
THEORY AND PRACTICE OF CONCURRENT SYSTEMS

|THE ROLE OF KERNEL LANGUAGE IN THE FGCS PROJECT|

Kazunori Ueda

Institute for New Generation Computer Te
hnology

4-28, Mita 1-
home, Minato-ku, Tokyo 108, Japan

1 INTRODUCTION

An outstanding feature of the Fifth Generation Compu-

ter Proje
t is the idea of designing a novel kernel lan-

guage that links parallel hardware and appli
ation soft-

ware. KL1 (Chikayama et al. 1988), the kernel lan-

guage for the Multi-PSI (Taki 1988) and the Parallel

Inferen
e Ma
hine (PIM) (Goto et al. 1988), is based

on the inherently parallel language GHC (Ueda 1988).

This means that we
hose to expose parallelism to soft-

ware people and involve them in forming the
ulture of

parallelism, rather than to hide parallelism from them.

This paper will des
ribe why we took this approa
h

and will answer the questions of Ehud Shapiro in the

light of our methodology.

2 LANGUAGE ISSUES IN

CONCURRENT SYSTEMS

The key to the su

ess of
on
urrent systems lies in

how to
onstru
t and a

umulate parallel software.

It is often
laimed that parallel programming is dif-

�
ult, but the fa
t is that we have never made as mu
h

e�ort toward
reating parallel software as toward
reat-

ing sequential software. We are too mu
h a

ustomed

to sequential programming of von Neumann
omput-

ers to
hange our programming style. It is very im-

portant to over
ome these non-te
hni
al problems and

on
entrate more resear
h on parallel programming by

steadily �nding solutions or
lues to individual te
hni-

al problems.

Te
hni
al problems in
lude language issues, with

whi
h I have been involved for years. There are two

andidates for an easy-to-use parallel language: aug-

menting a sequential language with simple primitives

(like O

am) and designing an inherently parallel lan-

guage. The former might enable smoother transition

from sequentiality to parallelism, but our proje
t
hose

the latter approa
h for the following reasons:

(1) The existen
e of sequen
ing tends to make
ontrol

overspe
i�
. We wanted to distinguish between the

sequentiality essential for the
orre
tness of the al-

gorithm and the other kinds of sequentiality.

(2) We wanted the kernel language to express any po-

tential parallelism of a program independently of

the granularity of the hardware we would design.

(3) Parallel programming will require the
hange of our

way of programming and thinking from the von

Neumann style. An inherently parallel language

will better en
ourage it.

Another alternative might be to raise the level of

the kernel language to where programmers are not

bothered by
ontrol. However, we do require a par-

allel language with expli
it
ontrol when implementing

su
h a high-level de
larative language and, more impor-

tantly, when des
ribing the
ommuni
ation between a

program and the outside world.

It is the attention to
ommuni
ation that
hara
-

terizes
on
urrent systems both in theory and in pra
-

ti
e. In theory,
ommuni
ation gives the most abstra
t

view of a whole program and its fragments,
on
urrent

pro
esses. In pra
ti
e,
ommuni
ation is the primary

sour
e of bottlene
k.

The reason why
ontrol is ne
essary for spe
ifying

ommuni
ation is that
ommuni
ation is a dire
ted, ir-

reversible a
tivity. A language without expli
it
ontrol

is usually
onsidered to be at a higher level than a lan-

guage with expli
it
ontrol, but the presen
e or absen
e

of
ontrol is more a matter of formalism than a matter

of the level of abstra
tion. A language without
on-

trol
an be used only in the fragments of a program

in whi
h
ommuni
ation is not made or need not be

spe
i�ed.

We
hose to expose parallelism to software people

by adopting an abstra
t kernel language with expli
it

ontrol. It provides software people with an appropri-

ately abstra
t model of parallel
omputation, and yet it

is amenable to reasonably eÆ
ient parallel implementa-

tion. Our
hoi
e does not ne
essarily mean that all ap-

pli
ations programmers must
are about
ontrol issues;

we
ould hide parallelism by implementing higher-level

languages (like
onstraint programming languages) on

top of the kernel language. The point is that appli
a-

tions programmers should have expli
it a

ess to par-

{ 1 {

allelism if they want. The development of
on
urrent

systems should be supported by many people at various

layers from hardware to appli
ations. Our
hoi
e al-

lows enterprising appli
ations programmers to
onsider

good use of parallelism for their appli
ations, whi
h

an be spread in the form of a programming paradigm

or an embedded language whose obje
t
odes embody

that paradigm.

3 FUTURE RESEARCH

Mu
h resear
h remains to be done on
on
urrent sys-

tems. Making a good parallel implementation of the

kernel language will not be suÆ
ient to motivate ap-

pli
ations people to write parallel programs. We must

show them parallel programming methodologies. We

have found that although it is not very diÆ
ult to write

parallel programs, it is diÆ
ult to write good parallel

programs. We must take two more things into a

ount:

the lo
ality of
ommuni
ation and load balan
ing.

In sequential programming, we rely so mu
h on the

at storage stru
ture. Large and
at memory spa
e has

made programming easy by not letting programmers

think mu
h about lo
ality. To make full use of a par-

allel
omputer with the pro
essing power distributed

over the storage, however, we must
onsider storage

and pro
essing at the same time and keep the lo
ality

of
ommuni
ation. The notion of
onstant-time a

ess

is by no means s
alable.

Parallel programming requires theoreti
al support,

too. We do not yet have a pra
ti
al
omputational

model with whi
h to argue the real eÆ
ien
y of paral-

lel algorithms running on, say, the Multi-PSI. Previous

theories of parallel
omputation were
on
erned mainly

with whether parallelism improves time
omplexity.

However, the
omputers we are building are intended

to improve time and not time
omplexity.

Some appli
ations programs may have irregular

stru
tures that are too diÆ
ult to analyze stati
ally.

Su
h programs require a me
hanism for keeping the

load balan
e and the lo
ality automati
ally. In gen-

eral, a future
on
urrent system will be supported by a

lot of te
hniques whose basi
 ideas may be dis
overed

on the analogy of what we do in the real world as mem-

bers of some
ommunity. The a
tual implementation

of those te
hniques will ne
essitate statisti
al analysis.

We must also
ontinue language and implementa-

tion resear
h to
reate a more expressive and more eÆ-

ient language. As for expressiveness, we must
onsider

how to introdu
e meta-level operations gra
efully. By

meta-level operations I mean the operations that refer

to and/or modify the \
urrent" status of
omputation

(in
luding physi
al
on�gurations and time). GHC de-

liberately ex
luded meta-level operations to reveal the

essen
e of
on
urrent logi
 programming. It is expres-

sive enough for ordinary programs, but is too weak

for an operating system like PIMOS (Chikayama et al.

1988). A

ordingly, KL1 has featured ne
essary meta-

level operations to des
ribe PIMOS, but we have yet

to
larify their semanti
s by developing an appropri-

ate model of the parallel
omputers running KL1 pro-

grams. Resear
h on re
e
tion in parallel
omputation

(Tanaka 1988) will be helpful in the design of meta-

level features.

As for eÆ
ien
y, we have two dire
tions of resear
h:

the simpli�
ation of the kernel language (without loss

of expressiveness) and the development of high-level

optimization te
hniques. The purpose of the simpli�
a-

tion is to make pro
esses and streams more eÆ
ient by

tuning KL1 for programming with many small
ommu-

ni
ating pro
esses. It is my
onsistent view that GHC

is a base language from whi
h an appropriate subset

should be made. A good subset will be found through

the resear
h on sophisti
ated optimization that em-

ploys te
hniques su
h as abstra
t interpretation.

An eÆ
ient implementation of pro
esses and

streams will better support user languages su
h as

A

0

UM (Yoshida and Chikayama 1988). It will also en-

able us to use pro
esses as building blo
ks of a database

that allows
on
urrent a

ess. However, su
h storage-

intensive use of pro
esses requires a new kind of opti-

mization. While most of the
urrent implementations

of KL1 are tuned for
omputation-intensive programs

that do not suspend so often, now we need optimiza-

tion te
hniques for pro
esses that are almost always

dormant.

REFERENCES

Chikayama, T. et al. (1988) Overview of the Parallel

Inferen
e Ma
hine Operating System (PIMOS), in this

volume.

Goto, A. et al. (1988) Overview of the Parallel Infer-

en
e Ma
hine Ar
hite
ture (PIM), in this volume.

Taki, K. (1988) The Parallel Software Resear
h and De-

velopment Tool: Multi-PSI System, in Programming of

Future Generation Computers, Fu
hi, K. and Nivat, M.

(eds.), North-Holland, 1988, pp. 411{426.

Tanaka, J. (1988) Meta-Interpreters and Re
e
tive Op-

erations in GHC, in this volume.

Ueda, K. (1988) Guarded Horn Clauses: A Parallel

Logi
 Programming Language with the Con
ept of a

Guard, in Programming of Future Generation Com-

puters, Fu
hi, K. and Nivat, M. (eds.), North-Holland,

1988, pp. 441{456.

Yoshida, K. and Chikayama, T. (1988) A

0

UM | A

Stream-Based Con
urrent Obje
t-Oriented Language,

in this volume.

{ 2 {

