z=

2

X.

m([A|X],Y,Z0):- true | Z0=

3

[A|Z], m(X,Y,Z0).

(the �nal goal should have been m(X,Y,Z))

m(X,[A|Y],Z0):- true | Z0=

4

[A|Z], m(X,Y,Z).

The mode analyzer �rst normalized the program, converting the third clause

to

m([A|X],Y,Z0):- true | Z0=

3

[A|Z], m(X,Y,[A|Z]).

and then found that it had at least four minimal subsets (with 5, 5, 4, and

4 elements). The only constraint included in all of those subsets was m(hm;

3i) = in, which was imposed by Rule (BF) applied to the list constructor

occurring in the third argument of the recursive goal of the (normalized)

third clause. Thus we succeeded in pinpointing the exact location of the

bug in this case. It is a subject of future work how to compute a su�cient

number of overlapping subsets e�ciently to pinpoint a bug.

8 Related Work

As mentioned in Section 1, most previous work on the mode analysis of (con-

current) logic languages was based on abstract interpretation, and focused

13

mainly on the reasoning of program properties assuming that the programs

were correct. In contrast, constraint-based mode analysis can be used for

diagnosis as well as optimization by assuming that correct programs are

well-moded.

Concurrent logic languages Doc [2] and Janus [5] let programmers dis-

tinguish between input and output occurrences using annotations. These

annotations can be regarded as mode declarations, the consistency of which

needs to be checked statically or dynamically. So the technique proposed in

this paper applies also to those languages. The purpose of the mode system

of PARLOG is quite di�erent, as discussed in [9].

Somogyi [6] proposed another framework of strong moding independently

and studied its implications in depth. His framework shares some features

with ours, such as the principle of cooperative communication and the ca-

pability of dealing with bidirectional communication. An advantage of our

constraint-based framework is that, besides being simple, it provides a uni-

�ed framework for mode declaration, mode checking and mode inference.

This makes it realistic to analyze existing programs and still enables pro-

grammers to declare intended modes that can be used as correct mode con-

straints in �nding minimal subsets.

Mercury [7] is another recent strongly moded language. Being a purely

declarative logic language, however, its mode system is very di�erent from

the mode system of Moded Flat GHC; the former deals with the change of

instantiatedness, which is a temporal property, while the latter deals with

polarity, which is a non-temporal property [10].

Chen et al. [3] proposed an algorithm for �nding maximal uni�able sub-

sets and minimal non-uni�able subsets of a set of equations. They use hyper-

graph structures that record the reasons of (non-)uni�ability during uni�ca-

tion. Our algorithms use mode graphs that do not retain reason information

and reconstruct them repeatedly to �nd minimal subsets. Although this

simple approach turned out to work quite well, it is a subject of future work

to compare our approach with the hypergraph approach.

Analysis of malfunctioning systems based on their intended logical spec-

i�cation has been studied in the �eld of arti�cial intelligence [4] and known

as model-based diagnosis. Model-based diagnosis has similarities with our

work in the ability of searching minimal explanations and multiple faults.

However, the purpose of model-based diagnosis is to analyze the di�erences

between intended and observed behaviors. Our mode system does not re-

quire that the intended behavior of a program be given as mode declarations,

and still locates bugs quite well.

9 Conclusions

We have proposed algorithms for diagnosing non-well-moded concurrent

logic programs based on the searching of minimal inconsistent subsets of

mode constraints. Once minimal subsets are found, it is straightforward

for the system to indicate suspected symbol(occurrence)s in the program

and/or to show logical consequences a (consistent) subset of the minimal

inconsistent subsets entails. We have also shown how we can obtain \good"

(i.e., local) explanations of mode errors by dividing programs based on their

14

logical structures. All these techniques are very systematic for static error

analysis and are e�cient as well.

It is not realistic or helpful to search all minimal inconsistent subsets,

but it might be reasonable to �nd several of them because, if some mode

constraint is shared by all the minimal subsets, it is likely to indicate the

exact location of a bug. This means to take advantage of the redundancy

of mode constraints to guess the exact location of a bug. By pinpointing

erroneous constraints this way, the ability of detecting multiple bugs will be

improved further.

Acknowledgments. The authors are indebted to the anonymous referees

for their helpful comments.

References

[1] A��t-Kaci, H. and Nasr, R., LOGIN: A Logic Programming Language

with Built-In Inheritance. J. Logic Programming, Vol. 3, No. 3 (1986),

pp. 185{215.

[2] Hirata, M., Programming Language Doc and Its Self-Description or,

X = X is Considered Harmful. In Proc. 3rd Conf. of Japan Society of

Software Science and Technology, 1986, pp. 69{72.

[3] Chen, T. Y., Lassez, J.-L. and Port, G. S., Maximal Uni�able Subsets

and Minimal Non-uni�able Subsets. New Generation Computing, Vol. 4

(1986), pp. 133{152.

[4] Reiter, R., A Theory of Diagnosis from First Principles. Arti�cial Intel-

ligence, Vol. 32 (1987), pp. 57{95.

[5] Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Dis-

tributed Constraint Programming. In Proc. 1990 North American Conf.

on Logic Programming, Debray, S. and Hermenegildo, M. (eds.), MIT

Press, 1990, pp. 431{446.

[6] Somogyi, Z., A Parallel Logic Programming System Based on Strong

and Precise Modes. Ph. D. thesis, Tech. Report 89/4, Dept. of Computer

Science, Univ. of Melbourne, Melbourne, Australia, 1989.

[7] Somogyi, Z., Henderson, F. and Conway, T., Mercury: An E�cient

Purely Declarative Logic Programming Language. Proc. Australian

Computer Science Conference, Glenelg, Australia, 1995, pp. 499{512.

[8] Ueda, K., I/O Mode Analysis in Concurrent Logic Programming. In

Theory and Practice of Parallel Programming, LNCS 907, Springer,

1995, pp. 356{368.

[9] Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented

Implementation Technique. New Generation Computing, Vol. 13, No. 1

(1994), pp. 3{43.

[10] Ueda, K., Experiences with Strong Moding in Concurrent Logic/

Constraint Programming. In Proc. Int. Workshop on Parallel Symbolic

Languages and Systems, LNCS 1068, Springer, 1996, pp. 134{153.

15

