
Moded Flat GHC for Data-Parallel Programming

(extended abstract)

Kazunori Ueda

Department of Information and Computer Science

Waseda University

4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169, Japan

ueda@ueda.info.waseda.ac.jp

November 25, 1994

Abstract. Concurrent logic languages have been used mainly for the (parallel) process-

ing of rather irregular symbolic applications. However, since concurrent logic languages

are essentially general-purpose, they should be applicable to problems with regular struc-

tures and their data-parallel processing as well. This paper studies the possibility of

massively parallel processing in concurrent logic programming, focusing on arrays and

its data-parallel processing.

1 Regular Computation in Concurrent Logic Programming

\We hope the simplicity of GHC will make it suitable for a parallel compu-

tation model as well as a programming language. The exibility of GHC

makes its e�cient implementation di�cult compared with CSP-like lan-

guages. However, a exible language could be appropriately restricted in

order to make simple programs run e�ciently. On the other hand, it would

be very di�cult to extend a fast but inexible language naturally." | [5]

(1985)

Concurrent logic languages have focused mainly on the parallel processing of sym-

bolic applications with rather irregular structures [8, 4]. However, real-life parallel sym-

bolic applications (such as machine learning) may involve a lot of numerical computation

as well. We anticipate that future symbolic languages should provide certain support

of high-performance computing. Whether concurrent logic languages can evolve in this

direction deserves studying in depth.

Previous approaches to irregular parallel symbolic processing involving numerical

computation were mostly multi-lingual. The whole computation was coordinated by

symbolic languages, while numerical computation was programmed in conventional lan-

guages and called via foreign-language interface. This may be a promising approach in

the short run, with the obvious advantage of the reuse of existing numerical software,

1



but it is partly grounded on an assumption that nonprocedural symbolic languages are

unsuitable for e�cient regular computation. Procedural languages gain performance in

regular computation by destructive assignments and random access to array elements,

but it is yet to see whether nonprocedural languages can handle arrays with competitive

performance and how they can exploit data parallelism. Some array processing appli-

cations can be rewritten naturally using list processing, but others do require e�cient

support of arrays.

Since irregular programming encompasses regular programming, exible languages

could be made more suitable for regular programming by restricting its descriptive

power somewhat and doing aggressive optimization based on static program analysis.

The crucial point here is not to do so in an ad hoc manner.

We have thus far developed a constraint-based mode system for Flat GHC that

enables static dataow analysis [6, 10]. The resulting language is called Moded Flat

GHC. This approach is similar in essence to static type systems found in many languages,

and is considered one of the most systematic approaches to syntactic restriction and

static analysis. The following observations have been obtained from several years of

study:

1. Slight assumptions on the programming style|e.g., instantiation of variables is

cooperative rather than competitive|make it possible to analyze dataow (modes)

statically and e�ciently.

2. Well-modedness guarantees that all uni�cation body goals are assignments to vari-

ables and therefore do not cause failure.

1

3. As a byproduct of dataow analysis, the information on the number of access

paths to data (i.e., whether each datum has exactly one reader or possibly many) is

obtained. (The number of writers is guaranteed to be one in well-moded programs.)

This information is fundamental for memory management and the syntactic control

of aliasing.

4. The mode system can deal with programs using vectors (one-dimensional arrays).

In well-moded programs, arrays with a single reference (access path) can be up-

dated in place without any runtime check on the number of references.

5. Data type information (such as the second argument of p being a stream of vectors)

can also be analyzed e�ciently by imposing slight assumptions on our program-

ming style.

These observations suggest that Moded Flat GHC is a promising platform for the

study of e�cient array operations in nonprocedural languages. Furthermore, the facts

� that the language does not have the notion of destructive assignments and distin-

guishes between old and new arrays and

1

To be exact, the mode system assumes extended occur check [10] that excludes the uni�cation

between identical variables, but ordinary programs do not perform such uni�cation.

2



� that all data created and referenced by concurrent processes should explicitly ap-

pear as goal arguments

are considered even bene�cial for program analysis and optimization for parallel imple-

mentations.

When pursuing the performance of regular computation, it is very important to

maintain the simple computational model and the mathematically tractable semantics

of nonprocedural languages. Unnatural extensions can lose the raison d'être of non-

procedural languages and may well hamper sophisticated optimization. KL1, designed

based on Flat GHC, already provided array features based on this principle [7]. At the

language level, KL1 provided array operations within the framework of logic program-

ming, while at the implementation level, one-bit reference counting was employed for the

e�cient update of single-reference arrays [2]. They achieved the same time and space

complexities as those of procedural languages. Moded Flat GHC aims to go further

and establish language constructs in which we can analyze the number of references

statically and e�ciently. The purpose is not to detect all single-reference cases, which

is undecidable, but to �nd a simple scheme which is safe and covers almost all practical

cases.

2 Moded Flat GHC and Array Operations

When a concurrent logic program is executed, the arguments of a goal g are instantiated

to constants or data structures as computation proceeds. A mode of Moded Flat GHC

is a function that tells whether the value of each particular place in the data structures

(including the top level) will be determined by the goal g (output mode) or by some

other goal (input mode). Mode analysis means to compute a well-moding of the pair

of a program and a goal clause. In addition to the observations in Section 1, the mode

system of Moded Flat GHC has the following desirable characteristics:

1. The mode system can deal with (i) complex data structures such as streams of

streams and streams of incomplete messages, (ii) di�erence lists, and (iii) mutual

recursion, all with no di�culty.

2. Mode analysis is basically a constraint satisfaction problem formed by the mode

constraints syntactically imposed by individual clauses. The constraint satisfac-

tion problems can usually be solved by the uni�cation of feature graphs (feature

structures with cycles); generate-and-test search is usually unnecessary.

3. Being constraint-based, the system is inherently amenable to separate analy-

sis of individual program modules. Also, the three aspects of mode analysis|

declaration, checking, and inference|can be dealt with within a uni�ed frame-

work.

4. The practical cost of all-at-once mode analysis is just almost proportional to the

program size n and the complexity of the data structures used (in terms of the size

of the grammar to generate them). The size of the data structures to be generated

3



does not matter. The practical cost of separate analysis is worse only by O(logn)

times.

The readers are referred to [10, 9] for mathematical details and basic theorems.

As mentioned before, KL1 supports data structures called vectors (one-dimensional

arrays). Vectors can take any terms as elements. Several vector operations are provided,

but under the static mode system, the most fundamental operation turns out to be the

following:

set vector element(V, I, E, NewE, NewV):

This operation receives an array V, the index value I and the new element value NewE,

and returns through E the Ith value of V and through NewV an array which is identical

to V except that the Ith element is replaced by NewE.

One may wonder why this operation is more fundamental than just reading or up-

dating an array element. The reason is that it imposes weaker mode constraints on its

arguments and is hence more generic. The reason why it imposes weaker constraints is

that it keeps unchanged the number of references to the whole array and its elements.

For instance, the Ith element becomes accessible through the variable E but inaccessible

through the new array NewV. All the other elements of V are inherited to NewV and thus

remain accessible.

In contrast, an access operation that simply returns a new reference to the Ith

element of V, such as Prolog's arg, will impose far stronger mode constraints on V and

its elements; see [9] for the reasons.

The moral of the above result is that, in the array processing in Moded Flat GHC,

array elements should be removed once accessed and the resulting blank should be �lled

with another value. For instance, when performing some operation on an array element

and storing the result back to the array, the blank can be �lled with a variable which will

be instantiated to the result value. An exception to the above principle is that read-only

arrays, namely arrays whose elements are (or are to be instantiated to) ground terms,

can be accessed without removing its elements.

The reason why non-ground elements must be removed is that they have an aspect

of resources in general, whose access paths should not be copied or removed freely.

A typical example of \values as resources" is a bidirectional communication stream.

Leaving an accessed element intact in the array does increase the access paths to that

element and imposes strong mode constraints to those paths, making the array operation

less generic [9].

For arrays with ground elements, accessed values can be left in the array because

the mode system guarantees the new reference to the element to be a read-only path

that can be safely added. Numerical applications will frequently use arrays in this

manner.

2

However, the applications of data-parallel array processing are not limited to

numerical computation, and so the observations obtained from generic arrays give us

useful guidelines for designing array operations.

As we mentioned in Section 1, mode analysis provides us with the information on the

number of access paths. If it can be guaranteed statically that an array V has only one

2

However, we anticipate they also frequently use arrays whose values are accessed only once.

4



reader, the above set vector element can destructively update V to create NewV. This

is the most signi�cant application of mode analysis from a practical point of view. set

vector element on an array with (possibly) two or more readers involves the copying

of the array, but we expect that most of the arrays are either

� referenced by a single process and updated by set vector element as computa-

tion proceeds, or

� composed of ground elements and referenced by multiple processes but not updated

after creation.

They can be distinguished by mode analysis and/or declaration and be implemented

quite di�erently. For instance, distributed-memory parallel computers could hold mul-

tiple copies of the latter arrays.

3 Parallel Operations on Arrays

We have so far discussed why we are so con�dent in handling arrays elegantly in non-

procedural languages. However, parallel processing imposes an additional requirement

that arrays should be accessible in parallel. How can this requirement be supported at

the language level and the implementation level?

The basic operations for the parallel processing of arrays are the splitting and the

concatenation of arrays. Consider quicksort. Small elements are gathered to the left part

of an array and large elements are gathered to the right. Then the array will be split

at the threshold value and the two subarrays will be processed recursively in parallel. If

the array is on shared memory, the splitting does not involve copying and yet the two

subarrays can be accessed without any interference.

If small and large elements are gathered by destructive operations, it implies that

the results of recursive quicksort will also be obtained by destructively permuting the

original array elements. In that event, the concatenation of the sorted subarrays will

not involve copying, either. To generalize, if the two arrays to be concatenated are

guaranteed to reside next to each other, they can be concatenated in constant time.

Thus concurrent processes can e�ciently and safely update di�erent parts of an

array on shared memory in parallel. This observation is important also for distributed

memory implementations, because concurrent processes mapped on the same processor

share memory.

Splitting and concatenation of arrays are as fundamental as set vector element

from the viewpoint of modes, because they preserve the number of references to the

elements and therefore are compatible with the \values as resources" paradigm. In

contrast, copying the whole or a part of an array will increase the number of references

and impose stronger mode constraints.

3

Extracting a subarray and discarding the rest

will similarly impose strong mode constraints. The use of these operations should be

limited to arrays with ground elements.

3

Sending an array to another processor will involve copying but will not increase the number of

references as long as the reference within the original processor is discarded.

5



An n-dimensional array could be de�ned as a one-dimensional array of (n � 1)-

dimensional arrays. However, if both column vectors and row vectors of matrices are

frequently accessed, multidimensional arrays should be supported by the language. Ele-

ment access, splitting, and concatenation of multidimensional arrays are similar to those

for one-dimensional arrays. Splitting a multidimensional array may result in two arrays

with interleaving memory areas, but this causes no security problem.

4 Data-Parallel Operations on Arrays

The previous section considered the case where O(1) parallel processes operated on

arrays of length n in parallel. Data-parallel processing will involve more processes to

operate on the array. This section studies through examples what features should be

considered in the implementation of data parallelism.

Study of the language constructs for data parallelism is important as well. For

instance, �(n) processes could be created more elegantly using iterative constructs than

by recursion. Appropriate notations should be provided for referring to array elements

and subarrays in those iterative constructs. However, they could be de�ned by using

simple higher-order constructs (i.e., �rst-class program codes) and partial evaluation,

both of which the current mode system can deal with naturally. So the rest of the

paper will focus on the implementation level, leaving surface language design to future

research.

4.1 Matrix Multiplication

We take matrix multiplication as the �rst example [3]. Consider the multiplication of

an l �m matrix A and an m� n matrix B. The most natural data-parallel modelling

will be to create l � n processes each corresponding to an element of the result matrix

C. Let P

ij

be the process for computing C

ij

. The creation of the P

ij

's can be speci�ed

easily using recursion.

4

The mapping of the P

ij

's to physical processes can be speci�ed

by extending the mapping construct of KL1.

The allocation of data can be determined from the mapping of the processes ac-

cessing data (cf. High Performance Fortran) as long as the places of data creation and

consumption are the same. The places are di�erent in general, however. Furthermore,

the consumer of data may migrate before accessing the data. If the place of consump-

tion can be analyzed statically and the consumer process accesses all the data, the most

e�cient way will be to send data eagerly to their �nal destination. However, if the place

of consumption cannot be analyzed or not all data are accessed, a more sophisticated

strategy should be employed.

How should the matrices A and B be distributed over processors? Suppose we have

l processors and map P

ij

(j = 1; : : : ; n) to processor i. Then A can be split into l row

vectors and distributed to those processors. For B, a straightforward implementation

may copy and distribute the whole matrix to all processors, because each P

ij

will access

the jth column vector.

4

This does not imply that they are created one by one recursively; optimization is a separate issue.

6



However, the P

ij

's can be executed independently and will discard the column vectors

on termination. If the column vectors migrate from one processor to another cleverly

enough, processor i needs to hold only O(1) column vectors at any time. How to achieve

this bound (semi-)automatically is an interesting topic of future research.

The result C can be built by concatenating one-element subarrays computed by each

process. Static analysis of the size of C will be easy even without array declarations and

will simplify memory allocation.

4.2 Prime Number Generation

We take one more example from [3], the sieve of Eratosthenes. Process P

k

(k = 0; 1; : : :)

holds a bit vector corresponding to the natural numbers in [nk; n(k + 1)), and strikes

the multiples of primes in parallel. Since the bit vectors held by individual processes

are independent, no di�culty arises.

Instead of KL1 vectors and set vector element, which are too general for imple-

menting bit vectors, strings can be used to implement bit vectors. While a vector can

store arbitrary terms (including variables) as elements, a string can store only nonneg-

ative integers of limited size. Operations on strings are all considered special cases of

vector operations.

4.3 Relaxation Method

Suppose we are to solve two-dimensional Laplace equations using a distributed-memory

computer and a relaxation algorithm. Each processor will take charge of a particular

small block of a large two-dimensional array, but the neighboring elements of the block

are also necessary to compute the next approximation. If the array is simply divided into

disjoint blocks and distributed, the processors must communicate with the neighboring

processors and ask the values of those elements. To avoid this, each processor should

get hold of the neighboring elements of its own block beforehand. These elements are

said to form a guard wrapper [3].

In the relaxation method, each process will destructively (at the implementation

level) update its own block. This may cause problems in shared-memory parallel im-

plementations in which elements in the guard wrappers are shared among processors.

In distributed-memory implementations, however, the guard wrappers will be stored in

local memory and hence will not be destroyed by the neighboring processors. Proces-

sors should obtain new guard wrappers upon entering the next iteration, but this can

be programmed easily.

Techniques such as guard wrappers and sentinels are quite useful in parallel array

processing as well as in sequential processing; they absorb exception handling on array

borders and thus contribute to simplicity and e�ciency. One issue is how a parallel im-

plementation can e�ciently accommodate guard wrappers or sentinels around subarrays

passed as arguments.

In multiprocessing within one processor, a process cannot in principle accommodate

sentinels by extending a subarray because this may destroy neighboring areas. However,

if it is guaranteed that the process does not access those neighboring areas, it can accom-

modate sentinels by saving the old contents of the neighboring areas. This guarantee

7



can be obtained easily in some cases; an example is the case where each neighboring

subarray is referred to exclusively by some other process.

4.4 Histogram Generation

The last example is the so-called histogram problem, in which n processes share a

histogram with k elements and increment them in parallel. We assume that n is relatively

small while k is large. Since the histogram is a shared resource, it is most natural to

model it as a server holding an array and to receive requests through a message stream.

However, serializing all the accesses from the client processes creates a bottleneck. An

alternative would be to let each process hold its own histogram and sum up all the

histograms in the �nal phase. This avoids interference in the counting phase, but at the

cost of �(nk) space.

At the implementation level, the point is that it is unnecessary to lock the whole

histogram to update some of its elements. We could instead prepare many local locks to

exploit parallelism. In concurrent logic programming, this can be achieved by preparing

many local servers and their front-end stream mergers. However, if we prepare many

servers and let processes asynchronously update histogram elements, it becomes more

di�cult to detect the termination of the counting phase and read the �nal histogram.

The same di�culty arises in concurrent object-oriented languages; the histogram could

be updated easily by preparing an array of k counters, but under the assumption of

asynchronous message passing, the termination detection of the counting phase is not so

easy. If each counter holds a reference counter as well, its maintenance will take �(nk)

time in total.

We anticipate that in any computational models based on asynchronous message

passing (including concurrent logic programming and concurrent object-oriented pro-

gramming), there exist no fully parallel algorithms that simultaneously achieve (i) O(1)

time for the update of each histogram element, (ii) O(n+k) time for the �nal processing

(termination detection and the reading of the �nal histogram), and (iii) O(n+k) space.

If this is the case, the histogram should be divided into an appropriate number of blocks

for distributed management. The number will depend on the relative importance be-

tween the degree of parallelism in the counting phase and the performance of the �nal

processing.

5 Conclusions

We have discussed how arrays can be manipulated in parallel in concurrent logic lan-

guages with a static mode system. We argued that Moded Flat GHC is a good platform

for describing and analyzing various array operations and for the parallel and massively

parallel processing of various kinds of applications, though a lot of future study is nec-

essary particularly on surface language constructs and implementation on shared- and

distributed-memory computers.

Concurrent logic languages have focused on rather irregular problems, but they are

expected to be useful also for the description and (massively) parallel execution of regular

problems because:

8



� the mode system provides both programmers and implementation with a useful

fundamental information by analyzing the handling of \data as resources", and

� the conceptual clari�cation they provide (e.g., the separation of concurrency and

parallelism [7]) should be useful in any future applications.

In particular, the possibility of being able to control aliasing much more nicely than in

procedural parallel programming is worth exploring both for better programming styles

and for program optimization.

References

[1] Chandy, M. and Taylor, S., An Introduction to Parallel Programming. Jones and

Bartlett Pub., Inc., Boston, 1992.

[2] Chikayama, T. and Kimura, Y., Multiple Reference Management in Flat GHC. In

Proc. 4th Int. Conf. on Logic Programming, MIT Press, Cambridge, MA, 1987,

pp. 276{293.

[3] Hatcher, P. J. and Quinn, M. J., Data-Parallel Programming. The MIT Press,

Cambridge, Mass., 1991.

[4] Taki, K. (ed.), Parallel Processing with Fifth Generation Computers. Kyoritsu

Shuppan, Tokyo, 1993 (in Japanese).

[5] Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo, 1985.

Also in Logic Programming '85, Wada, E. (ed.), Lecture Notes in Computer Science

221, Springer-Verlag, Berlin Heidelberg, 1986, pp. 168-179.

[6] Ueda, K. and Morita, M., A New Implementation Technique for Flat GHC. In Proc.

Seventh Int. Conf. on Logic Programming, The MIT Press, Cambridge, Mass, June

1990, pp. 3{17.

[7] Ueda, K. and Chikayama, T., Design of the Kernel Language for the Parallel Infer-

ence Machine. The Computer Journal, Vol. 33, No. 6 (December 1990), pp. 494{500.

[8] Ueda, K., The Fifth Generation Project: Personal Perspectives, Commun. ACM,

Vol. 36, No. 3 (March 1993), pp. 65{76.

[9] Ueda, K., Optimization of Concurrent Logic Language Implementations. Report of

the contract research, Institute for New Generation Computer Technology, 1994 (in

Japanese).

[10] Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented Implemen-

tation Technique. To appear in New Generation Computing, 1994.

9


