
THEORY AND PRACTICE OF CONCURRENT SYSTEMS

|THE ROLE OF KERNEL LANGUAGE IN THE FGCS PROJECT|

Kazunori Ueda

Institute for New Generation Computer Tehnology

4-28, Mita 1-home, Minato-ku, Tokyo 108, Japan

1 INTRODUCTION

An outstanding feature of the Fifth Generation Compu-

ter Projet is the idea of designing a novel kernel lan-

guage that links parallel hardware and appliation soft-

ware. KL1 (Chikayama et al. 1988), the kernel lan-

guage for the Multi-PSI (Taki 1988) and the Parallel

Inferene Mahine (PIM) (Goto et al. 1988), is based

on the inherently parallel language GHC (Ueda 1988).

This means that we hose to expose parallelism to soft-

ware people and involve them in forming the ulture of

parallelism, rather than to hide parallelism from them.

This paper will desribe why we took this approah

and will answer the questions of Ehud Shapiro in the

light of our methodology.

2 LANGUAGE ISSUES IN

CONCURRENT SYSTEMS

The key to the suess of onurrent systems lies in

how to onstrut and aumulate parallel software.

It is often laimed that parallel programming is dif-

�ult, but the fat is that we have never made as muh

e�ort toward reating parallel software as toward reat-

ing sequential software. We are too muh austomed

to sequential programming of von Neumann omput-

ers to hange our programming style. It is very im-

portant to overome these non-tehnial problems and

onentrate more researh on parallel programming by

steadily �nding solutions or lues to individual tehni-

al problems.

Tehnial problems inlude language issues, with

whih I have been involved for years. There are two

andidates for an easy-to-use parallel language: aug-

menting a sequential language with simple primitives

(like Oam) and designing an inherently parallel lan-

guage. The former might enable smoother transition

from sequentiality to parallelism, but our projet hose

the latter approah for the following reasons:

(1) The existene of sequening tends to make ontrol

overspei�. We wanted to distinguish between the

sequentiality essential for the orretness of the al-

gorithm and the other kinds of sequentiality.

(2) We wanted the kernel language to express any po-

tential parallelism of a program independently of

the granularity of the hardware we would design.

(3) Parallel programming will require the hange of our

way of programming and thinking from the von

Neumann style. An inherently parallel language

will better enourage it.

Another alternative might be to raise the level of

the kernel language to where programmers are not

bothered by ontrol. However, we do require a par-

allel language with expliit ontrol when implementing

suh a high-level delarative language and, more impor-

tantly, when desribing the ommuniation between a

program and the outside world.

It is the attention to ommuniation that hara-

terizes onurrent systems both in theory and in pra-

tie. In theory, ommuniation gives the most abstrat

view of a whole program and its fragments, onurrent

proesses. In pratie, ommuniation is the primary

soure of bottlenek.

The reason why ontrol is neessary for speifying

ommuniation is that ommuniation is a direted, ir-

reversible ativity. A language without expliit ontrol

is usually onsidered to be at a higher level than a lan-

guage with expliit ontrol, but the presene or absene

of ontrol is more a matter of formalism than a matter

of the level of abstration. A language without on-

trol an be used only in the fragments of a program

in whih ommuniation is not made or need not be

spei�ed.

We hose to expose parallelism to software people

by adopting an abstrat kernel language with expliit

ontrol. It provides software people with an appropri-

ately abstrat model of parallel omputation, and yet it

is amenable to reasonably eÆient parallel implementa-

tion. Our hoie does not neessarily mean that all ap-

pliations programmers must are about ontrol issues;

we ould hide parallelism by implementing higher-level

languages (like onstraint programming languages) on

top of the kernel language. The point is that applia-

tions programmers should have expliit aess to par-

{ 1 {

allelism if they want. The development of onurrent

systems should be supported by many people at various

layers from hardware to appliations. Our hoie al-

lows enterprising appliations programmers to onsider

good use of parallelism for their appliations, whih

an be spread in the form of a programming paradigm

or an embedded language whose objet odes embody

that paradigm.

3 FUTURE RESEARCH

Muh researh remains to be done on onurrent sys-

tems. Making a good parallel implementation of the

kernel language will not be suÆient to motivate ap-

pliations people to write parallel programs. We must

show them parallel programming methodologies. We

have found that although it is not very diÆult to write

parallel programs, it is diÆult to write good parallel

programs. We must take two more things into aount:

the loality of ommuniation and load balaning.

In sequential programming, we rely so muh on the

at storage struture. Large and at memory spae has

made programming easy by not letting programmers

think muh about loality. To make full use of a par-

allel omputer with the proessing power distributed

over the storage, however, we must onsider storage

and proessing at the same time and keep the loality

of ommuniation. The notion of onstant-time aess

is by no means salable.

Parallel programming requires theoretial support,

too. We do not yet have a pratial omputational

model with whih to argue the real eÆieny of paral-

lel algorithms running on, say, the Multi-PSI. Previous

theories of parallel omputation were onerned mainly

with whether parallelism improves time omplexity.

However, the omputers we are building are intended

to improve time and not time omplexity.

Some appliations programs may have irregular

strutures that are too diÆult to analyze statially.

Suh programs require a mehanism for keeping the

load balane and the loality automatially. In gen-

eral, a future onurrent system will be supported by a

lot of tehniques whose basi ideas may be disovered

on the analogy of what we do in the real world as mem-

bers of some ommunity. The atual implementation

of those tehniques will neessitate statistial analysis.

We must also ontinue language and implementa-

tion researh to reate a more expressive and more eÆ-

ient language. As for expressiveness, we must onsider

how to introdue meta-level operations graefully. By

meta-level operations I mean the operations that refer

to and/or modify the \urrent" status of omputation

(inluding physial on�gurations and time). GHC de-

liberately exluded meta-level operations to reveal the

essene of onurrent logi programming. It is expres-

sive enough for ordinary programs, but is too weak

for an operating system like PIMOS (Chikayama et al.

1988). Aordingly, KL1 has featured neessary meta-

level operations to desribe PIMOS, but we have yet

to larify their semantis by developing an appropri-

ate model of the parallel omputers running KL1 pro-

grams. Researh on reetion in parallel omputation

(Tanaka 1988) will be helpful in the design of meta-

level features.

As for eÆieny, we have two diretions of researh:

the simpli�ation of the kernel language (without loss

of expressiveness) and the development of high-level

optimization tehniques. The purpose of the simpli�a-

tion is to make proesses and streams more eÆient by

tuning KL1 for programming with many small ommu-

niating proesses. It is my onsistent view that GHC

is a base language from whih an appropriate subset

should be made. A good subset will be found through

the researh on sophistiated optimization that em-

ploys tehniques suh as abstrat interpretation.

An eÆient implementation of proesses and

streams will better support user languages suh as

A

0

UM (Yoshida and Chikayama 1988). It will also en-

able us to use proesses as building bloks of a database

that allows onurrent aess. However, suh storage-

intensive use of proesses requires a new kind of opti-

mization. While most of the urrent implementations

of KL1 are tuned for omputation-intensive programs

that do not suspend so often, now we need optimiza-

tion tehniques for proesses that are almost always

dormant.

REFERENCES

Chikayama, T. et al. (1988) Overview of the Parallel

Inferene Mahine Operating System (PIMOS), in this

volume.

Goto, A. et al. (1988) Overview of the Parallel Infer-

ene Mahine Arhiteture (PIM), in this volume.

Taki, K. (1988) The Parallel Software Researh and De-

velopment Tool: Multi-PSI System, in Programming of

Future Generation Computers, Fuhi, K. and Nivat, M.

(eds.), North-Holland, 1988, pp. 411{426.

Tanaka, J. (1988) Meta-Interpreters and Reetive Op-

erations in GHC, in this volume.

Ueda, K. (1988) Guarded Horn Clauses: A Parallel

Logi Programming Language with the Conept of a

Guard, in Programming of Future Generation Com-

puters, Fuhi, K. and Nivat, M. (eds.), North-Holland,

1988, pp. 441{456.

Yoshida, K. and Chikayama, T. (1988) A

0

UM | A

Stream-Based Conurrent Objet-Oriented Language,

in this volume.

{ 2 {

