
Proeedings of an International Conferene organized by the IPSJ

to Commemorate the 30th Anniversary (InfoJapan'90), Informa-

tion Proessing Soiety of Japan, Otober 1990, pp. 87{94.

Last revision: Otober 1991.

Designing a Conurrent Programming Language

Kazunori Ueda

Institute for New Generation Computer Tehnology

4-28, Mita 1-home, Minato-ku, Tokyo 108 Japan

Abstrat

This paper reviews the design and the evolution of a onurrent programming language

Guarded Horn Clauses (GHC). GHC was born from a study of parallelism in logi pro-

gramming, but turned out to be a simple and exible onurrent programming language

with a number of nie properties. We give both an abstrat view of GHC omputation

based the notion of transations and a onrete view, namely an operational semantis,

based on redutions. Also, we disuss in detail the properties of GHC suh as its atomi

operations, whih have muh to do with the design of GHC.

1. Introdution

It seems that many people still regard onurrent pro-

gramming as something speial and diÆult to learn.

Indeed, onurrent programming may have inherent

diÆulties not in sequential programming, but the

situation ould be improved by developing better for-

malisms and programming languages. Many onur-

rent languages designed so far were built by adding

a number of speial onstruts to existing sequential

languages, adding ertain omplexity as well. So it

is worth trying to build a onurrent language in a

totally di�erent way.

Guarded Horn Clauses (abbreviated to GHC) [21℄

[22℄ was designed to be a simple onurrent program-

ming language with a very small number of primitive

onstruts. As its name suggests, GHC borrowed a

lot of onepts from (ordinary) logi programming,

whih, together with the onept of a guard, were tai-

lored into a onurrent language. Hene it is usually

alled a onurrent logi programming language.

The simplest aount of GHC is the slogan:

GHC = Horn lauses + Guards:

This an be orrelated with another slogan by

Kowalski [8℄:

Algorithm = Logi + Control:

Atually, the logial reading of a program expresses

its stati aspets, namely the relationship between in-

put and output information; and the guards are used

for expressing dynami aspets or ontrol, namely the

ausality between piees of input and output infor-

mation. The orrelation thus suggests that GHC is a

language for desribing onurrent algorithms.

In logi programming, the exeution result of a

goal \:- G" under a program P has two aspets,

namely

(i) the unsatis�ability of P [f:Gg (returned as a

yes/no answer), and

(ii) substitutions that make G logial onsequenes of

P .

From a programming language point of view, however,

more interest is in the seond aspet [9℄.

GHC as a onurrent language fully exploits the

seond aspet of omputing substitutions. A build-

ing blok of a GHC program, alled a proess, is an

entity that observes and generates substitutions. For

instane, a proess fatorial(X,Y) will generate a

substitution fY=120g when it observes a substitution

fX = 5g. Unlike ordinary logi programs, GHC pro-

grams speify the diretion of omputation. That is,

GHC programs impose partial ausal order on substi-

tutions observed and generated by proesses. This is

done by restriting dataow aused by uni�ation, as

will be desribed in Setion 3.

2. Proesses in GHC

GHC is a reative (as opposed to transformational)

language. In reative languages, we are interested

in the ommuniation between a program and the

{ 1 {

rest of the world performed in the ourse of omputa-

tion, rather than the �nal result of omputation that

is the primary onern in transformational languages

(the most typial of whih are funtional languages).

Another interesting haraterization of reative or in-

terative programs is that the input to a program an

depend on the output from the program. This prop-

erty an be mimiked in funtional languages with

lazy evaluation, but GHC allows us to desribe vari-

ous forms of ommuniation more naturally.

GHC is an asynhronous reative language. Eah

piee of ommuniation engaged in by a proess is

either from the proess to the rest of the world or

the other way around, and the sender of informa-

tion is never bloked by the reeiver. A history of

ommuniation between a proess and the rest of the

world an be divided into transations, eah trans-

ation being an at of providing the proess with a

possibly empty input substitution and getting an ob-

servable, non-empty output substitution. The input

an be empty beause an autonomous proess may

not require any input. The output should be observ-

able beause that is usually what the outside world

is waiting for. A proess is onsidered erroneous if

it fails to generate any output substitution when the

outside world expets it.

Eah transation is quite similar to the whole om-

putation of a transformational program. The di�er-

ene is that the input from the outside world may

depend on the outputs of previous transations. This

suggests that the behavior of a proess an be for-

mulated as a sequene of transations, whih is an

external, abstrat view of a proess in our setting.

Note that the above view of a proess beomes very

similar to the view of Theoretial CSP (TCSP) [7℄, a

synhronous model of onurreny, by regarding eah

transation as a single event.

As we have seen, GHC uses substitutions (sets

of bindings between variables and their values) to

model information ommuniated between proesses.

Substitutions are generated by uni�ation and ob-

served using mathing (Setion 3.1), a restrited form

of uni�ation. A nie thing is that these notions have

a logial as well as an algebrai haraterization, as

pointed out by Maher [10℄ and studied extensively by

Saraswat [16℄. A substitution an be viewed as an

equality onstraint on the possible values of variables.

A (binding) environment, whih is the produt of all

the substitutions generated so far, an be viewed as

the multiset (interpreted as the onjuntion) of the

onstraints orresponding to the substitutions. In

the GHC ontext, uni�ation an be viewed as the

publiation of a onstraint into the urrent environ-

ment, and mathing an be viewed as the heking

of whether the urrent environment implies a given

onstraint under the equality theory of GHC. GHC

adopts Clark's equality theory [2℄ that models synta-

ti equality over �nite terms. We ould adopt equal-

ity theories other than Clark's without hanging the

essene of the language [16℄. Moreover, we ould al-

low onstraints other than onjuntions of equalities.

However, the urrent hoie has the advantage that

the generation and the observation of onstraints an

be easily omputed.

3. GHC

How an we de�ne the intended behavior of a proess?

The basi idea is to desribe it in terms of other pro-

esses. This is attrative sine the behavior an then

be realized by the redution of proesses.

There are two possible styles for the desription:

One is to use proess onstrutors [11℄, namely oper-

ators on proesses, to ompose a more omplex pro-

ess expression from simpler ones. The other style is

to use rewrite rules of proesses as in term rewriting

systems. GHC has taken the rewrite-rule approah

following the tradition of logi programming, though

this hoie is for historial reasons and is not essen-

tial. Saraswat [16℄ shows how onurrent logi pro-

gramming an be reformulated using the onstrutor

approah.

3.1 Syntax of GHC

Now let us introdue GHC. GHC has borrowed many

notions from logi and logi programming, whih en-

ables a terse introdution of the language. We assume

here that the following notions are de�ned as usual [9℄:

variables, funtion(symbol)s, onstants (re-

garded as 0-ary funtions), prediate(sym-

bol)s, terms, atom(i formula)s, substitutions,

renaming, uni�ation.

We say that a term t

1

mathes a term t

2

if there is a

substitution suh that t

1

� � t

2

(`�' denoting syntati

equality). Mathing is alled one-way uni�ation also.

A program is a set of guarded lauses. A guarded

lause is of the form

h :- G | B;

where h is an atom, and G and B are multisets of

atoms. h is alled the head of the lause; atoms in G

are alled guard goals; and atoms in B are alled body

goals. The part before the ommitment operator `|'

is alled the guard, and the part after `|' is alled the

body.

A lause with an empty body is alled a unit

lause. The set of all lauses in a program whose

heads have the prediate symbol p is alled the proe-

dure for p. A goal with the prediate symbol p is said

to all p.

{ 2 {

Informally, eah guarded lause is a onditional

rewrite rule of goals, where

� h is the template that should math a goal (say

g) to be rewritten,

� G is the auxiliary ondition for the rewriting (G

must be exeuted without instantiating g), and

� B is the multiset of (sub)goals to replae g.

That a program is a set means that the duplia-

tion (up to renaming of variables) of guarded lauses

is insigni�ant, not to mention their ordering. On the

other hand, G and B are multisets beause two syn-

tatially idential goals may behave di�erently due

to indeterminay.

To run a program, we use a goal lause of the form

:- B;

whih spei�es the initial multiset of body goals.

A goal is either a uni�ation goal of the form t

1

= t

2

or a non-uni�ation goal. A uni�ation goal, whose

behavior is prede�ned in the language, may gener-

ate a substitution and onstrain the possible values

of variables. A non-uni�ation goal is rewritten to

other goals using guarded lauses, possibly after ob-

serving a substitution. The guard of a guarded lause

spei�es what substitution should be observed before

rewriting, and provides the language with a synhro-

nization mehanism.

3.2 Flat GHC

The above de�nition of GHC allows any atom to our

as a guard goal. However, this proved to be unne-

essarily expressive as a onurrent language (Setion

6), whih motivated us to move to a subset of GHC

alled Flat GHC.

Sine guard goals are used as onditions, we �rst

de�ne a lass of prediates, alled test prediates, that

are appropriate for the purpose. A prediate p is

alled a test prediate if the proedure for p is de-

�ned by a set of unit lauses. Calls to a test prediate

have a property that they do not generate observable

substitutions; the only thing that matters is whether

they sueed or not.

A Flat GHC program is a set of at guarded

lauses, lauses in whih guard goals are restrited

to uni�ation goals and alls to test prediates.

3.3 Operational Semantis of Flat GHC

Now we formalize the operational semantis of Flat

GHC. We follow the strutural approah of Plotkin

[14℄, whih is now a standard way of desribing opera-

tional semantis formally. The strutural operational

semantis of full GHC is found in [15℄.

� 8 :

�

:(f(X

1

; : : : ; X

m

) = g(Y

1

; : : : ; Y

n

))

�

, for all pairs

f , g of distint funtions (inluding onstants).

� 8 :

�

:(t= X)

�

, for eah term t other than and on-

taining X.

� 8 :

�

X=X

�

.

� 8 :

�

f(X

1

; : : : ; X

m

)=f(Y

1

; : : : ; Y

m

) �

V

m

i=1

(X

i

=Y

i

)

�

,

for eah funtion f .

� 8 :

�

V

m

i=1

(X

i

=Y

i

) � f(X

1

; : : : ; X

m

)=f(Y

1

; : : : ; Y

m

)

�

,

for eah funtion f .

� 8 :

�

X=Y � Y=X

�

� 8 :

�

X=Y ^ Y=Z � X=Z

�

Figure 1. Clark's equality theory E , in lausal form

Let B be a multiset of goals, and C a multiset of

equations that represents a (binding) environment of

B. Let V

F

denote the set of all variables ourring

in a syntati entity F . The urrent on�guration is

a triple, denoted

B;C

�

:V , suh that V

B

[V

C

� V .

It reords the goals to be redued and the urrent

environment, as well as the variables already in use

for the urrent omputation. A omputation under a

program P starts with the initial on�guration

B

0

;

;

�

:V

B

0

, where B

0

is the body of the given goal lause.

What we are going to de�ne is a transition rela-

tion

1

�!

2

, whih reads \the on�guration

1

an

be redued to the on�guration

2

." When we need to

expliitly mention the program P being used, we use

the form P `

1

�!

2

, whih reads \under the pro-

gram P ,

1

an be redued to

2

." By

�

�! we denote

the reexive, transitive losure of �!. The natural

dedution form

P

1

` t

1

P

2

` t

2

(if Cond)

says that if the transition t

1

an happen under P

1

and the ondition Cond holds, the transition t

2

an

happen under P

2

. The numerator and the ondition

are omitted if they are empty.

We have three rules. In the following rules, F j= G

means that G is a logial onsequene of F . 8V

F

: F

and 9V

F

: F are abbreviated to 8 : F and 9 : F , respe-

tively. Also, following [18℄, we denote 9(V

F

nV) : F by

ÆV : F , where V is a �nite set of variables. We assume

that there is an injetion, denoted ` � ', from the set

of prediates to the set of funtions, whih is natu-

rally extended to an injetion from the set of atoms

to the set of terms. E denotes Clark's equality theory

(Figure 1).

P `

B

1

; C

1

�

:V �!

B

0

1

; C

0

1

�

:V

0

P `

B

1

[B

2

; C

1

�

:V �!

B

0

1

[B

2

; C

0

1

�

:V

0

(i)

{ 3 {

P `

fb=h

i

g [G

i

; C

�

: (V [V

(h

i

;G

i

)

)

�

�!

;; C [C

g

�

:V

0

fh

i

:- G

i

| B

i

g [P `

fbg; C

�

:V �!

B

i

; C [C

g

�

: (V

0

[V

B

i

)

�

if E j= 8 :

�

C � ÆV

b

: C

g

�

and V

(h

i

;G

i

;B

i

)

\ V = ;

�

(ii)

P `

ft

1

= t

2

g; C

�

:V �!

;; C [ft

1

=t

2

g

�

:V (iii)

Rule (i) expresses onurrent redution of a mul-

tiset of goals. Rule (ii) says that a goal b an be

redued using a guarded lause \h

i

:- G

i

| B

i

" if

the head uni�ation b=h

i

and the guard goals G

i

an

be redued out without a�eting the variables in b.

This means that the head uni�ation is restrited to

mathing e�etively. The ondition V

(h

i

;G

i

;B

i

)

\V = ;

guarantees that the guarded lause has been renamed

using fresh variables. Rule (iii) says that a uni�ation

goal simply publishes (or posts) a onstraint to the

urrent environment.

3.4 Interating with a Flat GHC Proess

How does the above transition relation relate to

our external view of a proess stated in Setion 2?

Roughly speaking, a multiset of goals implements a

proess, and a sequene of redutions realizes a trans-

ation. Reall that a transation is an at by an ob-

server proess of providing an observee proess with a

possibly empty input substitution and getting an ob-

servable (and hene non-empty) output substitution.

In the following, we onsider in more detail how a

transation is realized by redutions.

Consider the initial on�guration

P [O; ;

�

:V

(V = V

P

[V

O

), where the proess O is assumed to be

observing the proess P , and assume the transition

P [O; ;

�

:V

�

�!

P

0

[O

0

; C

0

�

:V

0

has been made so

far. Then eah element of C

0

is either the one posted

by O or the one posted by P (note that C

0

is a mul-

tiset). Let C

0

O

be the set of onstraints posted by

O (inluding the onstraints on loal variables gener-

ated during the exeution of guards). C

0

O

is regarded

as the urrent knowledge of O. C

0

P

is de�ned simi-

larly. Heneforth, to denote

P

0

[O

0

; C

0

P

[C

0

O

�

:V

0

, we

use a more modular notation

P

0

; C

0

P

�

[

O

0

; C

0

O

�

:V

0

.

Also, we use abbreviations suh as

B

1

; C

1

�

[

�

B

2

;

C

2

�

:V �!

B

0

2

; C

0

2

�

:V

0

�

whih means

B

1

; C

1

�

[

B

2

;

C

2

�

:V �!

B

1

; C

1

�

[

B

0

2

; C

0

2

�

:V

0

.

Now assume

(i) a (possibly empty) transition by the observer

P

0

; C

0

P

�

[

�

O

0

; C

0

O

�

:V

0

�

�!

O

00

; C

0

O

[�

�

:V

00

�

is made without referene to C

0

P

(i.e, the transi-

tion

O

0

; C

0

O

�

:V

0

�

�!

O

00

; C

0

O

[�

�

:V

00

an hap-

pen by itself) where E j= 9 :(C

0

O

[�) (i.e., O's

knowledge is still onsistent), and then

(ii) a (possibly empty) transition by the observee

�

P

0

; C

0

P

�

:V

0

�

�!

P

00

; C

00

P

�

:V

00

�

[

O

00

; C

0

O

[�

�

is made (possibly with referene to C

0

O

[�), and

then

(iii) a (non-empty) transition by the observer

P

00

; C

00

P

�

[

�

O

00

; C

0

O

[�

�

:V

00

�!

O

000

; C

0

O

[� [�

1

�

:V

000

�! � � � �!

O

0000

; C

0

O

[� [�

1

[� � � [�

n

�

:V

0000

�

is made, where �

def

= �

1

[� � � [�

n

is suh that

(a) for eah �

i

posted from a lause body, E j=

8 :

�

C

0

O

[� [�

1

[� � � [�

i�1

� ÆV

O

:(C

0

O

[� [

�

1

[� � � [�

i

)

�

(i.e., non-loal onstraints are

not posted from lause bodies) and

(b) E 6j= 8 :

�

C

0

O

[� � ÆV

O

:(C

0

O

[� [�)

�

(i.e., a

new onstraint is observed).

Then, we say that O has engaged in a (normal) trans-

ation hh�; �ii with P . The above transitions need not

happen stritly in that order; the point is that � is

�rst generated with referene to C

0

O

only, and then �

is generated without onstraining non-loal variables.

The redutions of P

0

an be interleaved with these

two phases. Note that following this transation, O

may engage in the next transation with P .

As well as normal transations, we must be able to

model various abnormal phenomena. This is beause

we want to distinguish between a proess that always

behaves normally and a proess that only sometimes

behaves normally. First, the observee may post a on-

straint inonsistent with the existing ones; or in alge-

brai terms, a uni�ation body goal may fail. In that

event, any onstraint and its negation beomes ob-

servable, and from then on eah goal in the observee

an be redued using any lause. In a word, the ob-

servee has fallen into haos, a totally unpreditable

ondition. Interestingly, haos in GHC is very simi-

lar to haos in TCSP introdued in order to model a

totally unde�ned indeterminate proess.

Seond, the observee may fail to generate an ob-

servable output onstraint in response to a given input

onstraint for various reasons, whih is alled inativ-

ity. The reason will be one of the following:

(1) the observee has been redued out (i.e., sueeds)

with no observable output,

(2) the observee has been redued, with no observable

output, to a multiset of goals that does not allow

further redution in the urrent environment,

(3) the observee has fallen into in�nite omputation.

We all the �rst suess, the seond deadlok, and

the third divergene [23℄. Of these, divergene on-

sumes unbounded omputation resoure beyond the

observer's ontrol, while suess and deadlok do not.

{ 4 {

Unless the sheduling of goals is fair, a divergent

proess may monopolize the omputational resoure,

bloking the exeution of other proesses running on-

urrently. Hene divergene is worse than, and should

be distinguished from, non-divergent inativity. It

is mathematially attrative to regard divergene as

haos, as in TCSP. This treatment equates the two

apparently di�erent but most undesirable phenomena

in Flat GHC, divergene and the failure of uni�ation.

Suess and deadlok annot be distinguished by

observable output onstraints. However, sometimes

it is useful to treat them separately. The observer

of a proess usually gives an input onstraint to ob-

serve an output onstraint, but may sometimes do so

to terminate the observee. Then, suess is not an

abnormal phenomenon any more, and should be dis-

tinguished from deadlok. Thus the abstrat view of

a proess depends on what phenomena the observer

is interested in.

Note that a normal transation is of a �nite na-

ture; it reords the observation of �nite output in-

formation made in �nite time. A meaningful Flat

GHC proess an be non-terminating and an engage

in an in�nite number of transations, but it should

be non-divergent and ontrollable in the sense that it

should not run inde�nitely without observing an in�-

nite number of non-empty input onstraints.

We imposed the restrition that input onstraints

should be onsistent with the observer's knowledge,

beause otherwise the observer itself would go haoti.

Our assumption is that the observer must be well-

behaved, while it is unreasonable to assume anything

about the observee. An observer is said to be faithful

if it eventually observes some of the observable output

onstraints generated by the observee.

Now we laim that a Flat GHC proess is ad-

equately haraterized by the set of all possible se-

quenes of transations made by all possible faithful

observers. This view of proesses gives a suÆiently

weak, but still reasonable, equivalene relation for

proesses, whih abstrats away the notion of redu-

tions. Whether in�nite sequenes should be inluded

or are approximated by sets of �nite sequenes de-

pends on whether fairness is onsidered or not. Our

urrent position is to say nothing about fairness in the

de�nition of the language. However, the notion of the

knowledge of a proess we have given above an be

used to disuss whether information sent by a sender

proess is eventually delivered to a reeiver or not.

4. Some Properties of Flat GHC

4.1 Atomi Operations

One of the motivations that lead us to design

GHC was the examination of atomi operations in

Conurrent Prolog [19℄. Conurrent Prolog (inluding

its o�springs) and the language (#;!) [16℄ have the

notion of atomi publiation, in whih the publiation

of a onstraint by a proess is done upon redution

and only when it does not ause inonsisteny. Atomi

publiation may have to `test-and-set' a number of

variables at the same time, whih an be ostly in a

distributed implementation. In GHC and PARLOG

[4℄, on the other hand, the publiation of a onstraint

is separated from the redution of a non-uni�ation

goal and is done by an independent uni�ation goal.

This alternative, alled eventual publiation, is advan-

tageous for implementation, though some program-

ming tehniques an be used only in atomi publia-

tion languages. Interestingly, our hoie of eventual

publiation reently lead to the idea of the message-

oriented sheduling of goals [25℄, a sheduling that

ontrasts sharply with the ordinary one.

Moreover, GHC enjoys anti-substitutivity [21℄, a

property whih allows the delay of interproess om-

muniation between two ourrenes of a shared vari-

able. Anti-substitutivity allows two ourrenes of the

same variable to have even inonsistent values. (Suh

a variable is referred to as a non-atomi variable in

[20℄.) Fortunately, Maher's logial haraterization of

the ommuniation mehanism of GHC-like languages

[10℄ later assured that anti-substitutivity is quite a

natural notion.

4.2 Binding Environments

In GHC, onstraints obtained by exeuting the guards

of lauses annot a�et the aller side. This means

that a single binding environment is suÆient for man-

aging the values of variables, while in OR-parallel

Prolog and full Conurrent Prolog, multiple environ-

ments need to be maintained.

The binding environment of GHC is monotoni;

the publiation of a new onstraint does not invalidate

any previous observations done by lause guards. In

other words, if a lause C an redue a goal g in some

environment, it an redue g in an environment with

more onstraints. Thanks to this property, GHC an

allow eventual publiation and anti-substitutivity.

4.3 Treatment of Failure

The original de�nition of GHC did not state muh

about failure. In Prolog, a goal is onsidered to

have failed if no lause an resolve it, and many

other onurrent logi languages followed this tradi-

tion. However, we had felt that this was inappropriate

for GHC. GHC separated uni�ation from redution,

so it is quite reasonable to distinguish between the fail-

ure of redution and the failure of uni�ation whih

have quite di�erent behavioral onsequenes.

{ 5 {

It is worth noting that the transition relation of

Flat GHC does not rely on any notion of failure. Many

other onurrent logi languages and Prolog allow us

to write a lause that is tried only when all the pre-

eding lauses (assuming a program is a sequene of

lauses) turn out to be inappliable forever. However,

it is not so easy to orretly hek if a lause annot

redue a given goal forever. First, the hek requires

that guard goals and head uni�ation be exeuted

onurrently in general. Seond, head uni�ation be-

omes more diÆult beause we must detet that the

head p(a,b) annot unify with the goal p(X,) or

p(X,X) forever. Flat GHC, on the other hand, al-

lows a lause guard to be exeuted sequentially in a

pre-determined order; the mathing of p(a,b) with

p(X,) an be left suspended at the �rst argument.

Although a Flat GHC program represents minimum

sequentiality, the only plaes that require onurrent

exeution are between body goals redued from the

top-level goals and between guarded lauses trying to

redue a goal.

Failure of a uni�ation body goal in GHC is an

exeptional situation whih is essentially the same

as division-by-zero in any programming language.

Consider the onstraint X = 5/0 over real numbers.

This is equivalent to X*0 = 5, namely 0 = 5, whose

publiation would ause inonsisteny. How to han-

dle suh an exeption is disussed in Setion 6.

5. Advantages of Flat GHC as a Conurrent

Language

Now let us summarize advantages of Flat GHC as a

onurrent language.

(1) A proess is de�ned using other proesses, unlike

many onurrent languages in whih proesses are

de�ned using iteration. This is onsistent with the

use of streams, whih are a reursive data stru-

ture, for interproess ommuniation.

(2) As we have seen, the monotoni property of bind-

ing environments realizes a natural synhroniza-

tion mehanism of waiting until suÆient infor-

mation is observed.

(3) The mehanism for interproess ommuniation

is expressive enough to naturally desribe data-

driven and demand-driven omputation and dy-

namially evolving proess strutures. TCSP and

CCS [11℄ allowed reursive de�nitions of proesses,

but ould not deal with dynamially evolving pro-

ess strutures beause they laked the ability to

reate and pass new ommuniation hannels. It

is only reently that CCS was extended to deal

with evolving proess strutures [12℄.

(4) A sequene of messages (i.e., a stream) is repre-

sented using an expliit data struture, namely a

list. This is unlike most languages, in whih mes-

sage sequenes are impliit and a set of dediated

operations is provided for them. GHC uses op-

erations like Lisp's ar and ons for interproess

ommuniation. No spei� ommuniation pro-

tools (e.g., FIFO ommuniation using streams)

are built-in beause they are programmable.

(5) GHC allows various views. It an be viewed as

a proess desription language, a dataow lan-

guage, and a onurrent assembly language. It

an be viewed also as a logi programming lan-

guage in the sense that the result of a ompu-

tation allows delarative interpretation. A GHC

program is better amenable to delarative read-

ing than Prolog programs with extralogial oper-

ations suh as I/O.

6. Evolution of GHC

GHC was born at the very end of 1984 from lose

examination of parallelism in logi programming, the

diret trigger being the study of the atomi opera-

tions and the binding environment mehanism of (full)

Conurrent Prolog. No essential hange has been

made sine then, but the proposed language has been

studied from various aspets.

One good result of the study is that now we un-

derstand the language muh better than when it was

born, whih means that the language is more robust

than before. The study of atomi operations, of un-

usual behavior suh as failure, and of relationship with

other logi languages, onurrent languages and mod-

els of onurreny helped explain the language better.

The study of formal semantis of onurrent logi lan-

guages by many people (e.g., [3℄, [10℄, [13℄, [16℄) also

helped our understanding.

6.1 Subsetting

Another important result is the identi�ation of sub-

sets whih an be more eÆiently implemented but

are still useful.

Full GHC allowed any atom to our as a guard

goal, trying to retain the expressive power of full

Conurrent Prolog as muh as possible. However,

then, a uni�ation body goal may have to be sus-

pended when it is exeuted as a subgoal of some guard

goal. More importantly, our programming experi-

ene showed that guard goals are used only for the

simple testing of onditions. Sine guard goals are

given limited ommuniation apability, they are not

very powerful anyway. We had been unwilling to im-

plement the guard mehanism of full GHC for these

reasons, and �nally deided to allow only prede�ned

prediates to be alled from a guard. This was our

{ 6 {

�rst approximation to Flat GHC, whih was learly

inuened by the subsetting of Conurrent Prolog to

Flat Conurrent Prolog [19℄.

However, the above-mentioned way of subsetting

was not quite satisfatory for a rather idealized pro-

gramming language like GHC, beause it depends on

the arbitrary hoie of prede�ned prediates. We felt

that it would be muh better to state what properties

are suÆient for a prediate to be alled a test predi-

ate. The de�nition of Flat GHC in Setion 3.2 is one

solution.

Flatness as de�ned in Setion 3.2 guarantees that

no body goals are spawned by the exeution of a

guard. All the synhronization onditions of uni�-

ation an then be analyzed statially and without

global analysis. Flat GHC does, however, allow nested

guard goals. Calls to test prediates in Flat GHC

have a desirable property that they are deterministi,

that is, the urrent environment uniquely determines

whether the alls sueed in it or not.

One we have de�ned within the framework of

GHC what are test prediates, an atual implemen-

tation of Flat GHC ould reasonably restrit guard

goals to alls to prede�ned prediates. A wonderful

disovery of the language O [6℄ was that guard goals

in (Flat) GHC are not essential and an be disallowed

theoretially.

A problem with Flat GHC is that it is left to pro-

grammers to guarantee that the binding environment

never beomes inonsistent; a program goes haoti

one its binding environment beomes inonsistent.

Of ourse, it is most desirable that suh inseurity be

deteted at ompile time.

The main reason for the inseurity is that two or

more proesses sharing a variable may try to instan-

tiate it non-ooperatively. Do [5℄ and Janus [17℄ in-

trodued annotations (attahed to ourrenes of vari-

ables) to syntatially guarantee that only one proess

an instantiate a variable. On the other hand, Ueda

and Morita [25℄ showed that simple mode analysis an

be used to guarantee the same property. The mode

system provides a uni�ed framework for mode dela-

ration (of whih annotation is one possible way), mode

inferene and mode heking. Restrition to one pro-

duer per variable disallows a variable to be used as

a shared resoure with `multiple-writers'. However,

suh a shared resoure does not have to be imple-

mented using a variable, beause it an be imple-

mented using a proess. The mode system has been

designed so that it an be inorporated into Flat GHC

as a new language onstrut; in e�et, we have pro-

posed a further subset that ould be alledModed Flat

GHC.

Unfortunately, the above restrition is still insuf-

�ient for guaranteeing the onsisteny of the binding

environment beause of the our-hek problem. One

solution is to adopt rational terms instead of �nite

terms, as in some Prolog systems and Janus. This

makes it possible to reate in�nite terms in a �nite

time, while in GHC, in�nite terms an be reated only

using in�nite reursion. The onsequenes of this is

yet to be studied.

6.2 Flat GHC and KL1

Although Flat GHC has a number of good properties,

it is not quite appropriate for programming parallel

omputers.

First, GHC is a reative language in whih pro-

esses are assumed to be ooperative rather than om-

petitive. In atual appliations, however, not all pro-

esses may be ooperative with others. An example is

a user proess running onurrently with an operating

system.

Seond, although a GHC program fully expresses

the possibility of parallel exeution, it does not spe-

ify at all how it should be exeuted. It may be a

good platform for parallel proessing beause no un-

neessary sequentiality is imposed. However, it is a

onurrent language, not a parallel language in whih

one an speify how proesses should be exeuted on

a parallel omputer.

The separation of onurreny and parallelism is

not a design aw but a deliberate deision. Sine lan-

guage onstruts for speifying parallel exeution may

depend on the omputation models that reet under-

lying implementations, they should be de�ned sepa-

rately.

The language alled KL1 [1℄ takes these two is-

sues into aount. It is based on Flat GHC, but has

inluded the `sh�oen' (manor) onstrut so that a pro-

ess may have full ontrol over another proess that

may not be ooperative. The sh�oen onstrut enables

a proess to ontrol the exeution of another proess

exeuted within a sh�oen and the resoure it onsumes.

The sh�oen onstrut also handles exeptional situa-

tions of a proess suh as failure and deadlok. For

parallel exeution, KL1 provides a onstrut for spe-

ifying whih goal should be exeuted on whih pro-

essor and with what priority.

7. Conlusion

We have reviewed the design and the evolution of

GHC. Marosopially, GHC should be regarded as a

onurrent programming language rather than a logi

programming language. However, when we look into

the language more mirosopially, we �nd that eah

transation is similar to partial refutation in logi pro-

gramming and that the ommuniation mehanism al-

lows an elegant logial haraterization.

{ 7 {

It seems that onurrent logi programming is of-

ten misunderstood beause it stemmed from logi pro-

gramming. However, it is not just an inomplete vari-

ant of logi programming. We believe that onurrent

logi programming is interesting in its own right and

deserves muh more attention and study.

The researh on GHC has been foused on the

semantial aspets of the language. The urrent syn-

tax of GHC is not essential at all; software engineer-

ing aspets suh as the modularization of large pro-

grams are important but separate issues to be onsid-

ered. However, some software engineering issues are

already addressed in GHC; it provides an abstration

and enapsulation mehanism based on proesses, and

we an put objet-based onurrent programming into

pratie.

Finally, we note that the urrent status of GHC

has been inuened by many works in the �elds

of logi programming and onurrent programming

and also by many disussions with a number of re-

searhers.

Aknowledgments

We are indebted to Kenji Horiuhi, Masahiro Hirata

and Keiji Hirata for valuable omments on earlier ver-

sions of this paper.

Referenes

1. Chikayama, T., Sato, H. and Miyazaki, T.,

Overview of the Parallel Inferene Mahine Operating

System (PIMOS). In Pro. Int. Conf. on FGCS'88,

ICOT, Tokyo, 1988, pp. 230{251.

2. Clark, K. L., Negation as Failure. In Logi

and Data Bases, Gallaire, H. and Minker, J. (eds.),

Plenum Press, New York, 1978, pp. 293{322.

3. Gerth, R., Codish, M., Lihtenstein, Y. and

Shapiro, E., Fully Abstrat Denotational Semantis

for Flat Conurrent Prolog. In Pro. Third Annual

Conf. on Logi in Computer Siene, IEEE, 1988,

pp. 320{335.

4. Gregory, S., Parallel Logi Programming in

PARLOG: The Language and its Implementation.

Addison-Wesley, Wokingham, England, 1987.

5. Hirata, M., Programming Language Do and Its

Self-Desription or, X = X is Considered Harmful. In

Pro. 3rd Conf. of Japan Soiety of Software Siene

and Tehnology, 1986, pp. 69{72.

6. Hirata, M., Parallel List Proessing Language O

and Its Self-Desription. Computer Software, Vol. 4,

No. 3 (1987), pp. 41{64 (in Japanese).

7. Hoare, C. A. R., Communiating Sequential Pro-

esses. Prentie-Hall International, UK, London,

1985.

8. Kowalski, R., Algorithm = Logi + Control.

Comm. ACM, Vol. 22, No. 7 (1979), pp. 424{436.

9. Lloyd, J. W., Foundations of Logi Programming

(Seond ed.). Springer-Verlag, Berlin, 1987.

10. Maher, M. J., Logi Semantis for a Class of

Committed-Choie Programs. In Pro. Fourth Int.

Conf. on Logi Programming, MIT Press, 1987,

pp. 858{876.

11. Milner, R., Proess Construtors and Interpreta-

tions. In Information Proessing 86, Kugler, H. -J.

(ed.), North-Holland, 1986, pp. 507{514.

12. Milner, R., Parrow, J. and Walker, D., A Calu-

lus of Mobile Proesses, Parts I and II. ECS-LFCS-89-

86, Dept. of Computer Siene, Univ. of Edinburgh,

1989.

13. Murakami, M., A Delarative Semantis of Paral-

lel Logi Programs with Perpetual Proesses. In Pro.

Int. Conf. on FGCS'88, ICOT, Tokyo, 1988, pp. 374{

381.

14. Plotkin, G. D., A Strutural Approah to Oper-

ational Semantis. DAIMI FN-19, Computer Siene

Dept., Aarhus Univ., Denmark, 1981.

15. Saraswat, V. A., GHC: Operational Semantis,

Problems and Relationship with CP(#,j). In Pro.

1987 Symp. on Logi Programming, IEEE, 1987,

pp. 347{358.

16. Saraswat, V. A., Conurrent Constraint Pro-

gramming Languages. Ph. D. Thesis, CMU, 1989.

17. Saraswat, V., Kahn K. and Levy J., Janus: A

Step Towards Distributed Constraint Programming.

SSL 89-108, System Sienes Lab., Xerox PARC,

1989.

18. Saraswat, V. A. and Rinard, M., Conurrent

Constraint Programming (Extended Abstrat). In

Conf. Reord of the Seventeenth Annual ACM Symp.

on Priniples of Programming Languages, ACM,

1990, pp. 232{245.

19. Shapiro, E. Y., Conurrent Prolog: A Progress

Report. Computer, Vol. 19, No. 8 (1986), pp. 44{58.

20. Shapiro, E., The Family of Conurrent Logi Pro-

gramming Languages. Computing Surveys, Vol. 21,

No. 3 (1989), pp. 413{510.

21. Ueda, K., Guarded Horn Clauses. Dotoral the-

sis, Information Engineering Course, Faulty of Engi-

neering, Univ. of Tokyo, 1986.

22. Ueda, K., Guarded Horn Clauses: A Parallel

Logi Programming Language with the Conept of a

Guard. ICOT Teh. Report TR-208, ICOT, Tokyo,

1986. Also in Programming of Future Generation

Computers, Nivat, M. and Fuhi, K. (eds.), North-

Holland, 1988, pp. 441{456.

23. Ueda, K. and Furukawa, K., Transformation

Rules for GHC Programs. In Pro. Int. Conf. on

FGCS'88, ICOT, Tokyo, 1988, pp. 582{591.

{ 8 {

24. Ueda, K., Parallelism in Logi Programming. In

Information Proessing 89, Ritter, G. X. (ed.), North-

Holland, 1989, pp. 957{964.

25. Ueda, K. and Morita, M., A New Implementation

Tehnique for Flat GHC. In Pro. Seventh Int. Conf.

on Logi Programming, MIT Press, 1990, pp. 3{17.

{ 9 {

