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Abstra
t. This paper 
omplements the previous paper \Making Ex-

haustive Sear
h Programs Deterministi
" whi
h showed a systemati


method for 
ompiling a Horn-
lause program for exhaustive sear
h

into a GHC program or a Prolog program with no ba
ktra
king. This

time we present a systemati
 method for deriving a deterministi
 logi


program that simulates 
oroutining exe
ution of a generate-and-test

logi
 program. The 
lass of 
ompilable programs is suÆ
iently general,

and 
ompiled programs proved to be eÆ
ient. The method 
an also

be viewed as suggesting a method of 
ompiling a naive logi
 program

into (very) low-level languages.

1. INTRODUCTION

This paper 
omplements the previous paper [14℄ by the author

and extends the method des
ribed in it. The previous paper showed a

systemati
 method for 
ompiling a Horn-
lause program into a GHC

[13℄[15℄[16℄ program or a deterministi
 Prolog program that returns

a list of all the solutions of the original program. The method 
om-

piled away the primitives for 
olle
ting solutions su
h as bagof, whi
h

had usually been 
onsidered as important extension to Prolog. The


ompilation generally retained the eÆ
ien
y of original programs on

the same 
ompiler-based Prolog system, and a 
ompiled program even

outperformed the original one when the number of solutions was large

relative to the sear
h spa
e. We showed the 
lass of Horn-
lause pro-

grams amenable to the method and argued how it is restri
tive. These

results 
ould be summarized as follows:

(1) A prospe
t was obtained for eÆ
ient (though not optimal) paral-

lel exe
ution of sear
h problems using a general-purpose parallel

language like GHC as a base language.
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� Original program

append([℄, Z,Z ).

append([A|X℄,Y,[A|Z℄) :- append(X,Y,Z).

- - +

� Calling form and mode information: bagof((X,Y),append(X,Y,Z),S)

(`+': input (ground upon 
all); `-': output (ground upon su

ess))

� Mode analysis using the above mode information

- - +

append( [℄, Z, Z ).

- - + - - +

append([A|X℄,Y,[A|Z℄) :- append(X,Y,Z).

� Pre-transformation (moving output uni�
ation)

append([℄, Z,Z ).

append(X2, Y,[A|Z℄) :- append(X,Y,Z), /*L1*/ X2=[A|X℄.

� Compiled program returning the same result

Calling form: ..., ap(Z,'L0',S,[℄), /*L0*/...

% Arg1: input arg; Arg2: 
ontinuation;

% Arg3,4: d-list (head and tail) of output pairs

ap(Z,Cont,S0,S2) :- true | ap1(Z,Cont,S0,S1), ap2(Z,Cont,S1,S2).

% ap1 for unit 
lause and ap2 for re
ursive 
lause

ap1(Z,Cont,S0,S1) :- true | 
ont(Cont,[℄,Z,S0,S1).

ap2([A|Z℄,Cont,S0,S1) :- true | ap(Z,'L1'(A,Cont),S0,S1).

ap2(Z,

-

, S0,S1) :- otherwise | S0=S1.


ont('L1'(A,Cont),X,Y,S0,S1) :- true | 
ont(Cont,[A|X℄,Y,S0,S1).


ont('L0', X,Y,S0,S1) :- true | S0=[(X,Y)|S1℄.

Program 1. Compilation of a list de
omposition program.

(2) Horn-
lause logi
 
an now be regarded as a user language of GHC

for sear
h problems.

Exploiting parallelism in an obtained GHC program is quite easy,

be
ause di�erent sear
h paths are examined by independent AND-

parallel goals without 
ommuni
ation. This means that an obtained

program 
ould be pro
essed using restri
ted AND-parallelism [5℄ also.

A deterministi
 program obtained by the previous method simu-

lates OR-parallel and AND-sequential exe
ution of the original pro-

gram. The original OR-parallelism is 
ompiled into AND-parallelism

as stated above, and the sequential exe
ution of 
onjun
tive goals is
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realized by passing a 
ontinuation around. Solutions are 
olle
ted by


on
atenating (possibly empty) di�eren
e lists of solutions returned

by the paths of a proof tree.

The 
rux of the te
hnique is to move output uni�
ation (i.e., uni-

�
ation for 
onstru
ting result values) from a 
lause head to the end

of the 
lause. In general, OR-parallel sear
h requires a multiple envi-

ronment me
hanism, be
ause in
ompatible bindings may be generated

when a goal is rewritten di�erently by di�erent program 
lauses at the

same time. However, if output uni�
ation is moved, head uni�
ation

will not return partial results any more, but results will be 
onstru
ted

in a bottom-up manner. Thus a multiple environment me
hanism is

made inessential. Program 1 shows 
ompilation of an append program

to be used for de
omposing a list into two. We use mode de
laration

and mode inferen
e for determining whether ea
h argument of a goal

is for providing an input value or for re
eiving a result value.

However, assuming AND-sequentiality often 
auses in
ompatibil-

ity between 
larity and eÆ
ien
y of a program, as many people have

pointed out. For instan
e, Program 2 for solving the 8-queens problem

is said to be naive and 
lear, be
ause it well separates the generator

(a permutation program) and the tester for the generate-and-test-type

problem. This program, however, proves to be very ineÆ
ient under

AND-sequential exe
ution (see Se
tion 5), be
ause the tester starts af-

ter the generator has pla
ed all the queens. The situation is even worse

with a program for �nding a
y
li
 paths on a graph shown in Se
tion

4.2; the generator generates an in�nite number of 
andidate solutions,

so although the number of �nal solutions is �nite, the program would

not terminate. For this reason, we usually fuse a generator and a tester

in Prolog programming and write a program like Program 3 . Pro-

gram 3 is not so 
omplex, but it obs
ures the fa
t that permutation

generation is a subproblem of the 8-queens problem.

2. THE PROBLEM

Our goal is to derive systemati
ally (i.e., in a me
hanizable man-

ner) an eÆ
ient deterministi
 logi
 program that returns a list of all

the solutions of the original generate-and-test program. We must 
om-

pile 
oroutining to a
hieve this; when the goal perm([1, : : : ,8℄,X) in

Program 2 instantiates X to [1,2|X2℄, no
he
k(X) must be invoked

to dete
t that [1,2|X2℄ 
annot be a solution for any instan
e of X2.

At the same time, we must 
ompile away the bagof primitive that is

outside Horn-
lause logi
.
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:- bagof(X, eightqueens(X), B).

eightqueens(X) :- perm([1,2,3,4,5,6,7,8℄,X) // no
he
k(X).

perm([H|T℄,[A|P℄) :- del([H|T℄,A,L), perm(L,P).

perm( [℄, [℄ ).

del([H|T℄,H, T ).

del([H|T℄,A,[H|T2℄) :- del(T,A,T2).

no
he
k([H|T℄) :- qsafe(H,T,1), no
he
k(T).

no
he
k( [℄ ).

qsafe(U,[H|T℄,N) :- H+N=\=U, H-N=\=U, M is N+1, qsafe(U,T,M).

qsafe(

-

, [℄,

-

).

Program 2. Naive 8-queens program.

eightqueens(X) :- eightq([1,2,3,4,5,6,7,8℄,[℄,X).

eightq([H|T℄,R,P) :-

del([H|T℄,A,L), qsafe(A,R,1), eightq(L,[A|R℄,P).

eightq( [℄, R,P) :- rev(R,[℄,P).

del([H|T℄,H, T ).

del([H|T℄,A,[H|T2℄) :- del(T,A,T2).

qsafe(U,[H|T℄,N) :- H+N=\=U, H-N=\=U, M is N+1, qsafe(U,T,M).

qsafe(

-

, [℄,

-

).

rev([A|X℄,Y,Z) :- rev(X,[A|Y℄,Z).

rev( [℄, Y,Y).

Program 3. 8-queens program optimized for sequential exe
ution.

One possible method is to derive an eÆ
ient Prolog program like

Program 3 �rst and then to derive an exhaustive sear
h program from

it using the previous method. Methods for the �rst step have been pro-

posed by many resear
hers [1℄[3℄[7℄[8℄[11℄. Of these, Gallagher [7℄ and

Bruynooghe et al. [1℄ use meta-level predi
ates that des
ribe dedu
-

tion steps of the goals given as their arguments. Obtained programs,

however, are not 
ompilable by the previous method. They preserve

shared variables between generators and testers instantiated in a top-

down manner, whi
h 
annot be analyzed by the mode analysis.

Clark [3℄, Gregory [8℄, and Seki and Furukawa [11℄ use methods

based on unfold/fold transformation [12℄. However, it seems that only

the method of [11℄ 
an derive Program 3 from Program 2; the deriva-
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tion requires a new rule in addition to those in [12℄. Moreover, it has

not been made 
lear how these methods 
an be me
hanized for what


lass of Horn-
lause programs.

We 
hose to 
ompile a generate-and-test logi
 program dire
tly

to a deterministi
 program by extending the analysis and 
ompilation

method of the previous paper. Thus our method is not just a dire
t

sum of the known te
hniques stated above. One reason for taking this

approa
h is that it seemed to be more amenable to me
hanization.

Another reason is that by using the mode system, the suÆ
ient 
on-

ditions for the 
ompilation 
an be expli
itly de�ned in terms of the

data-
ow of a program. The main problems to be solved are how to


ompile away the shared variable between a generator and a tester and

how to extend the mode system for the analysis of 
oroutining.

3. METHOD AND EXAMPLE

This se
tion exempli�es how we extend the previous method to

handle 
oroutining, using Program 2.

First of all, we introdu
e a new syntax for spe
ifying 
oroutin-

ing. We write g( : : : X : : :) // t( : : :X : : :) for the pair of a generator

and a tester to be run 
on
urrently, where X is the shared variable

instantiated by g to a list of ground terms in a top-down manner and

examined by t for its adequa
y. This pair of goals 
an be regarded

as a goal g( : : :X : : :) 
onstrained by t( : : :X : : :), and 
an appear in

a sequen
e of goals exe
uted sequentially from left to right. All the

arguments ex
ept X must be ground, and X unde�ned, when the pair

of goals starts.

Our goal is to dete
t failure as soon as possible by exe
uting t in-


rementally ea
h time g instantiates X. Let us tra
e one of the possible

exe
ution paths of Program 2.

When perm([1, : : : ,8℄,X) starts and the goal del in the �rst


lause of perm su

eeds, the �rst element of X is instantiated to some

integer between 1 and 8, in
lusive. The goal no
he
k(X) is invoked

at this point. In resolution prin
iple, we 
ould of 
ourse exe
ute

no
he
k(X) before X is instantiated, but we have suspended it be-


ause we 
hose to use it for 
he
king the given value of X.

Assume X is instantiated to [1|X1℄. Then from no
he
k(X) we


an derive qsafe(1,X1,1) and no
he
k(X1) using the �rst 
lause.

However, the derived goals must be suspended until X1 is instanti-

ated, be
ause otherwise X1 would be instantiated by the tester. So we
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suspend the exe
ution of no
he
k(X) and resume perm([1, : : : ,8℄,

X). The re
ursive 
all to perm invokes X1 to, say, [5|X2℄. Now from

the suspended goal qsafe(1,X1,1) we 
an derive 5+1=\=1, 5-1=\=1,

M is 1+1 and qsafe(1,X2,M), of whi
h the �rst three goals 
an be

exe
uted immediately in su

ess and qsafe(1,X2,2) remains. From

another suspended goal no
he
k(X1), we 
an derive qsafe(5,X2,1)

and no
he
k(X2), both of whi
h must be suspended.

This pro
edure will �nally result in one of the following situations:

(1) Some 
all to `=\=' derived from qsafe fails.

(2) X is instantiated to a 
omplete list.

The �rst 
ase means that the exe
ution path we have been tra
ing

results in failure. In the se
ond 
ase, X has been instantiated to, say,

[1,5,8,6,3,7,2,4|X8℄, and then X8 is instantiated to [℄ by the se
-

ond 
lause of perm. In this 
ase, the nine goals

qsafe(1,X8,8), : : : , qsafe(4,X8,1) and no
he
k(X8)

have been derived from no
he
k(X), and they all su

eed when X8 is

bound to [℄. Now both perm([1, : : : ,8℄,X) and no
he
k(X) have

su

eeded and we have found a solution X=[1,5,8,6,3,7,2,4℄.

The important point in the above pro
edure is that the following


an be known by stati
 analysis:

(1) The next element of X is determined when the 
all to del in the

�rst 
lause of perm has su

eeded; and the list X is 
losed with [℄

when resolution with the se
ond 
lause of perm has su

eeded.

(2) When the next element of X is determined, we 
an derive two

goals, a qsafe and a new no
he
k, from a suspended no
he
k.

Moreover, if there exists a suspended qsafe, four goals 
an be

derived from it, and they 
an be exe
uted immediately ex
ept for

the re
ursive qsafe. When X is terminated by [℄, all suspended

goals su

eed.

Furthermore, the above properties do not depend on the spe
i�
 value

[1, : : :,8℄ of the �rst argument of perm, but only on the fa
t that

it is ground. This suggests that we 
an stati
ally analyze 
oroutining

as mode analysis. The te
hnique will be des
ribed later in Se
tion 4;

before that we will derive a deterministi
 8-queens program �rst.

We put labels in the original program and move output uni�
ation

(Program 4). These labels are used as the 
onstru
tors of a 
ontinua-

tion. Sin
e the predi
ate del does not dire
tly manipulate the shared
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eightqueens(X) :-

perm([1,2,3,4,5,6,7,8℄,X) // no
he
k(X)

L1: (
onstru
t X).

perm([H|T℄,X) :-

del([H|T℄,A,L),

L2: X=[A|P℄, (send A to no
he
k(X) and invoke it)

L3: perm(L,P).

perm([℄, [℄) :-

( X is terminated, so no
he
k(X) su

eeds).

del([H|T℄,H,T).

del([H|T℄,X,Y) :-

del(T,A,T2),

L4: X=A, Y=[H|T2℄.

Program 4. Labeled 8-queens program ( no
he
k and qsafe are

omitted; see Program 2 for them).

variable X of the generator-tester pair, output uni�
ation is moved to

the end of the 
lause so that the output values are 
onstru
ted in an

bottom-up manner (see Se
tion 1). On the other hand, the predi-


ate perm determines the value of the shared variable X. To realize


oroutining, we must ship out a new element A at L2 (i.e., as soon

as it is determined by the goal del([H|T℄,A,L)), where we invoke

no
he
k(X) (or goals derived from it) and do possible derivations. If

the new element A is appropriate, the derivation results in a set of

suspended goals and the tasks following L3 is exe
uted. Otherwise,

the derivation fails and L3 is not rea
hed.

The se
ond 
lause of perm is for 
losing the shared variable X.

When it is sele
ted, all the suspended goals that have been derived

from no
he
k(X) are just dis
arded, be
ause the following are stati-


ally known:

(1) When X is 
losed, possible remaining goals derived from no
he
k(

X) are either of the form qsafe( : : : Xn : : :) or of the form no-


he
k(Xn), where Xn is a sublist of X just being bound to [℄.

(2) All these goals su

eed when Xn is instantiated to [℄.

L1 is the sole return point from the se
ond 
lause of perm. Rea
h-

ing L1 means that a solution has been obtained, but sin
e we a

u-

mulate the elements of X in reverse order, we reverse them again at

L1 to 
onstru
t the �nal value of X. The reason for a

umulating the
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elements of X in reverse order is that we want to represent the inter-

mediate values of X always as ground terms so that they 
an be shared

when the 
urrent sear
h paths split in future.

Program 5 shows a deterministi
 program derived from Program 4.

The 
ontrol 
ow of the generator perm des
ribed above is implemented

in exa
tly the same 
ontinuation management method as the previous

one: The predi
ates e, p and d 
orrespond to eightqueens, perm and

del, respe
tively; d1 and d2 
orrespond to the �rst and the se
ond


lauses of the non-deterministi
 predi
ate del; 
ont0 , 
ont1 , 
ont24

and 
ont3 are for 
ontinuation management (we use a typewriter font

for entities of original programs and an itali
 font for 
ompiled programs).

The only di�eren
e is that the information on the tester no
he
k and

a partial solution of X are 
arried around in new forms by p (the se
ond

and the third arguments, respe
tively) and by the goals 
alled by p.

The last two arguments of ea
h predi
ate represent a di�eren
e list of

obtained solutions.

On the other hand, the 
ontrol 
ow of the tester is implemented in

a di�erent manner. Suspended goals derived from no
he
k(X) are put

in a dedi
ated 
ontinuation (whi
h we 
all a sub
ontinuation hen
e-

forth) managed as a lo
al datum of perm

1)

. In Program 5, Cont rep-

resents the main 
ontinuation and Contn represents the sub
ontinu-

ation. The initial value n of the sub
ontinuation, whi
h means there

is one goal no
he
k to be solved, is set in the sole 
lause of e. The

tasks represented by Contn are pro
essed by nresume. The predi
ate

nresume is invoked when the se
ond 
lause of 
ont24 re
ognizes that

the 
ontrol has rea
hed L2, does possible derivations from the 
urrent

Contn using the value H of the next element of the shared variable,

and 
reates a new sub
ontinuation.

Contn examined by nresume has either the form n or the form

q(U,N,Contn

0

). The 
onstant n represents the goal no
he
k(Xn), and

the term q(U,N,Contn

0

) represents the goal qsafe(U,Xn,N) and the

goals represented by Contn

0

, where Xnmeans the sublist of X whi
h was

instantiated to the form [H|Xn'℄ just before the 
urrent invo
ation

of nresume. A sub
ontinuation is 
omposed only of ground input

arguments for qsafe and the 
onstru
tors n and q ; the shared variable

X has been 
ompiled away. The values of the elements of X are given

one at a time as the �fth argument of nresume.

The �rst 
lause of nresume exe
utes three of the four goals de-

rived from qsafe(U,[H|Xn'℄,N) immediately, and sta
ks the remain-

ing re
ursive 
all to the third argument ContnR (R stands for re-
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Calling form: :- e('L0',B,[℄).

e(Cont,S0,S1) :- true |

p([1,2,3,4,5,6,7,8℄,n,[℄,'L1'(Cont),S0,S1).

p([℄, Contn,SR,Cont,S0,S1) :- true | 
ont1(Cont,SR,S0,S1).

p([H|T℄,Contn,SR,Cont,S0,S1) :- true |

d([H|T℄,'L2'(Contn,SR,Cont),S0,S1).

p(L,

-

,

-

,

-

, S0,S1) :- otherwise | S0=S1.

d(L,Cont,S0,S2) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).

d1([H|T℄,Cont,S0,S1) :- true | 
ont24(Cont,H,T,S0,S1).

d1(L,

-

, S0,S1) :- otherwise | S0=S1.

d2([H|T℄,Cont,S0,S1) :- true | d(T,'L4'(H,Cont),S0,S1).

d2(L,

-

, S0,S1) :- otherwise | S0=S1.

nresume(q(U,N,Contn),SR,ContnR,Cont,H,S0,S1) :-

H+N=\=U, H-N=\=U |

M is N+1, nresume(Contn,SR,q(U,M,ContnR),Cont,H,S0,S1).

nresume(n, SR,ContnR,Cont,H,S0,S1) :- true |

rev2(ContnR,q(H,1,n),NewContn),


ont3(Cont,NewContn,[H|SR℄,S0,S1).

nresume(

-

,

-

,

-

,

-

,

-

,S0,S1) :- otherwise |

S0=S1.


ont0('L0',S,S0,S1) :- true | S0=[S|S1℄.


ont1('L1'(Cont),SR,S0,S1) :- true |

rev(SR,[℄,S), 
ont0(Cont,S,S0,S1).


ont24('L4'(H,Cont), A,T2,S0,S1) :- true |


ont24(Cont,A,[H|T2℄,S0,S1).


ont24('L2'(Contn,SR,Cont),A,T2,S0,S1) :- true |

nresume(Contn,SR,n,'L3'(T2,Cont),A,S0,S1).


ont3('L3'(T2,Cont),Contn,SR,S0,S1) :- true |

p(T2,Contn,SR,Cont,S0,S1).

rev([A|X℄,Y,Z) :- true | rev(X,[A|Y℄,Z).

rev([℄, Y,Z) :- true | Y=Z.

rev2(q(A,B,X),Y,Z) :- true | rev2(X,q(A,B,Y),Z).

rev2(n, Y,Z) :- true | Y=Z.

Program 5. Compiled 8-queens program.
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versed). The inequalities are exe
uted in a guard sin
e they may fail;

if they should fail, the di�eren
e list for 
olle
ting solutions is short-


ir
uited by the third 
lause. The se
ond 
lause re
ognizes the goal

no
he
k([H|Xn'℄), 
reates a new sub
ontinuation NewContn from

(i) the goals qsafe(H,Xn',1) and no
he
k(Xn') derived from it

(whi
h are represented as q(H,1,n)) and

(ii) the goals sta
ked in ContnR in reverse order

using rev2 , and 
alls 
ont3 to pro
ess the tasks following L3.

The elements of the shared variable X are sta
ked in reverse order

(as stated above) in SR. SR is initialized to [ ℄ in the sole 
lause of

e, and ea
h new element is sta
ked at the se
ond 
lause of nresume

when it passes the 
ontrol to L3. SR is reversed by 
ont1 as the task

following L1. The predi
ate 
ont1 is 
alled from the �rst 
lause of p.

This 
lause dis
ards Contn, be
ause the 
orresponding original 
lause

(the �rst 
lause of perm) 
loses the shared variable X, whi
h 
auses all

the suspended goals derived from no
he
k(X) to su

eed as we stated

above.

4. GENERAL COMPILATION PROCEDURE

The 
ompilation pro
edure 
omprises the following:

(1) mode analysis,

(2) pre-transformation to a normal form, and

(3) 
ompilation to a deterministi
 program.

The primary issue for realizing automati
 
ompilation is that the suÆ-


ient 
onditions for being 
ompilable are given in a stati
ally de
idable

manner. This de
ision is done as part of the mode analysis des
ribed

in Se
tion 4.1. Se
tion 4 des
ribes the mode analysis in detail and the


ompilation rather brie
y.

4.1 Mode Analysis

The purpose of the mode analysis is to obtain information for

the 
ompilation by stati
ally analyzing data-
ow that will happen at

run time. Thus it is a kind of abstra
t interpretation [10℄. While

the previous paper used two modes for the analysis, we now use the

following four modes and assign one of them to ea
h argument of the

body goals of a 
lause:
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`+' (input) The pre
eding 
omputation (or the top-level goal 
lause)

guarantees that this argument is instantiated to a ground term

when the goal starts.

`-' (output) The goal guarantees to instantiate this argument to a

ground term upon su

ess.

`?' (stream-input) The goal having the 
orresponding stream-output

argument (say G) guarantees to instantiate this stream-input ar-

gument to a list of ground terms. The goal G further guarantees

that when this argument is instantiated to the form [H|T℄, H

has been instantiated to a ground term and that the properties of

a stream-input argument 
an again be assumed for T .

`^' (stream-output) The goal guarantees to instantiate this argument

to a list of ground terms. Moreover, the goal guarantees that when

it instantiates this argument to the form [H|T℄, H has been

instantiated to a ground term and T again has the properties of a

stream-output argument.

The modes stream-output and stream-input are given to the shared

variable instantiated by a generator-tester pair. If output uni�
a-

tion for the stream-output argument of a generator is spe
i�ed in a


lause head (as in the �rst 
lause of perm in Program 2), the generator

may fail to guarantee the requirements for a stream-output argument,

that is, it may generate an uninstantiated element. However, the

pre-transformation phase (see Se
tion 4.3) tries to guarantee them by

moving the output uni�
ation to an appropriate pla
e in the 
lause.

The mode analysis analyzes all the predi
ates that may be 
alled

dire
tly or indire
tly from a top-level goal 
lause, using the mode de
-

laration on that 
lause. It 
lari�es the data-
ow of the whole program

by mode assignment. If the analysis su

eeds, the mode assignment is

guaranteed to be 
orre
t, and the program is amenable to 
ompilation.

If it fails, the program 
annot be 
ompiled in the 
urrent setting. The

mode analysis of ea
h 
lause is done as follows:

(1) Mark all the variables appearing in the input head arguments as

ground.

(2) If the 
lause has a stream-input head argument T , do the following:

(2a) If T is [℄, do nothing.

(2b) If T is an unmarked variable, mark it as stream.

(2
) If T is of the form [H|T℄, mark all the variables in H as

ground, and pro
ess T a

ording to (2a) to (2d).
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(2d) Otherwise, make the analysis fail.

(3) Assign modes to the body goals from left to right, where the mode

of ea
h goal is assumed as follows:

(3a) An argument 
onsisting only of fun
tion/
onstant symbols

and variables marked as ground is assumed to be input.

(3b) An argument that is a single variable marked as stream is as-

sumed to be stream-input. If there is a non-variable argument


ontaining variables marked as stream, make the analysis fail.

(3
) If the goal in question is a generator-tester pair and the fol-

lowing 
onditions are satis�ed,

(i) The generator has just one argument not assumed to be

input, whi
h is an unmarked single variable.

(ii) That variable appears also as a single-variable argument

of the tester, and it is the only argument of the tester not

assumed to be input.

then assume the argument of the generator to be stream-

output and the argument of the tester to be stream-input,

and mark the shared variable as ground. If the generator-

tester pair does not satisfy the above 
onditions, make the

analysis fail.

(3d) Assume all the other arguments (i.e., arguments 
ontaining

unmarked variables) to be output, and mark all the variables

in them as ground.

(4) If the 
lause in question has a stream-input head argument, 
on-

�rm the following. If not 
on�rmed, make the analysis fail.

(4a) At most one argument is assumed to be stream-input for ea
h

body goal.

(4b) All the other arguments of a goal having a stream-input ar-

gument are assumed to be input.

(5) Che
k if all the variables appearing in the output head arguments

have been marked as ground, and make the analysis fail if the


he
k fails.

(6) Che
k if a stream-output head argument, if any, is one of the

following:

(6a) [℄

(6b) a variable marked as ground



{ 13 {

De
lared Mode: eightqueens(-).

- + ^ ?

eightqueens(X) :- perm([1,2,3,4,5,6,7,8℄,X) // no
he
k(X).

+ ^ + - - + ^

perm([H|T℄,[A|P℄) :- del([H|T℄,A,L), perm(L,P).

+ ^

perm( [℄, [℄ ).

+ - -

del([H|T℄,H, T ).

+ - - + - -

del([H|T℄,A,[H|T2℄) :- del(T,A,T2).

? + ? + ?

no
he
k([H|T℄) :- qsafe(H,T,1), no
he
k(T).

?

no
he
k( [℄ ).

+ ? + + + + + + + - + + ? +

qsafe(U,[H|T℄,N) :- H+N=\=U, H-N=\=U, M is N+1, qsafe(U,T,M).

+ ? +

qsafe(U, [℄, V).

Program 6. Mode analysis of the 8-queens program.

(6
) a term of the form [H|T℄, where all the variables in H are

marked as ground and T is again one of (6a) to (6
).

If the 
he
k fails, make the analysis fail. Moreover, if there exists a

variable 
lassi�ed as (6b) (possibly after re
ursive 
he
king using

(6
)), 
he
k if it appears on
e and only on
e in the body as a single-

variable argument of some goal. If the 
he
k su

eeds, 
hange

the mode of that argument of the body goal to stream-output;

otherwise make the analysis fail.

Program 6 shows an analyzed 8-queens program. If the top-level

goal 
lause 
ontains a generator-tester pair, its mode de
laration must

be 
ompatible with the 
onditions (i) and (ii) in (3
) and the assump-

tions made there.

4.2 Purpose of the Restri
tion and Its Generality

The restri
tions imposed by the above mode analysis are for guar-

anteeing the following properties of a program:

(1) A generator and the 
orresponding tester 
ommuni
ate using a

single shared variable, whi
h is the only output from them.

(2) The generator determines the value of the shared variable in a

top-down manner and in
rementally. Moreover, ea
h element of
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the shared variable is determined by only one goal; that is, we

ex
lude a generator like

gen( : : :X : : :) :- gen1( : : : X : : :), gen2( : : : X : : :).

% X is the shared variable.

to avoid 
on
i
t within the generator.

(3) The tester 
he
ks the value of the shared variable in a top-down

manner. Two or more goals 
an 
he
k it independently (e.g. the

�rst 
lause of no
he
k in Program 6). A goal derived from the

tester taking a sublist of the shared variable, as well as the tester

itself, 
on
entrates on 
he
king and generates no output.

The mode system is somewhat 
omplex, but it is inevitable for

sophisti
ated 
ontrol over the exe
ution of goals. Programmers must

keep the above properties in mind, but need not remember the de-

tail of the analysis. The \top-down" restri
tion on a shared variable

should be reasonable, be
ause if the generation and the 
he
k are not

done in
rementally, the original program will not be made eÆ
ient

by 
oroutining. In su
h a 
ase, the analyzer would generate an error

message like \The shared variable between perm and no
he
k is not

instantiated in
rementally, so 
oroutining is useless."

It must be examined whether the 
lass of logi
 programs that

pass the above mode analysis is suÆ
iently general. This is hard to

answer sin
e we do not have a good sto
k of logi
 programs writ-

ten for 
oroutined exe
ution. However, the 
lass of sear
h problems

that generate sequen
es (i.e., lists) of numbers, a
tions, et
. is 
on-

sidered quite general. For instan
e, many textbook examples su
h

as the missionaries-and-
annibals problem, the path-�nding problem

on graphs, and the blo
k-moving problem share the property of gen-

erating sequen
es of a
tions. They 
an be elegantly programmed as

generate-and-test programs satisfying the above properties. Program

7 is an analyzed path-�nding program in [6℄ originally written using

freeze of Prolog-II instead of 
oroutining.

The mode system in this paper 
ould be extended further (proba-

bly at the expense of simpli
ity); for example, we 
ould allow a gener-

ator to have output arguments as well as a stream-output argument.

Our method does not apply to some textbook examples for whi
h


oroutining is e�e
tive. The 
ryptarithmeti
 problem is an example;

Program 8 is a program to solve \SEND + MORE = MONEY" [6,

p. 150℄ rewritten in our notation. The data-
ow of this program is
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+ + -

path(Start,Goal,Path) :-

+ + ^ ?

path1(Start,Goal,Path) // good

-

list(Path).

+ + ^

path1(X,X, [X℄ ).

+ + ^ + - + + ^

path1(X,Y,[X|Path℄) :- neighbor(X,Z), path1(Z,Y,Path).

+ - + -

neighbor(X,Y) :- nb(X,Y).

+ - - +

neighbor(X,Y) :- nb(Y,X).

+ - + - + - + - + - + -

- + - + - + - + - + - +

nb(a,b). nb(a,
). nb(b,d). nb(b,e). nb(
,f). nb(d,g).

+ - + - + - + - + -

- + - + - + - + - +

nb(e,g). nb(e,h). nb(f,j). nb(h,i). nb(h,j).

?

good

-

list( [℄ ).

? + ? ?

good

-

list([X|L℄) :- out

-

of(X,L), good

-

list(L).

+ ?

out

-

of(X, [℄ ).

+ ? + + + ?

out

-

of(X,[Y|L℄) :- dif(X,Y), out

-

of(X,L).

Program 7. Path-�nding program.

test([S,E,N,D,M,O,R,Y℄) :-

add([D,N,E,S℄,[E,R,O,M℄,[Y,E,N,O,M℄),

S=\=0, M=\=0, different([S,E,N,D,M,O,R,Y℄).

add(Xs,Ys,Zs) :- add
(Xs,Ys,0,Zs).

add
([℄,[℄,0,[℄). add
([℄,[℄,1,[1℄).

add
([℄,[Y|Ys℄,C,Zs) :- add
([0℄,[Y|Ys℄,C,Zs).

add
([X|Xs℄,[℄,C,Zs) :- add
([X|Xs℄,[0℄,C,Zs).

add
([X|Xs℄,[Y|Ys℄,C,[Z|Zs℄) :-

add
99(X,Y,C,C1,Z), add
(Xs,Ys,C1,Zs).

% The predi
ate add
99(X,Y,C,C1,Z) is a 
olle
tion of fa
ts satisfying

% X+ Y+ C = 10� C1+ Z (0 � X; Y; Z � 9; 0 � C; C1 � 1).

different([X|Xs℄) :- out

-

of(X,Xs), different(Xs).

different([℄).

out

-

of(X,[Y|Ys℄) :- X=\=Y, out

-

of(X,Ys).

out

-

of(X,[℄).

Program 8. \SEND + MORE = MONEY".
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mu
h more 
omplex than the 8-queens program; however, sin
e the

problem is embedded in the program in this very 
ase, we 
an stati-


ally analyze 
oroutining. We �rst partially evaluate the body goals

of the top-level 
lause test until they are redu
ed to 
alls to add
99

and `=\='. Then we apply the mode analysis of the previous paper and

move ea
h 
all to `=\=' to the leftmost pla
e where both its operands

are ground

2)

. Now we 
an derive an exhaustive sear
h program us-

ing the previous method. Compilation of the addition table add
99,

however, would require spe
ial 
onsideration, be
ause it is a large 
ol-

le
tion of fa
ts 
alled in four modes. Note that the 
omplexity of the

above pro
edure is polynomial with respe
t to the number of unknown

digits, whi
h is lower than the 
omplexity of sequential exhaustive

sear
h.

4.3 Pre-Transformation and Compilation

A su

essfully analyzed program is then subje
t to the following

transformation ((1) and (2) are in 
ommon with the previous method):

(1) Give a unique predi
ate name for ea
h mode of an overloaded

(multi-mode) predi
ate.

(2) Move head uni�
ation for output arguments to the end of the


lause; and if the uni�
ation implied by the output arguments of

any body goal may 
ause failure, move it just behind that goal.

(3) If the stream-output head argument, if any, is of the form [H

1

,

: : :,H

n

|T

n

℄ (n � 1), repla
e it by a fresh variable T

0

, and put

the goals T

0

=[H

1

|T

1

℄, T

1

=[H

2

|T

2

℄, : : : , T

n�1

=[H

n

|T

n

℄ (T

1

, : : : ,

T

n�1

being fresh variables) in appropriate pla
es, where the ap-

propriate pla
e for the goal T

i�1

=[H

i

|T

i

℄ is the leftmost pla
e to

the right of T

i�2

=[H

i�1

|T

i�1

℄ (if any) where H

i

is ground.

(4) If the stream-input head argument, if any, is of the form [H

1

,

: : :,H

n

|T

n

℄ (n � 2), we prepare (n � 1) auxiliary predi
ates to

make sure that only one element is de
omposed in ea
h resolution.

For example, the 
lause

p([X1,X2|Xs℄, : : : ) :- test(X1,X2, : : : ), p(Xs, : : : ).

is rewritten as follows:

p([X1|Xs℄, : : : ) :- p2(Xs,X1, : : :).

p2([X2|Xs℄,X1, : : : ) :- test(X1,X2, : : : ), p(Xs, : : :).

Compilation te
hnique to a deterministi
 program is the same as

that of the previous paper, ex
ept for the management of the tester of
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a generator-tester pair. The tester is managed by the 
orresponding

generator in the form of a sub
ontinuation. The generator invokes

the sub
ontinuation when it determines a new element of the shared

variable, does possible derivations a

umulating suspended goals, and

returns to its own task letting the suspended goals be the new sub-


ontinuation.

When a sub
ontinuation is invoked, goals other than those that

must be suspended are exe
uted a

ording to the left-to-right rule. In

Program 5, su
h exe
utable goals were all system-de�ned and deter-

ministi
, but in general there 
an be user-de�ned goals possibly with

more than one solution. The goals may have output arguments also, as

long as they are `normal' goals with no stream-input argument. They


an be pro
essed using the usual te
hniques of 
ontinuation handling

and pro
ess forking.

When a sub
ontinuation is pro
essed, resolution that would ex-

amine the next element of the shared variable, i.e., resolution using

a 
lause having a non-variable stream-input head argument, must be

suspended. In prin
iple, suspension in our method should be de�ned

for resolution and not for a goal, be
ause some 
andidate 
lause may

examine the shared variable while others do not. However, if the

predi
ate being 
alled by a goal is deterministi
 with respe
t to its

stream-input argument (like no
he
k and qsafe of Program 6), we

need not 
ontrol suspension of ea
h 
andidate 
lause independently

but instead we 
an suspend the goal itself as an optimization. Stati


mode analysis reveals whether or not resolution using ea
h 
lause must

be suspended and whether or not ea
h predi
ate is deterministi
, and

we 
an generate an appropriate obje
t 
ode using su
h information.

5. PERFORMANCE

A 
ompiled exhaustive sear
h program 
an be exe
uted as a de-

terministi
 Prolog program [14℄. We 
ompared Program 5 with other

8-queens programs using DEC-10 Prolog on DEC2065. The programs

were timed after peephole optimization and ex
luding the time for

garbage 
olle
tion:

Program 2 with bagof: 24765mse
.

Program 5 (deterministi
 program derived from Program 2): 2045mse
.

Program 3 with bagof: 1798mse
.

Deterministi
 program derived from Program 3: 1938mse
.

Program 5 was 12 times faster than the original program exe
uted

without 
oroutining. It was 6% slower than the deterministi
 program
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derived from Program 3, but the di�eren
e seems quite reasonable.

The following are the timing results of the path-�nding programs (for

obtaining four paths from g to j):

Program 7 with bagof: 1

Deterministi
 program derived from Program 7: 28mse
.

Program 7 optimized for sequential exe
ution with bagof: 36mse
.

We admit that the above 
omparison is unfavorable to 
olle
tion of

solutions using ba
ktra
king and bagof [9℄, sin
e the timing results of

ba
ktra
king programs in
lude the time for re
lamation of a sta
k area

on ba
ktra
king, while the timing results of deterministi
 programs

do not in
lude the time for any storage re
lamation. However, the

situation might be quite di�erent in parallel exe
ution: Ba
ktra
king

programs are 
learly harder to parallelize than deterministi
 ones. The

overheads of various methods of multiple environment management for

OR-parallel exe
ution have been reported in [2℄, but we still need to

evaluate how mu
h it pays to 
ompile away multiple environments in

parallel exe
ution.

6. CONCLUSION

We have des
ribed a me
hanizable method for deriving from a

naive generate-and-test program an eÆ
ient deterministi
 program

that 
olle
ts all the solutions of the original program. We saw that


oroutining of generate-and-test programs is amenable to stati
 anal-

ysis for many (though not all) textbook examples. This means that


ontrol fa
ilities su
h as freeze [4℄ 
an often be 
ompiled away at

the 
ost of stati
 analysis. The analysis of a generate-and-test pro-

gram whose data-
ow is determined only at run time (e.g., a general


ryptarithmeti
 program) is still an open problem, though a meta-

programming te
hnique might in prin
iple enable us to use all our

te
hniques at run time.

The results 
an be viewed as a step towards a user language of

GHC (and other parallel logi
 programming languages) that is higher

than AND-sequential pure Prolog. However, the use of GHC as a

base language is in fa
t not essential for our te
hnique. Looking into

Program 5 for example, we �nd that the main me
hanisms ne
essary to

run it are 
omposing and de
omposing of ground data, re
ursive 
all,

some means for 
haining solutions, and (in 
ase of parallel exe
ution)

pro
ess forking, all of whi
h 
ould be implemented in pro
edural (or

even assembly) languages easily at least on sequential 
omputers. So
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we 
an say that our results also suggest a 
ompilation te
hnique of a


lass of 
oroutining logi
 program into (very) low-level languages.

The mode analysis te
hnique and our representation of sub
on-

tinuations apply also to program transformation from a 
oroutining

program to an eÆ
ient sequential Prolog program that returns all the

solutions by ba
ktra
king. The obtained program will have simple

data-
ow and hen
e will be easy to optimize 
ompared with programs

obtained by existing te
hniques.

Although we did not pursue full generality on the 
lass of 
ompil-

able programs, generation of a sequen
e in a generate-and-test manner

should be a quite general framework. The important issue for the fur-

ther development of the 
urrent te
hnique is to a

umulate pra
ti
al

and stri
tly logi
al generate-and-test programs.
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Notes

1) Gallagher [7℄ also uses more than one sta
k of goals and does informal

stati
 analysis very similar to ours. However, he did not 
ompile away

the shared variable and hen
e the generated program is not amenable to


ompilation to a deterministi
 program, while our method performs the

analysis and 
ompilation to a deterministi
 program in our own setting.

2) Seki and Furukawa [11℄ independently proposed this te
hnique in a dif-

ferent 
ontext.
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