
{ 1 {

Making Exhaustive Searh Programs

Deterministi, Part II

Kazunori Ueda

Institute for New Generation Computer Tehnology

4-28, Mita 1-home, Minato-ku, Tokyo 108 Japan

Abstrat. This paper omplements the previous paper \Making Ex-

haustive Searh Programs Deterministi" whih showed a systemati

method for ompiling a Horn-lause program for exhaustive searh

into a GHC program or a Prolog program with no baktraking. This

time we present a systemati method for deriving a deterministi logi

program that simulates oroutining exeution of a generate-and-test

logi program. The lass of ompilable programs is suÆiently general,

and ompiled programs proved to be eÆient. The method an also

be viewed as suggesting a method of ompiling a naive logi program

into (very) low-level languages.

1. INTRODUCTION

This paper omplements the previous paper [14℄ by the author

and extends the method desribed in it. The previous paper showed a

systemati method for ompiling a Horn-lause program into a GHC

[13℄[15℄[16℄ program or a deterministi Prolog program that returns

a list of all the solutions of the original program. The method om-

piled away the primitives for olleting solutions suh as bagof, whih

had usually been onsidered as important extension to Prolog. The

ompilation generally retained the eÆieny of original programs on

the same ompiler-based Prolog system, and a ompiled program even

outperformed the original one when the number of solutions was large

relative to the searh spae. We showed the lass of Horn-lause pro-

grams amenable to the method and argued how it is restritive. These

results ould be summarized as follows:

(1) A prospet was obtained for eÆient (though not optimal) paral-

lel exeution of searh problems using a general-purpose parallel

language like GHC as a base language.

{ 2 {

� Original program

append([℄, Z,Z).

append([A|X℄,Y,[A|Z℄) :- append(X,Y,Z).

- - +

� Calling form and mode information: bagof((X,Y),append(X,Y,Z),S)

(`+': input (ground upon all); `-': output (ground upon suess))

� Mode analysis using the above mode information

- - +

append([℄, Z, Z).

- - + - - +

append([A|X℄,Y,[A|Z℄) :- append(X,Y,Z).

� Pre-transformation (moving output uni�ation)

append([℄, Z,Z).

append(X2, Y,[A|Z℄) :- append(X,Y,Z), /*L1*/ X2=[A|X℄.

� Compiled program returning the same result

Calling form: ..., ap(Z,'L0',S,[℄), /*L0*/...

% Arg1: input arg; Arg2: ontinuation;

% Arg3,4: d-list (head and tail) of output pairs

ap(Z,Cont,S0,S2) :- true | ap1(Z,Cont,S0,S1), ap2(Z,Cont,S1,S2).

% ap1 for unit lause and ap2 for reursive lause

ap1(Z,Cont,S0,S1) :- true | ont(Cont,[℄,Z,S0,S1).

ap2([A|Z℄,Cont,S0,S1) :- true | ap(Z,'L1'(A,Cont),S0,S1).

ap2(Z,

-

, S0,S1) :- otherwise | S0=S1.

ont('L1'(A,Cont),X,Y,S0,S1) :- true | ont(Cont,[A|X℄,Y,S0,S1).

ont('L0', X,Y,S0,S1) :- true | S0=[(X,Y)|S1℄.

Program 1. Compilation of a list deomposition program.

(2) Horn-lause logi an now be regarded as a user language of GHC

for searh problems.

Exploiting parallelism in an obtained GHC program is quite easy,

beause di�erent searh paths are examined by independent AND-

parallel goals without ommuniation. This means that an obtained

program ould be proessed using restrited AND-parallelism [5℄ also.

A deterministi program obtained by the previous method simu-

lates OR-parallel and AND-sequential exeution of the original pro-

gram. The original OR-parallelism is ompiled into AND-parallelism

as stated above, and the sequential exeution of onjuntive goals is

{ 3 {

realized by passing a ontinuation around. Solutions are olleted by

onatenating (possibly empty) di�erene lists of solutions returned

by the paths of a proof tree.

The rux of the tehnique is to move output uni�ation (i.e., uni-

�ation for onstruting result values) from a lause head to the end

of the lause. In general, OR-parallel searh requires a multiple envi-

ronment mehanism, beause inompatible bindings may be generated

when a goal is rewritten di�erently by di�erent program lauses at the

same time. However, if output uni�ation is moved, head uni�ation

will not return partial results any more, but results will be onstruted

in a bottom-up manner. Thus a multiple environment mehanism is

made inessential. Program 1 shows ompilation of an append program

to be used for deomposing a list into two. We use mode delaration

and mode inferene for determining whether eah argument of a goal

is for providing an input value or for reeiving a result value.

However, assuming AND-sequentiality often auses inompatibil-

ity between larity and eÆieny of a program, as many people have

pointed out. For instane, Program 2 for solving the 8-queens problem

is said to be naive and lear, beause it well separates the generator

(a permutation program) and the tester for the generate-and-test-type

problem. This program, however, proves to be very ineÆient under

AND-sequential exeution (see Setion 5), beause the tester starts af-

ter the generator has plaed all the queens. The situation is even worse

with a program for �nding ayli paths on a graph shown in Setion

4.2; the generator generates an in�nite number of andidate solutions,

so although the number of �nal solutions is �nite, the program would

not terminate. For this reason, we usually fuse a generator and a tester

in Prolog programming and write a program like Program 3 . Pro-

gram 3 is not so omplex, but it obsures the fat that permutation

generation is a subproblem of the 8-queens problem.

2. THE PROBLEM

Our goal is to derive systematially (i.e., in a mehanizable man-

ner) an eÆient deterministi logi program that returns a list of all

the solutions of the original generate-and-test program. We must om-

pile oroutining to ahieve this; when the goal perm([1, : : : ,8℄,X) in

Program 2 instantiates X to [1,2|X2℄, nohek(X) must be invoked

to detet that [1,2|X2℄ annot be a solution for any instane of X2.

At the same time, we must ompile away the bagof primitive that is

outside Horn-lause logi.

{ 4 {

:- bagof(X, eightqueens(X), B).

eightqueens(X) :- perm([1,2,3,4,5,6,7,8℄,X) // nohek(X).

perm([H|T℄,[A|P℄) :- del([H|T℄,A,L), perm(L,P).

perm([℄, [℄).

del([H|T℄,H, T).

del([H|T℄,A,[H|T2℄) :- del(T,A,T2).

nohek([H|T℄) :- qsafe(H,T,1), nohek(T).

nohek([℄).

qsafe(U,[H|T℄,N) :- H+N=\=U, H-N=\=U, M is N+1, qsafe(U,T,M).

qsafe(

-

, [℄,

-

).

Program 2. Naive 8-queens program.

eightqueens(X) :- eightq([1,2,3,4,5,6,7,8℄,[℄,X).

eightq([H|T℄,R,P) :-

del([H|T℄,A,L), qsafe(A,R,1), eightq(L,[A|R℄,P).

eightq([℄, R,P) :- rev(R,[℄,P).

del([H|T℄,H, T).

del([H|T℄,A,[H|T2℄) :- del(T,A,T2).

qsafe(U,[H|T℄,N) :- H+N=\=U, H-N=\=U, M is N+1, qsafe(U,T,M).

qsafe(

-

, [℄,

-

).

rev([A|X℄,Y,Z) :- rev(X,[A|Y℄,Z).

rev([℄, Y,Y).

Program 3. 8-queens program optimized for sequential exeution.

One possible method is to derive an eÆient Prolog program like

Program 3 �rst and then to derive an exhaustive searh program from

it using the previous method. Methods for the �rst step have been pro-

posed by many researhers [1℄[3℄[7℄[8℄[11℄. Of these, Gallagher [7℄ and

Bruynooghe et al. [1℄ use meta-level prediates that desribe dedu-

tion steps of the goals given as their arguments. Obtained programs,

however, are not ompilable by the previous method. They preserve

shared variables between generators and testers instantiated in a top-

down manner, whih annot be analyzed by the mode analysis.

Clark [3℄, Gregory [8℄, and Seki and Furukawa [11℄ use methods

based on unfold/fold transformation [12℄. However, it seems that only

the method of [11℄ an derive Program 3 from Program 2; the deriva-

{ 5 {

tion requires a new rule in addition to those in [12℄. Moreover, it has

not been made lear how these methods an be mehanized for what

lass of Horn-lause programs.

We hose to ompile a generate-and-test logi program diretly

to a deterministi program by extending the analysis and ompilation

method of the previous paper. Thus our method is not just a diret

sum of the known tehniques stated above. One reason for taking this

approah is that it seemed to be more amenable to mehanization.

Another reason is that by using the mode system, the suÆient on-

ditions for the ompilation an be expliitly de�ned in terms of the

data-ow of a program. The main problems to be solved are how to

ompile away the shared variable between a generator and a tester and

how to extend the mode system for the analysis of oroutining.

3. METHOD AND EXAMPLE

This setion exempli�es how we extend the previous method to

handle oroutining, using Program 2.

First of all, we introdue a new syntax for speifying oroutin-

ing. We write g(: : : X : : :) // t(: : :X : : :) for the pair of a generator

and a tester to be run onurrently, where X is the shared variable

instantiated by g to a list of ground terms in a top-down manner and

examined by t for its adequay. This pair of goals an be regarded

as a goal g(: : :X : : :) onstrained by t(: : :X : : :), and an appear in

a sequene of goals exeuted sequentially from left to right. All the

arguments exept X must be ground, and X unde�ned, when the pair

of goals starts.

Our goal is to detet failure as soon as possible by exeuting t in-

rementally eah time g instantiates X. Let us trae one of the possible

exeution paths of Program 2.

When perm([1, : : : ,8℄,X) starts and the goal del in the �rst

lause of perm sueeds, the �rst element of X is instantiated to some

integer between 1 and 8, inlusive. The goal nohek(X) is invoked

at this point. In resolution priniple, we ould of ourse exeute

nohek(X) before X is instantiated, but we have suspended it be-

ause we hose to use it for heking the given value of X.

Assume X is instantiated to [1|X1℄. Then from nohek(X) we

an derive qsafe(1,X1,1) and nohek(X1) using the �rst lause.

However, the derived goals must be suspended until X1 is instanti-

ated, beause otherwise X1 would be instantiated by the tester. So we

{ 6 {

suspend the exeution of nohek(X) and resume perm([1, : : : ,8℄,

X). The reursive all to perm invokes X1 to, say, [5|X2℄. Now from

the suspended goal qsafe(1,X1,1) we an derive 5+1=\=1, 5-1=\=1,

M is 1+1 and qsafe(1,X2,M), of whih the �rst three goals an be

exeuted immediately in suess and qsafe(1,X2,2) remains. From

another suspended goal nohek(X1), we an derive qsafe(5,X2,1)

and nohek(X2), both of whih must be suspended.

This proedure will �nally result in one of the following situations:

(1) Some all to `=\=' derived from qsafe fails.

(2) X is instantiated to a omplete list.

The �rst ase means that the exeution path we have been traing

results in failure. In the seond ase, X has been instantiated to, say,

[1,5,8,6,3,7,2,4|X8℄, and then X8 is instantiated to [℄ by the se-

ond lause of perm. In this ase, the nine goals

qsafe(1,X8,8), : : : , qsafe(4,X8,1) and nohek(X8)

have been derived from nohek(X), and they all sueed when X8 is

bound to [℄. Now both perm([1, : : : ,8℄,X) and nohek(X) have

sueeded and we have found a solution X=[1,5,8,6,3,7,2,4℄.

The important point in the above proedure is that the following

an be known by stati analysis:

(1) The next element of X is determined when the all to del in the

�rst lause of perm has sueeded; and the list X is losed with [℄

when resolution with the seond lause of perm has sueeded.

(2) When the next element of X is determined, we an derive two

goals, a qsafe and a new nohek, from a suspended nohek.

Moreover, if there exists a suspended qsafe, four goals an be

derived from it, and they an be exeuted immediately exept for

the reursive qsafe. When X is terminated by [℄, all suspended

goals sueed.

Furthermore, the above properties do not depend on the spei� value

[1, : : :,8℄ of the �rst argument of perm, but only on the fat that

it is ground. This suggests that we an statially analyze oroutining

as mode analysis. The tehnique will be desribed later in Setion 4;

before that we will derive a deterministi 8-queens program �rst.

We put labels in the original program and move output uni�ation

(Program 4). These labels are used as the onstrutors of a ontinua-

tion. Sine the prediate del does not diretly manipulate the shared

{ 7 {

eightqueens(X) :-

perm([1,2,3,4,5,6,7,8℄,X) // nohek(X)

L1: (onstrut X).

perm([H|T℄,X) :-

del([H|T℄,A,L),

L2: X=[A|P℄, (send A to nohek(X) and invoke it)

L3: perm(L,P).

perm([℄, [℄) :-

(X is terminated, so nohek(X) sueeds).

del([H|T℄,H,T).

del([H|T℄,X,Y) :-

del(T,A,T2),

L4: X=A, Y=[H|T2℄.

Program 4. Labeled 8-queens program (nohek and qsafe are

omitted; see Program 2 for them).

variable X of the generator-tester pair, output uni�ation is moved to

the end of the lause so that the output values are onstruted in an

bottom-up manner (see Setion 1). On the other hand, the predi-

ate perm determines the value of the shared variable X. To realize

oroutining, we must ship out a new element A at L2 (i.e., as soon

as it is determined by the goal del([H|T℄,A,L)), where we invoke

nohek(X) (or goals derived from it) and do possible derivations. If

the new element A is appropriate, the derivation results in a set of

suspended goals and the tasks following L3 is exeuted. Otherwise,

the derivation fails and L3 is not reahed.

The seond lause of perm is for losing the shared variable X.

When it is seleted, all the suspended goals that have been derived

from nohek(X) are just disarded, beause the following are stati-

ally known:

(1) When X is losed, possible remaining goals derived from nohek(

X) are either of the form qsafe(: : : Xn : : :) or of the form no-

hek(Xn), where Xn is a sublist of X just being bound to [℄.

(2) All these goals sueed when Xn is instantiated to [℄.

L1 is the sole return point from the seond lause of perm. Reah-

ing L1 means that a solution has been obtained, but sine we au-

mulate the elements of X in reverse order, we reverse them again at

L1 to onstrut the �nal value of X. The reason for aumulating the

{ 8 {

elements of X in reverse order is that we want to represent the inter-

mediate values of X always as ground terms so that they an be shared

when the urrent searh paths split in future.

Program 5 shows a deterministi program derived from Program 4.

The ontrol ow of the generator perm desribed above is implemented

in exatly the same ontinuation management method as the previous

one: The prediates e, p and d orrespond to eightqueens, perm and

del, respetively; d1 and d2 orrespond to the �rst and the seond

lauses of the non-deterministi prediate del; ont0 , ont1 , ont24

and ont3 are for ontinuation management (we use a typewriter font

for entities of original programs and an itali font for ompiled programs).

The only di�erene is that the information on the tester nohek and

a partial solution of X are arried around in new forms by p (the seond

and the third arguments, respetively) and by the goals alled by p.

The last two arguments of eah prediate represent a di�erene list of

obtained solutions.

On the other hand, the ontrol ow of the tester is implemented in

a di�erent manner. Suspended goals derived from nohek(X) are put

in a dediated ontinuation (whih we all a subontinuation hene-

forth) managed as a loal datum of perm

1)

. In Program 5, Cont rep-

resents the main ontinuation and Contn represents the subontinu-

ation. The initial value n of the subontinuation, whih means there

is one goal nohek to be solved, is set in the sole lause of e. The

tasks represented by Contn are proessed by nresume. The prediate

nresume is invoked when the seond lause of ont24 reognizes that

the ontrol has reahed L2, does possible derivations from the urrent

Contn using the value H of the next element of the shared variable,

and reates a new subontinuation.

Contn examined by nresume has either the form n or the form

q(U,N,Contn

0

). The onstant n represents the goal nohek(Xn), and

the term q(U,N,Contn

0

) represents the goal qsafe(U,Xn,N) and the

goals represented by Contn

0

, where Xnmeans the sublist of X whih was

instantiated to the form [H|Xn'℄ just before the urrent invoation

of nresume. A subontinuation is omposed only of ground input

arguments for qsafe and the onstrutors n and q ; the shared variable

X has been ompiled away. The values of the elements of X are given

one at a time as the �fth argument of nresume.

The �rst lause of nresume exeutes three of the four goals de-

rived from qsafe(U,[H|Xn'℄,N) immediately, and staks the remain-

ing reursive all to the third argument ContnR (R stands for re-

{ 9 {

Calling form: :- e('L0',B,[℄).

e(Cont,S0,S1) :- true |

p([1,2,3,4,5,6,7,8℄,n,[℄,'L1'(Cont),S0,S1).

p([℄, Contn,SR,Cont,S0,S1) :- true | ont1(Cont,SR,S0,S1).

p([H|T℄,Contn,SR,Cont,S0,S1) :- true |

d([H|T℄,'L2'(Contn,SR,Cont),S0,S1).

p(L,

-

,

-

,

-

, S0,S1) :- otherwise | S0=S1.

d(L,Cont,S0,S2) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).

d1([H|T℄,Cont,S0,S1) :- true | ont24(Cont,H,T,S0,S1).

d1(L,

-

, S0,S1) :- otherwise | S0=S1.

d2([H|T℄,Cont,S0,S1) :- true | d(T,'L4'(H,Cont),S0,S1).

d2(L,

-

, S0,S1) :- otherwise | S0=S1.

nresume(q(U,N,Contn),SR,ContnR,Cont,H,S0,S1) :-

H+N=\=U, H-N=\=U |

M is N+1, nresume(Contn,SR,q(U,M,ContnR),Cont,H,S0,S1).

nresume(n, SR,ContnR,Cont,H,S0,S1) :- true |

rev2(ContnR,q(H,1,n),NewContn),

ont3(Cont,NewContn,[H|SR℄,S0,S1).

nresume(

-

,

-

,

-

,

-

,

-

,S0,S1) :- otherwise |

S0=S1.

ont0('L0',S,S0,S1) :- true | S0=[S|S1℄.

ont1('L1'(Cont),SR,S0,S1) :- true |

rev(SR,[℄,S), ont0(Cont,S,S0,S1).

ont24('L4'(H,Cont), A,T2,S0,S1) :- true |

ont24(Cont,A,[H|T2℄,S0,S1).

ont24('L2'(Contn,SR,Cont),A,T2,S0,S1) :- true |

nresume(Contn,SR,n,'L3'(T2,Cont),A,S0,S1).

ont3('L3'(T2,Cont),Contn,SR,S0,S1) :- true |

p(T2,Contn,SR,Cont,S0,S1).

rev([A|X℄,Y,Z) :- true | rev(X,[A|Y℄,Z).

rev([℄, Y,Z) :- true | Y=Z.

rev2(q(A,B,X),Y,Z) :- true | rev2(X,q(A,B,Y),Z).

rev2(n, Y,Z) :- true | Y=Z.

Program 5. Compiled 8-queens program.

{ 10 {

versed). The inequalities are exeuted in a guard sine they may fail;

if they should fail, the di�erene list for olleting solutions is short-

iruited by the third lause. The seond lause reognizes the goal

nohek([H|Xn'℄), reates a new subontinuation NewContn from

(i) the goals qsafe(H,Xn',1) and nohek(Xn') derived from it

(whih are represented as q(H,1,n)) and

(ii) the goals staked in ContnR in reverse order

using rev2 , and alls ont3 to proess the tasks following L3.

The elements of the shared variable X are staked in reverse order

(as stated above) in SR. SR is initialized to [℄ in the sole lause of

e, and eah new element is staked at the seond lause of nresume

when it passes the ontrol to L3. SR is reversed by ont1 as the task

following L1. The prediate ont1 is alled from the �rst lause of p.

This lause disards Contn, beause the orresponding original lause

(the �rst lause of perm) loses the shared variable X, whih auses all

the suspended goals derived from nohek(X) to sueed as we stated

above.

4. GENERAL COMPILATION PROCEDURE

The ompilation proedure omprises the following:

(1) mode analysis,

(2) pre-transformation to a normal form, and

(3) ompilation to a deterministi program.

The primary issue for realizing automati ompilation is that the suÆ-

ient onditions for being ompilable are given in a statially deidable

manner. This deision is done as part of the mode analysis desribed

in Setion 4.1. Setion 4 desribes the mode analysis in detail and the

ompilation rather briey.

4.1 Mode Analysis

The purpose of the mode analysis is to obtain information for

the ompilation by statially analyzing data-ow that will happen at

run time. Thus it is a kind of abstrat interpretation [10℄. While

the previous paper used two modes for the analysis, we now use the

following four modes and assign one of them to eah argument of the

body goals of a lause:

{ 11 {

`+' (input) The preeding omputation (or the top-level goal lause)

guarantees that this argument is instantiated to a ground term

when the goal starts.

`-' (output) The goal guarantees to instantiate this argument to a

ground term upon suess.

`?' (stream-input) The goal having the orresponding stream-output

argument (say G) guarantees to instantiate this stream-input ar-

gument to a list of ground terms. The goal G further guarantees

that when this argument is instantiated to the form [H|T℄, H

has been instantiated to a ground term and that the properties of

a stream-input argument an again be assumed for T .

`^' (stream-output) The goal guarantees to instantiate this argument

to a list of ground terms. Moreover, the goal guarantees that when

it instantiates this argument to the form [H|T℄, H has been

instantiated to a ground term and T again has the properties of a

stream-output argument.

The modes stream-output and stream-input are given to the shared

variable instantiated by a generator-tester pair. If output uni�a-

tion for the stream-output argument of a generator is spei�ed in a

lause head (as in the �rst lause of perm in Program 2), the generator

may fail to guarantee the requirements for a stream-output argument,

that is, it may generate an uninstantiated element. However, the

pre-transformation phase (see Setion 4.3) tries to guarantee them by

moving the output uni�ation to an appropriate plae in the lause.

The mode analysis analyzes all the prediates that may be alled

diretly or indiretly from a top-level goal lause, using the mode de-

laration on that lause. It lari�es the data-ow of the whole program

by mode assignment. If the analysis sueeds, the mode assignment is

guaranteed to be orret, and the program is amenable to ompilation.

If it fails, the program annot be ompiled in the urrent setting. The

mode analysis of eah lause is done as follows:

(1) Mark all the variables appearing in the input head arguments as

ground.

(2) If the lause has a stream-input head argument T , do the following:

(2a) If T is [℄, do nothing.

(2b) If T is an unmarked variable, mark it as stream.

(2) If T is of the form [H|T℄, mark all the variables in H as

ground, and proess T aording to (2a) to (2d).

{ 12 {

(2d) Otherwise, make the analysis fail.

(3) Assign modes to the body goals from left to right, where the mode

of eah goal is assumed as follows:

(3a) An argument onsisting only of funtion/onstant symbols

and variables marked as ground is assumed to be input.

(3b) An argument that is a single variable marked as stream is as-

sumed to be stream-input. If there is a non-variable argument

ontaining variables marked as stream, make the analysis fail.

(3) If the goal in question is a generator-tester pair and the fol-

lowing onditions are satis�ed,

(i) The generator has just one argument not assumed to be

input, whih is an unmarked single variable.

(ii) That variable appears also as a single-variable argument

of the tester, and it is the only argument of the tester not

assumed to be input.

then assume the argument of the generator to be stream-

output and the argument of the tester to be stream-input,

and mark the shared variable as ground. If the generator-

tester pair does not satisfy the above onditions, make the

analysis fail.

(3d) Assume all the other arguments (i.e., arguments ontaining

unmarked variables) to be output, and mark all the variables

in them as ground.

(4) If the lause in question has a stream-input head argument, on-

�rm the following. If not on�rmed, make the analysis fail.

(4a) At most one argument is assumed to be stream-input for eah

body goal.

(4b) All the other arguments of a goal having a stream-input ar-

gument are assumed to be input.

(5) Chek if all the variables appearing in the output head arguments

have been marked as ground, and make the analysis fail if the

hek fails.

(6) Chek if a stream-output head argument, if any, is one of the

following:

(6a) [℄

(6b) a variable marked as ground

{ 13 {

Delared Mode: eightqueens(-).

- + ^ ?

eightqueens(X) :- perm([1,2,3,4,5,6,7,8℄,X) // nohek(X).

+ ^ + - - + ^

perm([H|T℄,[A|P℄) :- del([H|T℄,A,L), perm(L,P).

+ ^

perm([℄, [℄).

+ - -

del([H|T℄,H, T).

+ - - + - -

del([H|T℄,A,[H|T2℄) :- del(T,A,T2).

? + ? + ?

nohek([H|T℄) :- qsafe(H,T,1), nohek(T).

?

nohek([℄).

+ ? + + + + + + + - + + ? +

qsafe(U,[H|T℄,N) :- H+N=\=U, H-N=\=U, M is N+1, qsafe(U,T,M).

+ ? +

qsafe(U, [℄, V).

Program 6. Mode analysis of the 8-queens program.

(6) a term of the form [H|T℄, where all the variables in H are

marked as ground and T is again one of (6a) to (6).

If the hek fails, make the analysis fail. Moreover, if there exists a

variable lassi�ed as (6b) (possibly after reursive heking using

(6)), hek if it appears one and only one in the body as a single-

variable argument of some goal. If the hek sueeds, hange

the mode of that argument of the body goal to stream-output;

otherwise make the analysis fail.

Program 6 shows an analyzed 8-queens program. If the top-level

goal lause ontains a generator-tester pair, its mode delaration must

be ompatible with the onditions (i) and (ii) in (3) and the assump-

tions made there.

4.2 Purpose of the Restrition and Its Generality

The restritions imposed by the above mode analysis are for guar-

anteeing the following properties of a program:

(1) A generator and the orresponding tester ommuniate using a

single shared variable, whih is the only output from them.

(2) The generator determines the value of the shared variable in a

top-down manner and inrementally. Moreover, eah element of

{ 14 {

the shared variable is determined by only one goal; that is, we

exlude a generator like

gen(: : :X : : :) :- gen1(: : : X : : :), gen2(: : : X : : :).

% X is the shared variable.

to avoid onit within the generator.

(3) The tester heks the value of the shared variable in a top-down

manner. Two or more goals an hek it independently (e.g. the

�rst lause of nohek in Program 6). A goal derived from the

tester taking a sublist of the shared variable, as well as the tester

itself, onentrates on heking and generates no output.

The mode system is somewhat omplex, but it is inevitable for

sophistiated ontrol over the exeution of goals. Programmers must

keep the above properties in mind, but need not remember the de-

tail of the analysis. The \top-down" restrition on a shared variable

should be reasonable, beause if the generation and the hek are not

done inrementally, the original program will not be made eÆient

by oroutining. In suh a ase, the analyzer would generate an error

message like \The shared variable between perm and nohek is not

instantiated inrementally, so oroutining is useless."

It must be examined whether the lass of logi programs that

pass the above mode analysis is suÆiently general. This is hard to

answer sine we do not have a good stok of logi programs writ-

ten for oroutined exeution. However, the lass of searh problems

that generate sequenes (i.e., lists) of numbers, ations, et. is on-

sidered quite general. For instane, many textbook examples suh

as the missionaries-and-annibals problem, the path-�nding problem

on graphs, and the blok-moving problem share the property of gen-

erating sequenes of ations. They an be elegantly programmed as

generate-and-test programs satisfying the above properties. Program

7 is an analyzed path-�nding program in [6℄ originally written using

freeze of Prolog-II instead of oroutining.

The mode system in this paper ould be extended further (proba-

bly at the expense of simpliity); for example, we ould allow a gener-

ator to have output arguments as well as a stream-output argument.

Our method does not apply to some textbook examples for whih

oroutining is e�etive. The ryptarithmeti problem is an example;

Program 8 is a program to solve \SEND + MORE = MONEY" [6,

p. 150℄ rewritten in our notation. The data-ow of this program is

{ 15 {

+ + -

path(Start,Goal,Path) :-

+ + ^ ?

path1(Start,Goal,Path) // good

-

list(Path).

+ + ^

path1(X,X, [X℄).

+ + ^ + - + + ^

path1(X,Y,[X|Path℄) :- neighbor(X,Z), path1(Z,Y,Path).

+ - + -

neighbor(X,Y) :- nb(X,Y).

+ - - +

neighbor(X,Y) :- nb(Y,X).

+ - + - + - + - + - + -

- + - + - + - + - + - +

nb(a,b). nb(a,). nb(b,d). nb(b,e). nb(,f). nb(d,g).

+ - + - + - + - + -

- + - + - + - + - +

nb(e,g). nb(e,h). nb(f,j). nb(h,i). nb(h,j).

?

good

-

list([℄).

? + ? ?

good

-

list([X|L℄) :- out

-

of(X,L), good

-

list(L).

+ ?

out

-

of(X, [℄).

+ ? + + + ?

out

-

of(X,[Y|L℄) :- dif(X,Y), out

-

of(X,L).

Program 7. Path-�nding program.

test([S,E,N,D,M,O,R,Y℄) :-

add([D,N,E,S℄,[E,R,O,M℄,[Y,E,N,O,M℄),

S=\=0, M=\=0, different([S,E,N,D,M,O,R,Y℄).

add(Xs,Ys,Zs) :- add(Xs,Ys,0,Zs).

add([℄,[℄,0,[℄). add([℄,[℄,1,[1℄).

add([℄,[Y|Ys℄,C,Zs) :- add([0℄,[Y|Ys℄,C,Zs).

add([X|Xs℄,[℄,C,Zs) :- add([X|Xs℄,[0℄,C,Zs).

add([X|Xs℄,[Y|Ys℄,C,[Z|Zs℄) :-

add99(X,Y,C,C1,Z), add(Xs,Ys,C1,Zs).

% The prediate add99(X,Y,C,C1,Z) is a olletion of fats satisfying

% X+ Y+ C = 10� C1+ Z (0 � X; Y; Z � 9; 0 � C; C1 � 1).

different([X|Xs℄) :- out

-

of(X,Xs), different(Xs).

different([℄).

out

-

of(X,[Y|Ys℄) :- X=\=Y, out

-

of(X,Ys).

out

-

of(X,[℄).

Program 8. \SEND + MORE = MONEY".

{ 16 {

muh more omplex than the 8-queens program; however, sine the

problem is embedded in the program in this very ase, we an stati-

ally analyze oroutining. We �rst partially evaluate the body goals

of the top-level lause test until they are redued to alls to add99

and `=\='. Then we apply the mode analysis of the previous paper and

move eah all to `=\=' to the leftmost plae where both its operands

are ground

2)

. Now we an derive an exhaustive searh program us-

ing the previous method. Compilation of the addition table add99,

however, would require speial onsideration, beause it is a large ol-

letion of fats alled in four modes. Note that the omplexity of the

above proedure is polynomial with respet to the number of unknown

digits, whih is lower than the omplexity of sequential exhaustive

searh.

4.3 Pre-Transformation and Compilation

A suessfully analyzed program is then subjet to the following

transformation ((1) and (2) are in ommon with the previous method):

(1) Give a unique prediate name for eah mode of an overloaded

(multi-mode) prediate.

(2) Move head uni�ation for output arguments to the end of the

lause; and if the uni�ation implied by the output arguments of

any body goal may ause failure, move it just behind that goal.

(3) If the stream-output head argument, if any, is of the form [H

1

,

: : :,H

n

|T

n

℄ (n � 1), replae it by a fresh variable T

0

, and put

the goals T

0

=[H

1

|T

1

℄, T

1

=[H

2

|T

2

℄, : : : , T

n�1

=[H

n

|T

n

℄ (T

1

, : : : ,

T

n�1

being fresh variables) in appropriate plaes, where the ap-

propriate plae for the goal T

i�1

=[H

i

|T

i

℄ is the leftmost plae to

the right of T

i�2

=[H

i�1

|T

i�1

℄ (if any) where H

i

is ground.

(4) If the stream-input head argument, if any, is of the form [H

1

,

: : :,H

n

|T

n

℄ (n � 2), we prepare (n � 1) auxiliary prediates to

make sure that only one element is deomposed in eah resolution.

For example, the lause

p([X1,X2|Xs℄, : : :) :- test(X1,X2, : : :), p(Xs, : : :).

is rewritten as follows:

p([X1|Xs℄, : : :) :- p2(Xs,X1, : : :).

p2([X2|Xs℄,X1, : : :) :- test(X1,X2, : : :), p(Xs, : : :).

Compilation tehnique to a deterministi program is the same as

that of the previous paper, exept for the management of the tester of

{ 17 {

a generator-tester pair. The tester is managed by the orresponding

generator in the form of a subontinuation. The generator invokes

the subontinuation when it determines a new element of the shared

variable, does possible derivations aumulating suspended goals, and

returns to its own task letting the suspended goals be the new sub-

ontinuation.

When a subontinuation is invoked, goals other than those that

must be suspended are exeuted aording to the left-to-right rule. In

Program 5, suh exeutable goals were all system-de�ned and deter-

ministi, but in general there an be user-de�ned goals possibly with

more than one solution. The goals may have output arguments also, as

long as they are `normal' goals with no stream-input argument. They

an be proessed using the usual tehniques of ontinuation handling

and proess forking.

When a subontinuation is proessed, resolution that would ex-

amine the next element of the shared variable, i.e., resolution using

a lause having a non-variable stream-input head argument, must be

suspended. In priniple, suspension in our method should be de�ned

for resolution and not for a goal, beause some andidate lause may

examine the shared variable while others do not. However, if the

prediate being alled by a goal is deterministi with respet to its

stream-input argument (like nohek and qsafe of Program 6), we

need not ontrol suspension of eah andidate lause independently

but instead we an suspend the goal itself as an optimization. Stati

mode analysis reveals whether or not resolution using eah lause must

be suspended and whether or not eah prediate is deterministi, and

we an generate an appropriate objet ode using suh information.

5. PERFORMANCE

A ompiled exhaustive searh program an be exeuted as a de-

terministi Prolog program [14℄. We ompared Program 5 with other

8-queens programs using DEC-10 Prolog on DEC2065. The programs

were timed after peephole optimization and exluding the time for

garbage olletion:

Program 2 with bagof: 24765mse.

Program 5 (deterministi program derived from Program 2): 2045mse.

Program 3 with bagof: 1798mse.

Deterministi program derived from Program 3: 1938mse.

Program 5 was 12 times faster than the original program exeuted

without oroutining. It was 6% slower than the deterministi program

{ 18 {

derived from Program 3, but the di�erene seems quite reasonable.

The following are the timing results of the path-�nding programs (for

obtaining four paths from g to j):

Program 7 with bagof: 1

Deterministi program derived from Program 7: 28mse.

Program 7 optimized for sequential exeution with bagof: 36mse.

We admit that the above omparison is unfavorable to olletion of

solutions using baktraking and bagof [9℄, sine the timing results of

baktraking programs inlude the time for relamation of a stak area

on baktraking, while the timing results of deterministi programs

do not inlude the time for any storage relamation. However, the

situation might be quite di�erent in parallel exeution: Baktraking

programs are learly harder to parallelize than deterministi ones. The

overheads of various methods of multiple environment management for

OR-parallel exeution have been reported in [2℄, but we still need to

evaluate how muh it pays to ompile away multiple environments in

parallel exeution.

6. CONCLUSION

We have desribed a mehanizable method for deriving from a

naive generate-and-test program an eÆient deterministi program

that ollets all the solutions of the original program. We saw that

oroutining of generate-and-test programs is amenable to stati anal-

ysis for many (though not all) textbook examples. This means that

ontrol failities suh as freeze [4℄ an often be ompiled away at

the ost of stati analysis. The analysis of a generate-and-test pro-

gram whose data-ow is determined only at run time (e.g., a general

ryptarithmeti program) is still an open problem, though a meta-

programming tehnique might in priniple enable us to use all our

tehniques at run time.

The results an be viewed as a step towards a user language of

GHC (and other parallel logi programming languages) that is higher

than AND-sequential pure Prolog. However, the use of GHC as a

base language is in fat not essential for our tehnique. Looking into

Program 5 for example, we �nd that the main mehanisms neessary to

run it are omposing and deomposing of ground data, reursive all,

some means for haining solutions, and (in ase of parallel exeution)

proess forking, all of whih ould be implemented in proedural (or

even assembly) languages easily at least on sequential omputers. So

{ 19 {

we an say that our results also suggest a ompilation tehnique of a

lass of oroutining logi program into (very) low-level languages.

The mode analysis tehnique and our representation of subon-

tinuations apply also to program transformation from a oroutining

program to an eÆient sequential Prolog program that returns all the

solutions by baktraking. The obtained program will have simple

data-ow and hene will be easy to optimize ompared with programs

obtained by existing tehniques.

Although we did not pursue full generality on the lass of ompil-

able programs, generation of a sequene in a generate-and-test manner

should be a quite general framework. The important issue for the fur-

ther development of the urrent tehnique is to aumulate pratial

and stritly logial generate-and-test programs.

Aknowledgments

The author is indebted to the members of First Researh Labora-

tory, ICOT Researh Center, for helpful disussions.

Notes

1) Gallagher [7℄ also uses more than one stak of goals and does informal

stati analysis very similar to ours. However, he did not ompile away

the shared variable and hene the generated program is not amenable to

ompilation to a deterministi program, while our method performs the

analysis and ompilation to a deterministi program in our own setting.

2) Seki and Furukawa [11℄ independently proposed this tehnique in a dif-

ferent ontext.

Referenes

[1℄ Bruynooghe, M., De Shreye, D. and Krekels, B., Compiling Con-

trol. In Pro. 1986 Symp. on Logi Programming, IEEE Computer

Soiety, 1986, pp. 70{77.

[2℄ Ciepielewski, A. and Hausman, B., Performane Evaluation of a

Storage Model for OR-Parallel Exeution of Logi Programs. In

Pro. 1986 Symp. on Logi Programming, IEEE Computer Soi-

ety, 1986, pp. 246{257.

[3℄ Clark, K. L., Prediate Logi as a Computational Formalism. Re-

searh Monograph 79/59 TOC, Dept. of Computing, Imperial Col-

lege of Siene and Tehnology, London, 1979.

{ 20 {

[4℄ Colmerauer, A., Prolog II Referene Manual and Theoretial

Model. Internal report, Groupe Intelligene Arti�ielle, Univer-

sit�e Aix-Marseille II, 1982.

[5℄ DeGroot, D., Restrited AND-Parallelism. In Pro. Int. Conf. on

Fifth Generation Computer Systems 1984, ICOT, Tokyo, 1984,

pp. 471{478.

[6℄ Furukawa, K., Introdution to Prolog. Ohm-sha, Tokyo, 1986 (in

Japanese).

[7℄ Gallagher, J., Simulating Coroutining for the 8-Queens Problem.

Logi Programming Newsletter, L. M. Pereira (ed.), Universidade

Nova de Lisvoa, No. 3 (1982), pp. 10{11.

[8℄ Gregory, S., Towards the Compilation of Annotated Logi Pro-

grams. Researh Report DOC 80/16, Dept. of Computing, Impe-

rial College of Siene and Tehnology, London, 1980.

[9℄ Helmenegildo, M. V., Disussion at the Megalips Plus Workshop,

Manhester, 1986.

[10℄ Mellish, C. S., Abstrat Interpretation of Prolog Programs. In

Pro. Third Int. Conf. on Logi Programming, Shapiro, E. (ed.),

LNCS 225, Springer-Verlag, 1986, pp. 463{474.

[11℄ Seki, H. and Furukawa, K., Compiling Control by a Program

Transformation Approah. ICOT Teh. Memorandum TM-0240,

ICOT, Tokyo, 1986.

[12℄ Tamaki, H. and Sato, T. [1984℄ Unfold/Fold Transformation of

Logi Programs. In Pro. Seond Int. Logi Programming Conf.,

Uppsala Univ, Sweden, 1984, pp. 127{138.

[13℄ Ueda, K., Guarded Horn Clauses. ICOT Teh. Report TR-103,

ICOT, Tokyo, 1985. A revised version is in Pro. Logi Pro-

gramming '85, Wada, E. (ed.), LNCS 221, Springer-Verlag, 1986,

pp. 168{179.

[14℄ Ueda, K., Making Exhaustive Searh Programs Deterministi. In

Pro. Third Int. Conf. on Logi Programming, Shapiro, E. (ed.),

LNCS 225, Springer-Verlag, 1985, pp. 270{282. A revised version

will appear in New Generation Computing, Vol. 5, No. 1 (1987).

[15℄ Ueda, K., Guarded Horn Clauses: A Parallel Logi Programming

Language with the Conept of a Guard. ICOT Teh. Report TR-

208, ICOT, Tokyo, 1986.

[16℄ Ueda, K., Introdution to Guarded Horn Clauses. ICOT Teh.

Report TR-209, ICOT, Tokyo, 1986.

