
A New Implementation Technique for Flat GHC

Proceedings of the Seventh International Con-
ference on Logic Programming, The MIT Press,
Cambridge, MA, 1990, pp. 3–17.

Kazunori Ueda

Institute for New Generation Computer Technology

4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

ueda@icot.or.jp

Masao Morita

Mitsubishi Research Institute

3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan

Abstract

Concurrent processes can be used both for programming computation and
for programming storage. Previous implementations of Flat GHC, however,
have been tuned for computation-intensive programs, and perform poorly for
storage-intensive programs (such as programs implementing reconfigurable
data structures using processes and streams) and demand-driven programs.
This paper proposes an optimization technique for programs in which pro-
cesses are almost always suspended. The technique compiles unification for
data transfer into message passing. Instead of reducing the number of process
switching operations, the technique optimizes the cost of each process switch-
ing operation and reduces the number of cons operations for data buffering.
The technique is based on a mode system which is powerful enough to ana-
lyze bidirectional communication and streams of streams. The mode system
is based on mode constraints imposed by individual program clauses rather
than on global dataflow analysis. Benchmark results show that the proposed
technique well improves the performance of storage-intensive programs and
demand-driven programs compared with a conventional native-code imple-
mentation. It also improves the performance of some computation-intensive
programs. Although many problems remain to be solved particularly with
regard to parallelization, we expect that the proposed technique will expand
the application areas of concurrent logic languages.

1. Motivations

Guarded Horn Clauses (GHC) [8][9] is a simple concurrent logic language
born from the research on parallelism in logic programming. Its subset, Flat
GHC [11], can be viewed naturally as a process description language in which
the static property of a process (implemented by a multiset of body goals),
namely the relationship between input and output information, is expressed
in terms of its logical reading and in which the dynamic property, namely
the causality between input and output information, is specified using the
guard construct. Readers who are unfamiliar with GHC and concurrent logic
programming are referred to [7] and [10].

– 1 –

A prominent feature of Flat GHC and other concurrent logic languages
viewed as process description languages is that they use unification (or its re-
stricted forms such as matching) for interprocess communication. Externally,
a process is viewed as an abstract entity that observes and generates sub-
stitutions. Internally, the behavior of an individual body goal, a multiset of
which implements a process, is defined in terms of other goals using guarded
clauses. Each of the guarded clauses making up a program can be regarded
as a conditional rewrite rule of goals. It is the guard part of a clause that
specifies what substitution should be observed before performing the rewrit-
ing. A substitution is generated by spawning a unification body goal whose
behavior is language-defined.

Concurrent logic languages employ the notion of streams, implemented
as lists, for interprocess communication. Unlike most concurrent languages,
a sequence of messages communicated is just a data structure manipulated
by unification, which contributes much to the simplicity and the flexibility
of the languages. Unidirectional (data-driven) communication, bidirectional
(demand-driven) communication, and furthermore, streams of streams can be
programmed quite easily.

It has been claimed, however, that unification is too inefficient for inter-
process communication. Upon unification, a straightforward implementation
should determine the direction of dataflow and also check against the possi-
bility of failure. These operations, which can be costly particularly in parallel
implementations, are not needed in other concurrent languages. Another ar-
gument against interprocess communication by unification is that its straight-
forward implementation performs dynamic memory allocation (cons) that ne-
cessitates some sort of garbage collection. These considerations motivated us
to explore the possibility of static analysis of complex dataflow, which is one
of the two major topics of the paper.

Another motivation comes from our hope to expand the application ar-
eas of concurrent logic languages. So far, concurrent logic languages have
mainly been used for writing computation-intensive programs in which pro-
cesses do not suspend frequently. However, those languages could be used also
for programming storage such as dynamic data structures using processes as
building blocks. For instance, given Program 1, a process t-node(S) (for ter-
minal node; nt-node for non-terminal node) acts as a binary tree database
that accepts search and update commands through the stream S.

Processes in storage-intensive programs are almost always dormant but
should respond quickly to incoming messages which may not arrive succes-
sively. However, currently available implementations such as [4] and [5], which
are tuned for computation-intensive programs, perform poorly for storage-
intensive programs because of their heavy process switching overhead. New
implementation techniques that optimize the latency rather than the through-
put of interprocess communication are badly needed for executing those pro-
grams efficiently. This is another major topic of the paper.

– 2 –

nt-node([], -, -, L,R) :- true | L=[], R=[].

nt-node([search(K,V)|Cs],K, V1,L,R) :- true |

V=V1, nt-node(Cs,K,V1,L,R).

nt-node([search(K,V)|Cs],K1,V1,L,R) :- K<K1 |

L=[search(K,V)|L1], nt-node(Cs,K1,V1,L1,R).

nt-node([search(K,V)|Cs],K1,V1,L,R) :- K>K1 |

R=[search(K,V)|R1], nt-node(Cs,K1,V1,L,R1).

nt-node([update(K,V)|Cs],K, -, L,R) :- true |

nt-node(Cs,K,V,L,R).

nt-node([update(K,V)|Cs],K1,V1,L,R) :- K<K1 |

L=[update(K,V)|L1], nt-node(Cs,K1,V1,L1,R).

nt-node([update(K,V)|Cs],K1,V1,L,R) :- K>K1 |

R=[update(K,V)|R1], nt-node(Cs,K1,V1,L,R1).

t-node([]) :- true | true.

t-node([search(-,V)|Cs]) :- true | V=undefined, t-node(Cs).

t-node([update(K,V)|Cs]) :- true |

nt-node(Cs,K,V,L,R), t-node(L), t-node(R).

Program 1. A program defining binary trees of processes

2. Mode System and Mode Analysis

The first step towards the optimization of interprocess communication is to
analyze what forms of communication will take place when a program is
executed. This section presents a mode system that generalizes our previous
system [6] (which classified the arguments of a predicate simply into input and
output) to handle complex dataflow. This generalization is very important
because the flexibility of unification-based interprocess communication is the
primary raison d’être of concurrent logic languages.

The purpose of our mode system is to infer “which goal will determine
which part of a data structure, if each part is to be determined at all,” rather
than to infer the instantiation states of the arguments of goals as in [1].

Because our mode system is intended for static analysis, it is impossible
to analyze the dataflow of all meaningful Flat GHC programs. We chose to
assume that programmers obey the following conventions:

(1) Interprocess communication is cooperative rather than competitive; that
is, when several occurrences of the same variable (each occurring in some
goal) have been generated in the course of execution, exactly one of
them is the output occurrence which can determine its top-level function
symbol and all the others are input occurrences.

(2) The mode of an occurrence of a variable in a goal g can depend on and
only on the predicate symbol of g and the principal function symbols of
all terms containing that occurrence. This means that the mode of an
argument of a predicate is uniquely given, but the mode of an argument
of a function can depend on the context in which the function occurs. For
example, consider the commands search(K,V) and update(K,V) used in

– 3 –

Program 1. The modes of the second arguments V can depend (and ac-
tually depend) on the command names, but cannot on the values of the
first arguments K. The exception to the above rule is the predefined pred-
icate ‘=’ for unification, whose different occurrences (calls) in a program
can have different modes.

The introduction of a mode system into Flat GHC is effectively the sub-
setting of Flat GHC; the resulting language could be called Moded Flat GHC.
So a question arises as to whether this subsetting is serious for GHC program-
ming. Fortunately, most GHC programs written so far are written, or can be
easily rewritten, following these conventions. One reason for this is that GHC
provides no means to recover from the failure of output unification.

Some programs we have seen use the ‘stop signal’ technique; in those
programs, several processes p1, . . . , pn share a variable v and agree upon a
constant c that v will be bound to, and when some pi finds that other processes
need no longer to work, it notifies them by binding v to c. All of the pi’s are
possible producers of the binding, though the failure of unification cannot
happen. One way to conform those programs to the above conventions is to
use an n-ary arbiter process which the pi’s can ask (via distinct variables) to
bind v to c.

Finally, we claim that the above conventions also serve as a guideline for
good GHC programming.

2.1 Mode System

As usual, we first fix the vocabulary with which programs are written and
executed. Let Pred be the set of predicate symbols, Fun the set of function
symbols (we do not distinguish between constant and function symbols), Atom
the set of atoms, and Term the set of terms. For each p∈Pred with the arity
np, let Np be the set {1, 2, . . . , np}. Nf is defined similarly for each f ∈Fun.
Furthermore, we define the sets of paths Pt (for terms) and Pa (for atoms) as
follows:

Pt = (
∑

f∈Fun

Nf)
∗, Pa = (

∑

p∈Pred

Np)× Pt.

An element of Pt can be denoted 〈f1, j1〉 . . . 〈fn, jn〉, and an element of Pa can
be denoted 〈p, i〉p′, where p′∈Pt. The empty sequence in Pt will be denoted
ǫ. Paths are intended to specify subterms of terms and atoms. That is, with
each term t we associate a function t : Pt → Term for obtaining its subterms,
which is defined as follows:

t(ǫ) = t;

t(〈f, j〉p′) =

{

tj(p
′), if t is of the form f(t1, . . . , tn);

⊥ (undefined), otherwise.

The function for obtaining subterms of an atom is defined similarly.
Finally, we define the set of modes M as

M = Pa → {in, out},

– 4 –

where we assume in 6= out for the codomain.
The intended meaning of a mode m∈M is as follows. Consider a process

implemented by a goal a0 ∈ Atom, and assume that the unification goals
spawned so far by this process or other processes running in parallel have
instantiated a0 to a. Note that a records the information communicated with
the outside. Let p∈Pa be a path such that a(p) is a variable. Then,

(1) m(p) = in means that the variable a(p) will not be rewritten to another
term (possibly being a variable) through this occurrence, and

(2) m(p) = out means that the process will not suspend on a(p) because of
this occurrence.

2.2 Mode Analysis

The purpose of mode analysis is to find a feasible mode of a program, namely
a mode that satisfies all the mode constraints (listed below) imposed by the
program.

To simplify the analysis, we first normalize (the unification goals in) the
program using the method described in [11]. The obtained program has the
following properties:

(1) No unification goals exist in guards.
(2) The set of unification goals in the body of a clause is of the form v1 =

t1, . . . , vn = tn, where
• vi’s are distinct variables occurring in the head of the clause,
• v1, . . . , vn do not occur in t1, . . . , tn or other goals in the body, and
• if some ti is a variable, it occurs in the head.

For instance, Program 1 is in a normal form. Furthermore, to cope with
the overloading of the predicate ‘=’, we assume that all its occurrences in a
program are virtually indexed as ‘=1’, ‘=2’,

The constraints on a feasible mode m of a program are as follows:

(1) If some clause examines a path p∈Pa, m(p) = in. Here, a clause with
the head h is said to examine p if
(1a) h(p) is a non-variable, or
(1b) there is a prefix p′ of p (that is, a path p′∈Pa such that form some

p′′∈Pt, p
′p′′ = p) such that h(p′) is a variable occurring more than

once in h, or
(1c) there is a prefix p′ of p such that h(p′) is a variable occurring in

a guard goal. (Condition (1c) can be weakened depending on the
guard goal. For example, suppose h(p′) is the variable X. Then a
guard goal X>5 for integer comparison needs to constrain the value
of m(p′) but not the value of m(p) unless p′ = p.)

(2) The two arguments of a unification body goal t1=kt2 have exactly inverse
modes, that is,

∀p∈Pt

(

m(〈=k, 1〉p) 6= m(〈=k, 2〉p)
)

.

(3) If a subterm a(p) of a body goal a is a non-variable, m(p) = in.

– 5 –

(4) Let v be a variable occurring n times in some clause, where we do not
count the second or the subsequent occurrences in the head or any of
the occurrences in the guard goals. That is, at least n − 1 occurrences
are those of body goals and the remaining one, if any, represents the
occurrence(s) in the head. Let the ith occurrence be at the path pi of
an atom ai (that is either a head or a body goal). For each i(≤ n), we
define mi∈M as follows:

{

∀p∈Pa

(

mi(p) = m(p)
)

, if ai is a body goal;

∀p∈Pa

(

mi(p) 6= m(p)
)

, if ai is the clause head;

Then, we impose the constraint

∀p∈Pt∃i ≤ n
(

mi(pip) = out ∧ ∀j ≤ n(j 6= i → mj(pjp) = in)
)

.

Intuitively, this says that each function symbol occurring in a possible
instance of v will be determined by exactly one of the occurrences of v.
Note that i can depend on p in the above constraint. When n = 2, which
is usually the case, the above constraint is simplified to

∀p∈Pt

(

m1(p1p) 6= m2(p2p)
)

.

Motivations of Constraint (4) are appropriate here. Assume a goal g
commits to a clause C. Constraint (4) states how the variables in the body
goals of C should be instantiated from then on. A variable v occurring in the
head of C is regarded as a communication channel between the body goals
of C and other goals running in parallel. Multiple occurrences of the same
variable in the head are for equality checking before commitment, and the
only thing that matters after commitment is whether a variable occurring in
the body occurs also in the head and conveys information to and from outside.
This is why only one of the occurrences of v in the head is taken into account.

The reason why we introduce the mi’s is that it enables us to treat all
the occurrences of a variable in a uniform way. An input (output) occurrence
of a variable in the clause head is considered a source (sink) of information
from inside the clause, respectively, and this is why we invert the mode of the
clause head in considering Constraint (4).

2.3 An Example and Discussions

Let us consider Program 2, a simple stack program and its driver. Let ti(p)
denote m(〈test, i〉p) and si(p) denote m(〈stack, i〉p), for i = 1, 2. Let ‘.’
denote the function symbol of a non-empty list. Constraints we can obtain
from the predicate test include

t1(ǫ) = in, t2(ǫ) = out , t2(〈., 1〉) = out ,

t2(〈., 2〉) = out , t2(〈., 2〉〈., 1〉) = out ,

∀p∈Pt

(

t2(〈., 2〉〈., 2〉p) = t2(p)
)

,

t2(〈., 1〉〈push, 1〉) = out , t2(〈., 2〉〈., 1〉〈pop, 1〉) = in,

– 6 –

test(M,S) :- M=:=0 | S=[].

test(M,S) :- M=\=0 |

S=[push(M),pop(N)|S1], N1:=N-1, test(N1,S1).

stack([], -) :- true | true.

stack([push(X)|S],D) :- true | stack(S,[X|D]).

stack([pop(X)|S], [Y|D1]) :- true | X=Y, stack(S,D1).

Program 2. A stack program and its driver

t
1 2

•
1 2

u
1

•
1 2

o
1

s
1 2

•
1 2

o
1

u
1

•
1 2

≠

t : test
s : stack
o : pop
u : push
• : list constructor
 : in
 : out
 : unknown yet

Figure 1. Mode constraints obtained separately from test and stack

and those we can obtain from stack include

s1(ǫ) = in, s1(〈., 1〉) = in, ∀p∈Pt

(

s1(〈., 2〉p) = s1(p)
)

,

s2(ǫ) = in, ∀p∈Pt

(

s2(〈., 2〉p) = s2(p)
)

,

∀p∈Pt

(

s2(〈., 1〉p) = s1(〈., 1〉〈push, 1〉p)
)

,

∀p∈Pt

(

s2(〈., 1〉p) 6= s1(〈., 1〉〈pop, 1〉p)
)

.

Figure 1 illustrates these constraints using directed graphs.
Note that the concrete values of s1(〈., 1〉〈push, 1〉), s1(〈., 1〉〈pop, 1〉), and

s2(〈., 1〉) cannot be determined solely by stack; they are determined only by
supplying a context in which the predicate stack is used. For example, if

– 7 –

t
1 2

•
1 2

u
1

•
1 2

o
1

s
1 2

•
1 2

o
1

u
1

•
1 2

≠

o
1

u
1

≠

t : test
s : stack
o : pop
u : push
• : list constructor
 : in
 : out

Figure 2. Mode constraints after merging

some other clause contains the body goals test(10,S) and stack(S,[]) and
S does not occur elsewhere in the clause, these two occurrences of S are con-
strained to exactly inverse modes. Hence s1(〈., 1〉〈push, 1〉) and s2(〈., 1〉) are
constrained to in, and s1(〈., 1〉〈pop, 1〉) is constrained to out. Figure 2 illus-
trates the directed graphs with these additional constraints. The two figures
indicate that the operation of merging independently obtained constraints is
very closely related to the unification of rational trees.

The mode of a predicate may not be uniquely determined even if a com-
plete context is provided. However, all that we need is the information rele-
vant to code generation. For instance, the value of t2(〈f, i〉q) is not constrained
at all for any f 6= ‘.’, i∈Nf , and q ∈ Pt, but this causes no problem. Note
that the analysis requires as part of the context information the modes of
top-level goals and of predefined processes such as I/O processes.

It is easy to see that a program for which the mode analysis succeeds
is guaranteed to follow the conventions listed in the beginning of Section 2
and the intended meaning (Section 2.1) of the obtained mode; the analysis
is sound in this sense. As an important corollary, a program for which the
mode analysis succeeds is guaranteed not to fail except due to occur check.

The above analysis is based on mode constraints locally imposed by indi-
vidual program clauses rather than on global dataflow analysis using iterative

– 8 –

abstract interpretation. This means that it is well amenable to separate com-
pilation of large programs, though the code for unification whose mode cannot
be determined locally should be supplied at link time. Alternatively, one could
declare the modes of global predicates of modules so that more object code
can be determined at compile time. In this case, mode analysis at link time
acts as mode checking that checks the consistency of the declared constraints.
Thus the constraint-based mode system provides us with a unified framework
for mode declaration, checking and inference.

3. A Message-Oriented Implementation Technique

The mode system in Section 2 has two major applications to implementa-
tion: One is the optimization of conventional implementations based on what
we call process-oriented scheduling, and the other is a new implementation
scheme based on message-oriented scheduling [6]. This paper focuses on mul-
tiprocessing within one processor, though we believe that the techniques we
propose here can be utilized also in parallel implementations.

Since the rest of this section deals with message-oriented scheduling, here
we briefly discuss the optimization of process-oriented implementation. In
process-oriented scheduling, mode information enables us to compile a body
unification goal into assignment to a variable. Furthermore, in some cases
we can easily guarantee that the variable has been fully dereferenced and
that no goals are suspending on that variable [6]. That is, when starting
or resuming the execution of a goal g, we can replace (some of) the output
occurrences of variables v1, . . . , vn in g by fresh variables u1, . . . , un and
delay the unification between the vi’s and the ui’s until all the subgoals of
g have succeeded, suspended, or been swapped out. This is an interesting
application of anti-substitution [8].

3.1 Process- vs. Message-Oriented Scheduling

In conventional, process-oriented scheduling, a scheduler tries to reduce the
number of process switching. Once a goal starts or resumes execution, its
subgoals run as long as possible (unless they are swapped out) before another
goal in a goal queue gains control. A stream connecting goals acts as a buffer
whose contents are processed at once whenever possible. Process-oriented
scheduling can be rephrased as throughput-oriented scheduling.

Message-oriented scheduling is at the other extreme. Whenever a goal
sends a message to another, it does not buffer the message but transfers
control to the receiver goal so that the receiver may consume the message
immediately. (For simplicity, suppose for a while that interprocess communi-
cation is one-to-one, which is the case with Program 1.) The receiver should
be ready to receive and handle the message. To this end, message-oriented
scheduling tries to run the consumer of a stream ahead of its producer and
to make the consumer suspend, while process-oriented scheduling would try
to run the producer ahead of the consumer. Mode analysis enables the iden-
tification of the producer and the consumer of a stream. Message-oriented

– 9 –

scheduling can be rephrased as response-oriented scheduling, because quicker
responses can be expected in bidirectional communication.

3.2 A Simple Example

For example, consider a process that simply copies the contents of the input
stream to the output stream:

p([A|X1],Y) :- true | Y=[A|Y1], p(X1,Y1).

Of the two body goals, process-oriented scheduling first executes Y=[A|Y1]

to buffer the datum A, and then executes p(X1,Y1) efficiently with the aid of
last-call optimization [12].

In contrast, message-oriented scheduling first executes p(X1,Y1), thus
restoring the dormant state of the process, and then executes Y=[A|Y1] as
message passing; that is, it transfers control and the datum A together to
the consumer of the stream Y. The possible source of efficiency is the efficient
transfer of control and data which does not use a goal queue or a data buffer.
To achieve this, we implement a stream not as a list but as a special two-word
cell (called a communication cell) pointing to the code (the resumption ad-
dress) and the environment (the goal record) of the consumer goal. These two
entries are initialized by executing the consumer goal of Y prior to the inter-
process communication. A message to be transferred is placed on a hardware
register called a communication register. We could apply the same implemen-
tation scheme to non-stream data structures also, but in this paper we choose
not to do so because the overhead of creating a communication cell will pay
only when it is used many times.

In fact, the execution of p(X1,Y1) involves no operation (until the next
message arrives at the input stream), because

(1) the goal record can be inherited from the parent goal,
(2) the first argument recorded by the goal record continues to point to the

same communication cell,
(3) the second argument also continues to point to the same communication

cell, and
(4) the goal can be immediately suspended at the same instruction at the

beginning of the code of p.

So the only things to be done in the body turn out to be

(1) to let the ‘current’ goal record be the one pointed to by the communica-
tion cell for the second argument, and

(2) to transfer control to the code pointed to by that communication cell.

Note here that the message A need not be loaded to the communication reg-
ister because it had already been loaded when control was transferred to this
clause. The above clause is thus compiled into a very efficient code. More
complex cases will be discussed in Section 3.3.

A process-oriented implementation often caches (part of) a goal record
on hardware registers, but this should not be done in a message-oriented
implementation in which process switching takes place frequently.

– 10 –

3.3 Message-Oriented Scheduling in General Cases

One question that arises when generalizing the above scheme is how a compiler
can distinguish between variables representing streams and those representing
non-stream data. Due to space limitations, we only note that a constraint-
based type system similar to the mode system in Section 2 can be employed
for this purpose. The type system will infer constraints on a feasible typing
function t : Pa → {stream,nonstream}, where

(1) t(p) = stream means that only the constructors of (empty and non-
empty) streams can appear at p, and

(2) t(p) = nonstream means that the constructors of streams cannot appear
at p.

The type system proposed in [13] could be used also, though that system is
based on type checking rather than type inference.

Another question is how to cope with communication that is not one-
to-one. A stream may have two or more consumers or no consumer at all
(one-to-many/zero communication), and a goal may consume two or more
streams in various ways (many-to-one communication).

The easiest way to implement one-to-many/zero communication is to
transform it into one-to-one communication. For example, when a goal com-
mits to the following clause,

consumer([kill|X]) :- true | true.

a dummy process is created which eats up the messages in X. When there
are two or more consumers initially or when a single consumer splits into two
or more, a process for distributing messages is created. There may be more
efficient ways of handling these cases, but we do not consider them here since
our primary concern is to implement one-to-one communication as efficiently
as possible. One possibility is to use an ordinary implementation of lists for
one-to-many/zero communication.

Implementation of many-to-one communication seems more important,
since it is ubiquitous in concurrent programming in GHC. We should consider
two cases: non-selective message receiving and selective message receiving.

By non-selective message receiving we mean the receiving of a message
that can be handled immediately; an example is message receiving found in
a nondeterministic merge program:

merge([A|X1],Y,Z) :- true | Z=[A|Z1], merge(X1,Y,Z1).

merge(X,[A|Y1],Z) :- true | Z=[A|Z1], merge(X,Y1,Z1).

Non-selective message receiving can be implemented exactly in the same way
as one-to-one communication. The communication cells of different input
streams point to different resumption addresses for handling incoming mes-
sages, and messages in one input stream are handled independently of mes-
sages in the other input stream.

By selective message receiving we mean message receiving found in the
order-preserving merging of two streams of integers:

– 11 –

omerge([A|X1],[B|Y1],Z) :- A< B |

Z=[A|Z1], omerge(X1,[B|Y1],Z1).

omerge([A|X1],[B|Y1],Z) :- A>=B |

Z=[B|Z1], omerge([A|X1],Y1,Z1).

Two numbers, one from each input stream, are necessary for the first com-
mitment. Suppose the first number arrives at the first stream. Then the
omerge goal records it and waits for another number to arrive at the second
stream. However, the second number may arrive at the first stream again. In
that event, the omerge goal should buffer that number for later use. Buffered
messages, if any, must be used first whenever a process is ready to accept new
ones.

Another example that requires buffering is the append program:

append([], Y,Z) :- true | Z=Y.

append([A|X1],Y,Z) :- true | Z=[A|Z1], append(X1,Y,Z1).

Messages arriving at the second input stream must be buffered until the first
input stream is closed; then they must be sent through the output stream Z.
In either example, it is the responsibility of a receiver goal, rather than of a
stream, to buffer incoming messages that cannot be handled immediately.

In general, buffering is required for those streams through which messages
not ready to be handled may possibly be sent. Selective message receiving
discussed above is one possible reason for this, but the need of buffering can
arise without many-to-one communication also.

First, a receiver goal may suspend upon the content of a message when
it is sent before sufficiently instantiated. This can happen in the last six
clauses of nt-node in Program 1. In that event, subsequent messages must
be buffered until the message in question has been handled.

Second, it is not always possible to run the consumer of a stream ahead
of the producer; consider two goals g1(X,Y) and g2(Y,X) where g1 consumes
X and g2 consumes Y. We must execute these goals so that no messages are
lost. One solution to this example is

(1) first to make sure that g1 buffers incoming messages from X,
(2) then to run g2 until it suspends, and
(3) finally to run g1.

Third, a message sent by a goal g may possibly arrive at g itself or may
cause another message to be sent back to g. Consider the following clause:

p([a|X1],Y,Z) :- true | Y=[b|Y1], Z=[c|Z1], p(X1,Y1,Z1).

When g commits to this clause upon receiving a message a1, it will send
two messages b1 and c1 (the suffixes are for distinguishing between different
messages with the same content). Under message-oriented scheduling, how-
ever, sending b1 may cause another message a2 to arrive at g before c1 is
sent. The goal g should therefore buffer incoming messages until c1 is sent,
because otherwise the order of messages on the stream Z would be reversed.
Fortunately, buffering for this reason is not needed when only one message is
sent in response to each incoming message. To generalize, suppose a goal

– 12 –

• should send n messages in response to an incoming message and
• hasn’t received any message in response to the first n− 1 messages.

Then, the last message can be sent without preparing for buffering, and more-
over, the control need not be returned to the goal after the message has been
handled by the receiver. This could be called last-send optimization, which is
analogous to the last-call optimization of Prolog [12].

3.4 Preliminary Evaluation

We are designing an abstract machine instruction set for message-oriented
scheduling. Initial performance evaluation using hand-compiled intermediate
codes (which were mechanically translated into native codes of VAX11/780)
was quite encouraging. First, using Program 1, we measured the processing
time of 800 search commands given to a binary process tree with 721 non-
terminal nodes, and compared the result with the numbers on a native-code,
process-oriented implementation on VAX11/780, GHC/V [5]:

Message-oriented: 0.75 sec.
Process-oriented, batch: 1.04 sec.
Process-oriented, interactive: 2.09 sec.

‘Batch’ means that 800 commands were given at a time and ‘interactive’
means that each command was issued after receiving the result of the previous
command. The way commands were given made no difference in message-
oriented scheduling.

For this program, message-oriented scheduling was more efficient than
process-oriented scheduling even when all the commands were given at a time.
The reason seems to be that message-oriented scheduling does not perform
cons for each message. It is noteworthy that a binary tree program in C using
records, pointers, and iteration took 0.31 sec. for the same data on the same
machine. Another point to note is that the message-oriented object code
knows when each communication cell can be explicitly deallocated.

Second, we measured how much message-oriented scheduling improved
the performance of a demand-driven program. The statistics obtained from
data-driven and demand-driven prime number generators to compute 168
primes up to 1000 are as follows:

data-driven demand-driven
Message-oriented: 0.83 sec. 1.38 sec.
Process-oriented: 1.23 sec. 4.96 sec.

Third, we tried a typical benchmark program, naive reverse. GHC/V,
employing 32-bit words, ran naive reverse at 33kRPS (kilo-reductions per
second), and this number improved to 53kRPS by optimization based on
the mode analysis [6]. Our message-oriented implementation, employing 64-
bit words, ran naive reverse at 55kRPS and improved the space complexity
(down to linear space). It is interesting to see how a naive reverse program
runs under message-oriented scheduling.

– 13 –

Unfortunately, not all programs we tried were made more efficient. An
8-queens program, which made heavy use of one-to-many communication, ran
about 3 times slower than on GHC/V, where we employed the naive scheme
described in Section 3 to implement one-to-many communication. However,
we expect that the conventional representation and scheduling schemes and
the proposed ones can naturally co-exist in a single implementation, since our
preliminary implementation was actually obtained by modifying GHC/V.

4. Conclusion and Related Works

We have proposed a new implementation technique of Flat GHC that con-
trasts sharply with previous techniques. A significance of this work is that
the use of Flat GHC processes for programming dynamic, mutable data struc-
tures was shown to be more realistic as one might expect. Although our
primary goal was to optimize storage-intensive programs and demand-driven
programs, the proposed technique worked quite well also for computation-
intensive programs which did not use one-to-many communication. The tech-
nique avoids conses for interprocess communication except when buffering is
essential, which is another important aspect of the technique. We believe that
our technique can be utilized also in parallel implementations, though much
work has to be done to demonstrate it. One of our next goals is to implement
distributed dynamic data structures efficiently.

The technique is based on a mode system which is simple and yet powerful
enough to analyze most programs. Although it could be used just as a tool
for program analysis, it was designed to be used as a language construct that
could be included in a subset of Flat GHC. The mode system helps both
optimization and the static detection of program errors. Furthermore, it will
make the use of native codes more realistic.

Our system could be understood in the framework of abstract interpre-
tation, though we believe the current constraint-based presentation is simple
and comprehensive. It is worth noting that the assumptions on our program-
ming conventions enabled us to compute modes in a way similar to the unifi-
cation of rational trees. Iterative computation of fixpoints, which is often used
in abstract interpretation to capture the properties of recursive programs, is
thus avoided.

Some concurrent logic languages such as Strand [2] introduce an assign-
ment primitive (v := t) instead of unification to generate bindings. However,
without compile-time mode analysis, an assignment goal must still check if
the left-hand side is a variable. In our framework, the assignment primitive
can be considered as identical to unification except that it implicitly declares
that m(〈:=, 1〉) = out and m(〈:=, 2〉) = in.

Concurrent languages Doc [3] and A′ UM [14] attempt to simplify the
implementation of concurrent logic languages by allowing each variable to oc-
cur only twice and letting programmers distinguish between input and output
occurrences using annotations. Again, these annotations can be regarded as
mode declarations, and the static or dynamic checking of whether the dec-
larations are consistent is still needed. They may contribute to readability

– 14 –

and/or ease of compilation, but they are optional because they can be inferred
in principle.

Acknowledgments

We are indebted to Koichi Furukawa and Kenji Horiuchi for valuable com-
ments and suggestions.

References

[1] Debray, S. A., Static Inference of Modes and Data Dependencies in Logic
Programs. ACM TOPLAS, Vol. 11, No. 3 (1989), pp. 418–450.

[2] Foster, I. and Taylor, S., Strand: A Practical Parallel Programming Lan-
guage. In Proc. 1989 North American Conf. on Logic Programming,
Lusk, E. L. and Overbeek, R. A. (eds.), MIT Press, 1989, pp. 497–512.

[3] Hirata, M., Programming Language Doc and Its Self-Description or, X =
X is Considered Harmful. In Proc. 3rd Conf. of Japan Society of Software

Science and Technology, 1986, pp. 69–72.
[4] Kimura, Y. and Chikayama, T., An Abstract KL1 Machine Instruction

Set. In Proc. 1987 Symp. on Logic Programming, IEEE Computer Soci-
ety, 1987, pp. 468-477.

[5] Morita, M., Yoshimitsu, H., Dasai, T. and Ueda, K., GHC Compiler
on a General-Purpose Computer. In Proc. 35th Annual Convention IPS

Japan, 1987, pp. 759–760 (in Japanese).
[6] Morita, M. and Ueda, K., Optimization of GHC Programs. In Proc.

the Logic Programming Conference ’89, ICOT, 1989, pp. 203–214 (in
Japanese).

[7] Shapiro, E. Y. (ed.), Concurrent Prolog: Collected Papers, Vol. 1–2,
1987, The MIT Press.

[8] Ueda, K., Guarded Horn Clauses. Doctoral thesis, Faculty of Engineer-
ing, Univ. of Tokyo, 1986.

[9] Ueda, K., Guarded Horn Clauses: A Parallel Logic Programming Lan-
guage with the Concept of a Guard. ICOT Tech. Report TR-208, 1986,
ICOT. Also in Programming of Future Generation Computers, Nivat, M.
and Fuchi, K. (eds.), North-Holland, 1988, pp. 441–456.

[10] Ueda, K., Parallelism in Logic Programming. In Information Processing

89, Ritter, G. X. (ed.), North-Holland, 1989, pp. 957–964.
[11] Ueda, K. and Furukawa, K., Transformation Rules for GHC Programs.

In Proc. Int. Conf. on Fifth Generation Computer Systems 1988, ICOT,
1988, pp. 582–591.

[12] Warren, D. H., An Improved Prolog Implementation Which Optimises
Tail Recursion. In Proc. Logic Programming Workshop, Tärnlund, S. -Å.
(ed.), Debrecen, Hungary, 1980, pp. 1–11.

[13] Yardeni, E. and Shapiro, E., A Type System for Logic Programs. In [7],
Vol. 2, pp. 211–244.

[14] Yoshida, K. and Chikayama, T., A′ UM — A Stream-Based Concurrent
Object-Oriented Language, in Proc. Int. Conf. on Fifth Generation Com-

puter Systems 1988, ICOT, 1988, pp. 638–649.

– 15 –

