-1 -

Making Exhaustive Search Programs
Deterministic, Part II

Kazunori Ueda

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan

Abstract. This paper complements the previous paper “Making Ex-
haustive Search Programs Deterministic” which showed a systematic
method for compiling a Horn-clause program for exhaustive search
into a GHC program or a Prolog program with no backtracking. This
time we present a systematic method for deriving a deterministic logic
program that simulates coroutining execution of a generate-and-test
logic program. The class of compilable programs is sufficiently general,
and compiled programs proved to be efficient. The method can also
be viewed as suggesting a method of compiling a naive logic program
into (very) low-level languages.

1. INTRODUCTION

This paper complements the previous paper [14] by the author
and extends the method described in it. The previous paper showed a
systematic method for compiling a Horn-clause program into a GHC
[13][15][16] program or a deterministic Prolog program that returns
a list of all the solutions of the original program. The method com-
piled away the primitives for collecting solutions such as bagof, which
had usually been considered as important extension to Prolog. The
compilation generally retained the efficiency of original programs on
the same compiler-based Prolog system, and a compiled program even
outperformed the original one when the number of solutions was large
relative to the search space. We showed the class of Horn-clause pro-
grams amenable to the method and argued how it is restrictive. These
results could be summarized as follows:

(1) A prospect was obtained for efficient (though not optimal) paral-
lel execution of search problems using a general-purpose parallel
language like GHC as a base language.

e Original program

append([1, Z,Z).
append([A|X],Y,[A|Z]) :- append(X,Y,Z).

- -+
e Calling form and mode information: bagof ((X,Y) ,append(X,Y,Z),S)

(_>.

(“+7: input (ground upon call); ‘=’: output (ground upon success))

e Mode analysis using the above mode information

- +
append([] s s Z) .

I NI

- + - -+
append([A|X],Y,[A|Z]) :- append(X,Y,Z).

® Pre-transformation (moving output unification)

append([], Z,Z).
append (X2, Y,[AlZ]) :- append(X,Y,Z), /xL1x/ X2=[A|X].

e Compiled program returning the same result

Calling form: ..., ap(Z,’L0’,8,[1), /*xLO*/...
% Argl: input arg; Arg2: continuation;
h Arg3,4: d-list (head and tail) of output pairs

ap(Z,Cont,S0,82) :- true | apl(Z,Cont,S0,S1), ap2(Z,Cont,S1,52).
% apl for unit clause and ap2 for recursive clause

ap1(Z,Cont,S0,581) :- true | cont(Cont,[],Z,S0,S1).

ap2([AlZ],Cont,S0,S1) :- true | ap(Z,’L1’(A,Cont),S0,S1).

ap2(Z, — S0,S1) :- otherwise | S0=S1.
cont(’L1’(A,Cont),X,Y,S0,S1) :- true | cont(Cont,[A|X],Y,S0,S1).
cont(’LO’, X,Y,50,81) :- true | SO=[(X,Y)|S1].

Program 1. Compilation of a list decomposition program.

(2) Horn-clause logic can now be regarded as a user language of GHC
for search problems.

Exploiting parallelism in an obtained GHC program is quite easy,
because different search paths are examined by independent AND-
parallel goals without communication. This means that an obtained
program could be processed using restricted AND-parallelism [5] also.

A deterministic program obtained by the previous method simu-
lates OR-parallel and AND-sequential execution of the original pro-
gram. The original OR-parallelism is compiled into AND-parallelism
as stated above, and the sequential execution of conjunctive goals is

-3 -

realized by passing a continuation around. Solutions are collected by
concatenating (possibly empty) difference lists of solutions returned
by the paths of a proof tree.

The crux of the technique is to move output unification (i.e., uni-
fication for constructing result values) from a clause head to the end
of the clause. In general, OR-parallel search requires a multiple envi-
ronment mechanism, because incompatible bindings may be generated
when a goal is rewritten differently by different program clauses at the
same time. However, if output unification is moved, head unification
will not return partial results any more, but results will be constructed
in a bottom-up manner. Thus a multiple environment mechanism is
made inessential. Program 1 shows compilation of an append program
to be used for decomposing a list into two. We use mode declaration
and mode inference for determining whether each argument of a goal
is for providing an input value or for receiving a result value.

However, assuming AND-sequentiality often causes incompatibil-
ity between clarity and efficiency of a program, as many people have
pointed out. For instance, Program 2 for solving the 8-queens problem
is said to be naive and clear, because it well separates the generator
(a permutation program) and the tester for the generate-and-test-type
problem. This program, however, proves to be very inefficient under
AND-sequential execution (see Section 5), because the tester starts af-
ter the generator has placed all the queens. The situation is even worse
with a program for finding acyclic paths on a graph shown in Section
4.2; the generator generates an infinite number of candidate solutions,
so although the number of final solutions is finite, the program would
not terminate. For this reason, we usually fuse a generator and a tester
in Prolog programming and write a program like Program 3 . Pro-
gram 3 is not so complex, but it obscures the fact that permutation
generation is a subproblem of the 8-queens problem.

2. THE PROBLEM

Our goal is to derive systematically (i.e., in a mechanizable man-
ner) an efficient deterministic logic program that returns a list of all
the solutions of the original generate-and-test program. We must com-
pile coroutining to achieve this; when the goal perm([1,...,8],X) in
Program 2 instantiates X to [1,2]X2], nocheck(X) must be invoked
to detect that [1,2]X2] cannot be a solution for any instance of X2.
At the same time, we must compile away the bagof primitive that is
outside Horn-clause logic.

— 4 —

:- bagof (X, eightqueens(X), B).
eightqueens(X) :- perm([1,2,3,4,5,6,7,8],X) // nocheck(X).

perm([H|T],[A|P]) :- del([HIT],A,L), perm(L,P).
perm([1, o o).

del([HIT],H, T).
del([H|T],A,[H|T2]) :- del(T,A,T2).

nocheck([H|IT]) :- gsafe(H,T,1), nocheck(T).
nocheck([1).

gsafe (U, [H|T],N) :- H+N=\=U, H-N=\=U, M is N+1, gsafe(U,T,M).
gsafe(_, [1,).

Program 2. Naive 8-queens program.

eightqueens(X) :- eightq([1,2,3,4,5,6,7,8],[]1,X).

eightq([H|T],R,P) :-
del([HIT],A,L), gsafe(A,R,1), eightq(L,[AIR],P).
eightq([1, R,P) :- rev(R,[]1,P).

del([HIT],H, T).
del([H|T],A,[H|T2]) :- del(T,A,T2).

gsafe(U, [H|T],N) :- H+N=\=U, H-N=\=U, M is N+1, gsafe(U,T,M).
gsafe(_, [1, _).

rev([A|X],Y,Z) :- rev(X,[AlY],Z).
rev([1, Y,Y).

Program 3. 8-queens program optimized for sequential execution.

One possible method is to derive an efficient Prolog program like
Program 3 first and then to derive an exhaustive search program from
it using the previous method. Methods for the first step have been pro-
posed by many researchers [1][3][7][8][11]. Of these, Gallagher [7] and
Bruynooghe et al. [1] use meta-level predicates that describe deduc-
tion steps of the goals given as their arguments. Obtained programs,
however, are not compilable by the previous method. They preserve
shared variables between generators and testers instantiated in a top-
down manner, which cannot be analyzed by the mode analysis.

Clark [3], Gregory [8], and Seki and Furukawa [11] use methods
based on unfold/fold transformation [12]. However, it seems that only
the method of [11] can derive Program 3 from Program 2; the deriva-

. —

tion requires a new rule in addition to those in [12]. Moreover, it has
not been made clear how these methods can be mechanized for what
class of Horn-clause programs.

We chose to compile a generate-and-test logic program directly
to a deterministic program by extending the analysis and compilation
method of the previous paper. Thus our method is not just a direct
sum of the known techniques stated above. One reason for taking this
approach is that it seemed to be more amenable to mechanization.
Another reason is that by using the mode system, the sufficient con-
ditions for the compilation can be explicitly defined in terms of the
data-flow of a program. The main problems to be solved are how to
compile away the shared variable between a generator and a tester and
how to extend the mode system for the analysis of coroutining.

3. METHOD AND EXAMPLE

This section exemplifies how we extend the previous method to
handle coroutining, using Program 2.

First of all, we introduce a new syntax for specifying coroutin-
ing. We write g(...X...) // t(...X...) for the pair of a generator
and a tester to be run concurrently, where X is the shared variable
instantiated by g to a list of ground terms in a top-down manner and
examined by t for its adequacy. This pair of goals can be regarded
as a goal g(...X...) constrained by t(...X...), and can appear in
a sequence of goals executed sequentially from left to right. All the
arguments except X must be ground, and X undefined, when the pair
of goals starts.

Our goal is to detect failure as soon as possible by executing t in-
crementally each time g instantiates X. Let us trace one of the possible
execution paths of Program 2.

When perm([1,...,8],X) starts and the goal del in the first
clause of perm succeeds, the first element of X is instantiated to some
integer between 1 and 8, inclusive. The goal nocheck (X) is invoked
at this point. In resolution principle, we could of course execute
nocheck (X) before X is instantiated, but we have suspended it be-
cause we chose to use it for checking the given value of X.

Assume X is instantiated to [1]X1]. Then from nocheck (X) we
can derive gsafe(1,X1,1) and nocheck(X1) using the first clause.
However, the derived goals must be suspended until X1 is instanti-
ated, because otherwise X1 would be instantiated by the tester. So we

—6 —

suspend the execution of nocheck(X) and resume perm([1,...,8],
X). The recursive call to perm invokes X1 to, say, [51X2]. Now from
the suspended goal gsafe(1,X1,1) we can derive 5+1=\=1, 5-1=\=1,
M is 1+1 and gsafe(1,X2,M), of which the first three goals can be
executed immediately in success and gsafe(1,X2,2) remains. From
another suspended goal nocheck(X1), we can derive gqsafe(5,X2,1)
and nocheck (X2), both of which must be suspended.

This procedure will finally result in one of the following situations:

(1) Some call to ‘=\=" derived from gsafe fails.

(2) X is instantiated to a complete list.

The first case means that the execution path we have been tracing
results in failure. In the second case, X has been instantiated to, say,
[1,5,8,6,3,7,2,41X8], and then X8 is instantiated to []1 by the sec-
ond clause of perm. In this case, the nine goals

gsafe(1,X8,8), ..., gsafe(4,X8,1) and nocheck(X8)

have been derived from nocheck(X), and they all succeed when X8 is
bound to []. Now both perm([1,...,8],X) and nocheck(X) have
succeeded and we have found a solution X=[1,5,8,6,3,7,2,4].

The important point in the above procedure is that the following
can be known by static analysis:

(1) The next element of X is determined when the call to del in the
first clause of perm has succeeded; and the list X is closed with []
when resolution with the second clause of perm has succeeded.

(2) When the next element of X is determined, we can derive two
goals, a gsafe and a new nocheck, from a suspended nocheck.
Moreover, if there exists a suspended gsafe, four goals can be
derived from it, and they can be executed immediately except for
the recursive gsafe. When X is terminated by [], all suspended
goals succeed.

Furthermore, the above properties do not depend on the specific value
[1,...,8] of the first argument of perm, but only on the fact that
it is ground. This suggests that we can statically analyze coroutining
as mode analysis. The technique will be described later in Section 4;
before that we will derive a deterministic 8-queens program first.

We put labels in the original program and move output unification
(Program 4). These labels are used as the constructors of a continua-
tion. Since the predicate del does not directly manipulate the shared

-7 —

eightqueens(X) :-
perm([1,2,3,4,5,6,7,8],X) // nocheck(X)
L1: (construct X).

perm([H|T],X) :-
del([H|T],A,L),
L2: X=[AIP], (send A to nocheck(X) and invoke it)
L3: perm(L,P).
perm([], [1) :-

(X is terminated, so nocheck(X) succeeds).

del([HIT],H,T).
del([H|T],X,Y) :-
del(T,A,T2),
Lj: X=A, Y=[H|T2].

Program 4. Labeled 8-queens program (nocheck and qsafe are
omitted; see Program 2 for them).

variable X of the generator-tester pair, output unification is moved to
the end of the clause so that the output values are constructed in an
bottom-up manner (see Section 1). On the other hand, the predi-
cate perm determines the value of the shared variable X. To realize
coroutining, we must ship out a new element A at L2 (i.e., as soon
as it is determined by the goal del([H|T],A,L)), where we invoke
nocheck(X) (or goals derived from it) and do possible derivations. If
the new element A is appropriate, the derivation results in a set of
suspended goals and the tasks following L3 is executed. Otherwise,
the derivation fails and L3 is not reached.

The second clause of perm is for closing the shared variable X.
When it is selected, all the suspended goals that have been derived
from nocheck(X) are just discarded, because the following are stati-
cally known:

(1) When X is closed, possible remaining goals derived from nocheck(
X) are either of the form gsafe(...Xn...) or of the form no-
check(Xn), where Xn is a sublist of X just being bound to [].

(2) All these goals succeed when Xn is instantiated to [J.

L1 is the sole return point from the second clause of perm. Reach-
ing L1 means that a solution has been obtained, but since we accu-
mulate the elements of X in reverse order, we reverse them again at
L1 to construct the final value of X. The reason for accumulating the

-8 —

elements of X in reverse order is that we want to represent the inter-
mediate values of X always as ground terms so that they can be shared
when the current search paths split in future.

Program 5 shows a deterministic program derived from Program 4.
The control flow of the generator perm described above is implemented
in exactly the same continuation management method as the previous
one: The predicates e, p and d correspond to eightqueens, perm and
del, respectively; dI and d2 correspond to the first and the second
clauses of the non-deterministic predicate del; cont0, contl, cont24
and cont3 are for continuation management (we use a typewriter font
for entities of original programs and an italic font for compiled programs).
The only difference is that the information on the tester nocheck and
a partial solution of X are carried around in new forms by p (the second
and the third arguments, respectively) and by the goals called by p.
The last two arguments of each predicate represent a difference list of
obtained solutions.

On the other hand, the control flow of the tester is implemented in
a different manner. Suspended goals derived from nocheck (X) are put
in a dedicated continuation (which we call a subcontinuation hence-
forth) managed as a local datum of perm'). In Program 5, Cont rep-
resents the main continuation and Contn represents the subcontinu-
ation. The initial value n of the subcontinuation, which means there
is one goal nocheck to be solved, is set in the sole clause of e. The
tasks represented by Contn are processed by nresume. The predicate
nresume is invoked when the second clause of cont24 recognizes that
the control has reached L2, does possible derivations from the current
Contn using the value H of the next element of the shared variable,
and creates a new subcontinuation.

Contn examined by nresume has either the form n or the form
q(U,N,Contn’). The constant n represents the goal nocheck(Xn), and
the term ¢(U,N,Contn’) represents the goal gsafe(U,Xn,N) and the
goals represented by Contn’, where Xn means the sublist of X which was
instantiated to the form [H|Xn’] just before the current invocation
of nresume. A subcontinuation is composed only of ground input
arguments for gsafe and the constructors n and ¢; the shared variable
X has been compiled away. The values of the elements of X are given
one at a time as the fifth argument of nresume.

The first clause of nresume executes three of the four goals de-
rived from gsafe (U, [H|Xn’],N) immediately, and stacks the remain-
ing recursive call to the third argument ContnR (R stands for re-

Calling form: :- e(’L0O’,B,[]).

e(Cont,S0,S1) :- true |
p(l1,2,3,4,5,6,7,8],n,[]1,’L1°(Cont),S0,S1).

pCll, Contn,SR,Cont,S0,S1) :- true | contl(Cont,SR,S0,S1).
p([HIT],Contn,SR,Cont,S0,S1) :- true |

d([H|T],’L2’ (Contn,SR,Cont),S0,51).
p(L, _, s — S0,S1) :- otherwise | S0=S1.

d(L,Cont,S0,S2) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).

d1([H|T],Cont,S80,S1) :- true | cont24(Cont,H,T,S0,S1).
di(L, — S0,S1) :- otherwise | S0=S1.

d2([H|T],Cont,S0,51) :- true | d(T,’L4’(H,Cont),S0,S1).
d2(L, s S0,51) :- otherwise | S0=S1.

nresume (q(U,N,Contn) ,SR,ContnR,Cont ,H,S0,51) :-
H+N=\=U, H-N=\=U |
M is N+1, nresume(Contn,SR,q(U,M,ContnR),Cont,H,S0,51).
nresume(n, SR,ContnR,Cont ,H,S0,S1) :- true |
rev2(ContnR,q(H,1,n) ,NewContn),
cont3(Cont ,NewContn, [H|SR],S0,S1).
nresume (_, —s s _ _,50,S1) :- otherwise |
S0=S1.

cont0(’L0’,S5,S0,81) :- true | SO=[S|S1].

cont1(’L1’(Cont),SR,S0,S1) :- true |
rev(SR,[],S), cont0(Cont,S,S0,S1).

cont24(’L4’ (H,Cont), A,T2,50,S1) :- true |
cont24(Cont,A, [H|T2],S0,51).

cont24(’L2’ (Contn,SR,Cont) ,A,T2,50,S1) :- true |
nresume (Contn,SR,n, L3’ (T2,Cont) ,A,S0,S1).

cont3(’L3’(T2,Cont) ,Contn,SR,S0,S1) :- true |
p(T2,Contn,SR,Cont,S0,S51) .

rev([A|X],Y,Z) :- true | rev(X,[A|Y],Z).
rev([], Y,Z) :- true | Y=Z.

rev2(q(A,B,X),Y,Z) :- true | rev2(X,q(A,B,Y),Z).
rev2(n, Y,Z) :- true | Y=Z.

Program 5. Compiled 8-queens program.

— 10 —

versed). The inequalities are executed in a guard since they may fail;
if they should fail, the difference list for collecting solutions is short-
circuited by the third clause. The second clause recognizes the goal
nocheck([H|Xn’]), creates a new subcontinuation NewContn from

(i) the goals gsafe(H,Xn’,1) and nocheck(Xn’) derived from it
(which are represented as ¢(H,1,n)) and

(ii) the goals stacked in ContnR in reverse order
using rev2, and calls cont3 to process the tasks following L3.

The elements of the shared variable X are stacked in reverse order
(as stated above) in SR. SR is initialized to [/ in the sole clause of
e, and each new element is stacked at the second clause of nresume
when it passes the control to L3. SR is reversed by contl as the task
following L1. The predicate cont1 is called from the first clause of p.
This clause discards Contn, because the corresponding original clause
(the first clause of perm) closes the shared variable X, which causes all
the suspended goals derived from nocheck (X) to succeed as we stated
above.

4. GENERAL COMPILATION PROCEDURE

The compilation procedure comprises the following:

(1) mode analysis,
(2) pre-transformation to a normal form, and

(3) compilation to a deterministic program.

The primary issue for realizing automatic compilation is that the suffi-
cient conditions for being compilable are given in a statically decidable
manner. This decision is done as part of the mode analysis described
in Section 4.1. Section 4 describes the mode analysis in detail and the
compilation rather briefly.

4.1 Mode Analysis

The purpose of the mode analysis is to obtain information for
the compilation by statically analyzing data-flow that will happen at
run time. Thus it is a kind of abstract interpretation [10]. While
the previous paper used two modes for the analysis, we now use the
following four modes and assign one of them to each argument of the
body goals of a clause:

— 11 —

‘+’ (input) The preceding computation (or the top-level goal clause)
guarantees that this argument is instantiated to a ground term
when the goal starts.

(output) The goal guarantees to instantiate this argument to a
ground term upon success.

‘“?” (stream-input) The goal having the corresponding stream-output
argument (say (G) guarantees to instantiate this stream-input ar-
gument to a list of ground terms. The goal G further guarantees
that when this argument is instantiated to the form [H|T]1, H
has been instantiated to a ground term and that the properties of
a stream-input argument can again be assumed for 7T'.

(stream-output) The goal guarantees to instantiate this argument
to a list of ground terms. Moreover, the goal guarantees that when
it instantiates this argument to the form [H|T]1, H has been
instantiated to a ground term and 7" again has the properties of a
stream-output argument.

The modes stream-output and stream-input are given to the shared|j
variable instantiated by a generator-tester pair. If output unifica-
tion for the stream-output argument of a generator is specified in a
clause head (as in the first clause of perm in Program 2), the generator
may fail to guarantee the requirements for a stream-output argument,
that is, it may generate an uninstantiated element. However, the
pre-transformation phase (see Section 4.3) tries to guarantee them by
moving the output unification to an appropriate place in the clause.

The mode analysis analyzes all the predicates that may be called
directly or indirectly from a top-level goal clause, using the mode dec-
laration on that clause. It clarifies the data-flow of the whole program
by mode assignment. If the analysis succeeds, the mode assignment is
guaranteed to be correct, and the program is amenable to compilation.
If it fails, the program cannot be compiled in the current setting. The
mode analysis of each clause is done as follows:

(1) Mark all the variables appearing in the input head arguments as
ground.

(2) If the clause has a stream-input head argument 7', do the following:

(2a) If T is [1, do nothing.
(2b) If T is an unmarked variable, mark it as stream.

(2¢) If T is of the form [H|T1, mark all the variables in H as
ground, and process T according to (2a) to (2d).

— 12 —

(2d) Otherwise, make the analysis fail.

(3) Assign modes to the body goals from left to right, where the mode
of each goal is assumed as follows:

(3a) An argument consisting only of function/constant symbols
and variables marked as ground is assumed to be input.

(3b) An argument that is a single variable marked as stream is as-
sumed to be stream-input. If there is a non-variable argument
containing variables marked as stream, make the analysis fail.

(3c) If the goal in question is a generator-tester pair and the fol-
lowing conditions are satisfied,

(i) The generator has just one argument not assumed to be
input, which is an unmarked single variable.

(ii) That variable appears also as a single-variable argument
of the tester, and it is the only argument of the tester not
assumed to be input.

then assume the argument of the generator to be stream-
output and the argument of the tester to be stream-input,
and mark the shared variable as ground. If the generator-
tester pair does not satisfy the above conditions, make the
analysis fail.

(3d) Assume all the other arguments (i.e., arguments containing
unmarked variables) to be output, and mark all the variables
in them as ground.

(4) If the clause in question has a stream-input head argument, con-
firm the following. If not confirmed, make the analysis fail.

(4a) At most one argument is assumed to be stream-input for each
body goal.

(4b) All the other arguments of a goal having a stream-input ar-
gument are assumed to be input.

(5) Check if all the variables appearing in the output head arguments
have been marked as ground, and make the analysis fail if the
check fails.

(6) Check if a stream-output head argument, if any, is one of the
following:

(6a) [1

(6b) a variable marked as ground

~ 13 -
Declared Mode: eightqueens(-).

- + -~ ’?
eightqueens(X) :- perm([1,2,3,4,5,6,7,8],X) // nocheck(X).

+ - + - - +
perm([H|T],[A|P]) :- del([HIT],A,L), perm(L,P).
+ -
perm([1, [1).

del([HIT],H, T).

+ - - + - -
del([H|T],A, [H|T2]) :- del(T,A,T2).
+ 7 + ?

?
nocheck([H|T]) :- gsafe(H,T,1), nocheck(T).
?

nocheck([1).
+ ? + + + + + + + - + + 7 +
gsafe(U, [H|T],N) :- H+N=\=U, H-N=\=U, M is N+1, gsafe(U,T,M).

+ 7+
gsafe(U, [1, V).

Program 6. Mode analysis of the 8-queens program.

(6¢) a term of the form [H|T1, where all the variables in H are
marked as ground and T is again one of (6a) to (6c¢).

If the check fails, make the analysis fail. Moreover, if there exists a
variable classified as (6b) (possibly after recursive checking using
(6¢)), check if it appears once and only once in the body as a single-
variable argument of some goal. If the check succeeds, change
the mode of that argument of the body goal to stream-output;
otherwise make the analysis fail.

Program 6 shows an analyzed 8-queens program. If the top-level
goal clause contains a generator-tester pair, its mode declaration must
be compatible with the conditions (i) and (ii) in (3c) and the assump-
tions made there.

4.2 Purpose of the Restriction and Its Generality

The restrictions imposed by the above mode analysis are for guar-
anteeing the following properties of a program:

1) A generator and the corresponding tester communicate using a
g g g
single shared variable, which is the only output from them.

(2) The generator determines the value of the shared variable in a
top-down manner and incrementally. Moreover, each element of

— 14 —

the shared variable is determined by only one goal; that is, we
exclude a generator like

gen(...X...) - gen1(...X...), gen2(...X...).
% X is the shared variable.

to avoid conflict within the generator.

(3) The tester checks the value of the shared variable in a top-down
manner. Two or more goals can check it independently (e.g. the
first clause of nocheck in Program 6). A goal derived from the
tester taking a sublist of the shared variable, as well as the tester
itself, concentrates on checking and generates no output.

The mode system is somewhat complex, but it is inevitable for
sophisticated control over the execution of goals. Programmers must
keep the above properties in mind, but need not remember the de-
tail of the analysis. The “top-down” restriction on a shared variable
should be reasonable, because if the generation and the check are not
done incrementally, the original program will not be made efficient
by coroutining. In such a case, the analyzer would generate an error
message like “The shared variable between perm and nocheck is not
instantiated incrementally, so coroutining is useless.”

It must be examined whether the class of logic programs that
pass the above mode analysis is sufficiently general. This is hard to
answer since we do not have a good stock of logic programs writ-
ten for coroutined execution. However, the class of search problems
that generate sequences (i.e., lists) of numbers, actions, etc. is con-
sidered quite general. For instance, many textbook examples such
as the missionaries-and-cannibals problem, the path-finding problem
on graphs, and the block-moving problem share the property of gen-
erating sequences of actions. They can be elegantly programmed as
generate-and-test programs satisfying the above properties. Program
7 is an analyzed path-finding program in [6] originally written using
freeze of Prolog-II instead of coroutining.

The mode system in this paper could be extended further (proba-
bly at the expense of simplicity); for example, we could allow a gener-
ator to have output arguments as well as a stream-output argument.

Our method does not apply to some textbook examples for which
coroutining is effective. The cryptarithmetic problem is an example;
Program 8 is a program to solve “SEND + MORE = MONEY” [6,
p. 150] rewritten in our notation. The data-flow of this program is

— 15—

+ + -
path(Start,Goal,Path) :-
+ + - ?
pathi(Start,Goal,Path) // good_list(Path).

+ 4+ "
path1(X,X, [X]).

+ 4+ " + - ++ "
path1(X,Y,[X|Path]) :- neighbor(X,Z), pathi(Z,Y,Path).

+ - + -
neighbor(X,Y) :- nb(X,Y).

+ - -+
neighbor(X,Y) :- nb(Y,X).

+ - + - + - + - + - + -
-+ -+ -+ -+ -+ -+
nb(a,b). =nb(a,c). nb(b,d). nb(b,e). nb(c,f). nb(d,g.
+ - + - + - + - + -
-+ -+ -+ -+ -+
nb(e,g). mnb(e,h). nb(f,j). nb(h,i). nb(h,j).

?
good_list([]1).

? + 7 ?
good_list ([X|L]) :- out_of(X,L), good_list(L).

+ 7
out_of (X, [1).

+ ? + + + 7
out_of (X, [YIL]) :- dif(X,Y), out_of(X,L).

Program 7. Path-finding program.

test([S,E,N,D,M,0,R,Y]) :-
add([D,N,E,S],[E,R,O0,M], [Y,E,N,O,M]),
S=\=0, M=\=0, different([S,E,N,D,M,0,R,Y]).

add(Xs,Ys,Zs) :- addc(Xs,Ys,0,Zs).

addc([]1,[1,0,[1). addc([1,[],1,[1]1).
addc([1,[Y|Ys],C,Zs) :- addc([0]1,[YI|Ys],C,Zs).
addc([X|Xs],[],C,Zs) :- addc([X|Xs],[0],C,Zs).
addc ([X|Xs],[Y|Ys],C,[Z]Zs]) :-
addc99(X,Y,C,C1,Z), addc(Xs,Ys,C1,Zs).

% The predicate addc99(X,Y,C,C1,Z) is a collection of facts satisfying
% X+Y+C=10xC1+Z (0<XY,2<90<cC,C1<1).

different([X|Xs]) :- out_of(X,Xs), different(Xs).
different([]1).

out_of (X, [Y|Ys]) :- X=\=Y, out_of(X,Ys).
out_of (X, [1).

Program 8. “SEND + MORE = MONEY”.

— 16 —

much more complex than the 8-queens program; however, since the
problem is embedded in the program in this very case, we can stati-
cally analyze coroutining. We first partially evaluate the body goals
of the top-level clause test until they are reduced to calls to addc99
and ‘=\=". Then we apply the mode analysis of the previous paper and
move each call to ‘=\=" to the leftmost place where both its operands
are ground®. Now we can derive an exhaustive search program us-
ing the previous method. Compilation of the addition table addc99,
however, would require special consideration, because it is a large col-
lection of facts called in four modes. Note that the complexity of the
above procedure is polynomial with respect to the number of unknown
digits, which is lower than the complexity of sequential exhaustive
search.

4.3 Pre-Transformation and Compilation

A successfully analyzed program is then subject to the following
transformation ((1) and (2) are in common with the previous method):

(1) Give a unique predicate name for each mode of an overloaded
(multi-mode) predicate.

(2) Move head unification for output arguments to the end of the
clause; and if the unification implied by the output arguments of
any body goal may cause failure, move it just behind that goal.

(3) If the stream-output head argument, if any, is of the form [H;,
... H,IT,]1 (n > 1), replace it by a fresh variable T, and put
the gO&lS T0= [H1 |T1] s T1= [H2 |T2]) eee Tn_1= [Hn |Tn] (Tl, ey
T,.—1 being fresh variables) in appropriate places, where the ap-
propriate place for the goal T;_1=[H;|T;] is the leftmost place to
the right of T;_o=[H;_11T;—1] (if any) where H; is ground.

(4) If the stream-input head argument, if any, is of the form [H;,
oo s HyIT,1 (n > 2), we prepare (n — 1) auxiliary predicates to
make sure that only one element is decomposed in each resolution.
For example, the clause

p([X1,X2]Xs],...) :- test(X1,X2,...), p(Xs,...).

is rewritten as follows:
p([X1]Xs],...) :- p2(Xs,X1,...).
p2([X2]Xs],X1,...) :- test(X1,X2,...), p(Xs,...).

Compilation technique to a deterministic program is the same as
that of the previous paper, except for the management of the tester of

— 17 —

a generator-tester pair. The tester is managed by the corresponding
generator in the form of a subcontinuation. The generator invokes
the subcontinuation when it determines a new element of the shared
variable, does possible derivations accumulating suspended goals, and
returns to its own task letting the suspended goals be the new sub-
continuation.

When a subcontinuation is invoked, goals other than those that
must be suspended are executed according to the left-to-right rule. In
Program 5, such executable goals were all system-defined and deter-
ministic, but in general there can be user-defined goals possibly with
more than one solution. The goals may have output arguments also, as
long as they are ‘normal’ goals with no stream-input argument. They
can be processed using the usual techniques of continuation handling
and process forking.

When a subcontinuation is processed, resolution that would ex-
amine the next element of the shared variable, i.e., resolution using
a clause having a non-variable stream-input head argument, must be
suspended. In principle, suspension in our method should be defined
for resolution and not for a goal, because some candidate clause may
examine the shared variable while others do not. However, if the
predicate being called by a goal is deterministic with respect to its
stream-input argument (like nocheck and gsafe of Program 6), we
need not control suspension of each candidate clause independently
but instead we can suspend the goal itself as an optimization. Static
mode analysis reveals whether or not resolution using each clause must
be suspended and whether or not each predicate is deterministic, and
we can generate an appropriate object code using such information.

5. PERFORMANCE

A compiled exhaustive search program can be executed as a de-
terministic Prolog program [14]. We compared Program 5 with other
8-queens programs using DEC-10 Prolog on DEC2065. The programs
were timed after peephole optimization and excluding the time for
garbage collection:

Program 2 with bagof: 24765msec.
Program 5 (deterministic program derived from Program 2): 2045msec.
Program 3 with bagof: 1798msec.
Deterministic program derived from Program 3: 1938msec.

Program 5 was 12 times faster than the original program executed
without coroutining. It was 6% slower than the deterministic program

— 18 —

derived from Program 3, but the difference seems quite reasonable.
The following are the timing results of the path-finding programs (for
obtaining four paths from g to j):

Program 7 with bagof: 00
Deterministic program derived from Program 7: 28msec.
Program 7 optimized for sequential execution with bagof: Zbmsec.

We admit that the above comparison is unfavorable to collection of
solutions using backtracking and bagof [9], since the timing results of
backtracking programs include the time for reclamation of a stack area
on backtracking, while the timing results of deterministic programs
do not include the time for any storage reclamation. However, the
situation might be quite different in parallel execution: Backtracking
programs are clearly harder to parallelize than deterministic ones. The
overheads of various methods of multiple environment management for
OR-parallel execution have been reported in [2], but we still need to
evaluate how much it pays to compile away multiple environments in
parallel execution.

6. CONCLUSION

We have described a mechanizable method for deriving from a
naive generate-and-test program an efficient deterministic program
that collects all the solutions of the original program. We saw that
coroutining of generate-and-test programs is amenable to static anal-
ysis for many (though not all) textbook examples. This means that
control facilities such as freeze [4] can often be compiled away at
the cost of static analysis. The analysis of a generate-and-test pro-
gram whose data-flow is determined only at run time (e.g., a general
cryptarithmetic program) is still an open problem, though a meta-
programming technique might in principle enable us to use all our
techniques at run time.

The results can be viewed as a step towards a user language of
GHC (and other parallel logic programming languages) that is higher
than AND-sequential pure Prolog. However, the use of GHC as a
base language is in fact not essential for our technique. Looking into
Program 5 for example, we find that the main mechanisms necessary to
run it are composing and decomposing of ground data, recursive call,
some means for chaining solutions, and (in case of parallel execution)
process forking, all of which could be implemented in procedural (or
even assembly) languages easily at least on sequential computers. So

— 19 —

we can say that our results also suggest a compilation technique of a
class of coroutining logic program into (very) low-level languages.

The mode analysis technique and our representation of subcon-
tinuations apply also to program transformation from a coroutining
program to an efficient sequential Prolog program that returns all the
solutions by backtracking. The obtained program will have simple
data-flow and hence will be easy to optimize compared with programs
obtained by existing techniques.

Although we did not pursue full generality on the class of compil-
able programs, generation of a sequence in a generate-and-test manner
should be a quite general framework. The important issue for the fur-
ther development of the current technique is to accumulate practical
and strictly logical generate-and-test programs.

Acknowledgments

The author is indebted to the members of First Research Labora-
tory, ICOT Research Center, for helpful discussions.

Notes

1) Gallagher [7] also uses more than one stack of goals and does informal
static analysis very similar to ours. However, he did not compile away
the shared variable and hence the generated program is not amenable to
compilation to a deterministic program, while our method performs the
analysis and compilation to a deterministic program in our own setting.

2) Seki and Furukawa [11] independently proposed this technique in a dif-
ferent context.

References

[1] Bruynooghe, M., De Schreye, D. and Krekels, B., Compiling Con-
trol. In Proc. 1986 Symp. on Logic Programming, IEEE Computer
Society, 1986, pp. 70-77.

[2] Ciepielewski, A. and Hausman, B., Performance Evaluation of a
Storage Model for OR-Parallel Execution of Logic Programs. In
Proc. 1986 Symp. on Logic Programming, IEEE Computer Soci-
ety, 1986, pp. 246-257.

[3] Clark, K. L., Predicate Logic as a Computational Formalism. Re-
search Monograph 79/59 TOC, Dept. of Computing, Imperial Col-
lege of Science and Technology, London, 1979.

4]

[15]

[16]

— 20 —

Colmerauer, A., Prolog Il Reference Manual and Theoretical
Model. Internal report, Groupe Intelligence Artificielle, Univer-
sité Aix-Marseille T, 1982.

DeGroot, D., Restricted AND-Parallelism. In Proc. Int. Conf. on
Fifth Generation Computer Systems 1984, ICOT, Tokyo, 1984,
pp. 471-478.

Furukawa, K., Introduction to Prolog. Ohm-sha, Tokyo, 1986 (in
Japanese).

Gallagher, J., Simulating Coroutining for the 8-Queens Problem.
Logic Programming Newsletter, L. M. Pereira (ed.), Universidade
Nova de Lisvoa, No. 3 (1982), pp. 10-11.

Gregory, S., Towards the Compilation of Annotated Logic Pro-
grams. Research Report DOC 80/16, Dept. of Computing, Impe-
rial College of Science and Technology, London, 1980.

Helmenegildo, M. V., Discussion at the Megalips Plus Workshop,
Manchester, 1986.

Mellish, C. S., Abstract Interpretation of Prolog Programs. In
Proc. Third Int. Conf. on Logic Programming, Shapiro, E. (ed.),
LNCS 225, Springer-Verlag, 1986, pp. 463-474.

Seki, H. and Furukawa, K., Compiling Control by a Program
Transformation Approach. ICOT Tech. Memorandum TM-0240,
ICOT, Tokyo, 1986.

Tamaki, H. and Sato, T. [1984] Unfold/Fold Transformation of
Logic Programs. In Proc. Second Int. Logic Programming Conf.,
Uppsala Univ, Sweden, 1984, pp. 127-138.

Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103,
ICOT, Tokyo, 1985. A revised version is in Proc. Logic Pro-
gramming 85, Wada, E. (ed.), LNCS 221, Springer-Verlag, 1986,
pp. 168-179.

Ueda, K., Making Exhaustive Search Programs Deterministic. In
Proc. Third Int. Conf. on Logic Programming, Shapiro, E. (ed.),
LNCS 225, Springer-Verlag, 1985, pp. 270-282. A revised version
will appear in New Generation Computing, Vol. 5, No. 1 (1987).

Ueda, K., Guarded Horn Clauses: A Parallel Logic Programming
Language with the Concept of a Guard. ICOT Tech. Report TR-
208, ICOT, Tokyo, 1986.

Ueda, K., Introduction to Guarded Horn Clauses. ICOT Tech.
Report TR-209, ICOT, Tokyo, 1986.

