
Proceedings of the International Conference
on Fifth Generation Computer Systems 1988,
ICOT, Tokyo, 1988, pp. 582{591.

TRANSFORMATION RULES FOR GHC PROGRAMS

Kazunori Ueda and Koichi Furukawa

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

ABSTRACT

Transformation rules for (Flat) GHC programs are pre-
sented, which re�ne the previous rules proposed by one
of the authors (Furukawa et al. 1987). The rules are
based on unfolding/folding and are novel in that they
are stated in terms of idempotent substitutions with
preferred directions of bindings. They are more gen-
eral than the old rules in that no mode system is as-
sumed and that the rule of folding is included. The
presentation of the rules suggests that idempotent sub-
stitutions with preferred directions of bindings are an
appropriate tool for modeling information in (concur-
rent) logic programming. A semantic model is given
which associates a multiset of goals with the set of
possible �nite sequences of transactions (via substitu-
tions) with the multiset. A transformation preserves
the set of transaction sequences that are made without
the risk of the failure of uni�cation. The model also
deals with anomalous behavior such as the failure of
uni�cation and deadlock, so it can be shown with the
same model that the transformation cannot introduce
those anomalies. Applications of the transformation
technique include the fusion of communicating parallel
processes. Some familiarity with GHC is assumed.

1 INTRODUCTION

1.1 Motivations

GHC (Guarded Horn Clauses) (Ueda 1985) (Ueda
1986a) is a simple parallel programming language
for programming with communicating processes. It
has introduced into Horn-clause logic programming
the notion of guard to be used for two kinds of
control: synchronization and choice nondeterminism.
Synchronization is realized by restricting information

ow caused by uni�cation, and introduces partial or-
der on bindings generated in the course of computa-
tion. A goal is viewed as a process that communicates
with other processes by observing and generating sub-
stitutions. Readers who are unfamiliar with GHC pro-
gramming or parallel logic programming in general are
referred to (Ueda 1986b) and (Shapiro 1987).

Computation in GHC di�ers from computation in
ordinary logic programming in the following ways:

(1) It is directed. A GHC program has an in-
tended direction of computation. Moreover, it
does not search solutions by backtracking or OR-
parallelism. The value of a variable once computed
is never revoked.

(2) It may be interactive. A process may interact with
other processes; this is the most important aspect
of the language. Input and output can be done
within the framework of the language by regarding
the outside world as a process.

(3) It may be in�nite. In an interactive program, each
interaction or sequence of interactions is the main
concern and the program need not necessarily ter-
minate.

Since a GHC program is just an ordinary logic pro-
gram if one forgets the aspect of control, it seems pos-
sible to de�ne a set of transformation rules for GHC
programs by adapting the set of rules developed for
logic programs (Tamaki and Sato 1984). Having a set
of transformation rules will be useful for deriving e�-
cient parallel programs from naive ones. For example,
it can be used for process fusion by which we can ad-
just the granularity (of parallelism) of a program to the
granularity of an implementation (Furukawa and Ueda
1985). However, such transformation should preserve
the behavior of processes de�ned by the program, and
it has not been clear how to guarantee the correctness
of transformation.

The goal of this paper is to give a su�ciently gen-
eral set of transformation rules for (Flat) GHC pro-
grams based on unfolding and folding, and to justify it
using a simple semantic model. Unfold/fold transfor-
mation has been commonly used in functional and logic
programming; here we want to focus on the transfor-
mation of interactive, possibly non-terminating parallel
programs written in GHC.

1.2 Approach and Related Works

Our set of transformation rules is based on two pre-

{ 1 {

vious works: unfold/fold transformation for ordinary
logic programs by Tamaki and Sato (1984) and unfold
transformation for Flat GHC programs by Furukawa
et al. (1987).

Tamaki and Sato showed that their rules preserve
the least Herbrand model of the program. Although
their framework gives us a good guideline, we have to
�nd an alternative to the least model semantics that
cannot be used for non-terminating programs (which
may not have base case clauses). In addition, the con-
trol structure of GHC must be taken into account since
it is an integral part of the language.

The set of rules by Furukawa et al. takes control
into account, and is close to our set in its structure.
However, it has several points to be improved. First,
a mode system that attaches either of the input and
output modes to each argument of a predicate is as-
sumed to reason about information
ow, which loses
the generality of the rules to some extent. Second, the
set of rules uses the notion of `input relatedness' to
judge whether certain information can come from the
caller, but this notion is hard to formalize correctly.
Third, the rule of folding does exist, but it is not pow-
erful enough to be used for process fusion. Fourth, the
discussion on correctness is informal, due to the lack of
formal tools.

We propose to solve the above problems from two
approaches: the presentation of rules and the semantic
framework. For the presentation, we adopt idempotent
substitutions (Lassez et al. 1987) to model information
exchanged by processes, and we use normal forms of
clauses to simplify the rules.

For the semantic framework, we use the notion of a
partial answer substitution (pas) to model a fragment
of a possibly in�nite computation. An act of providing
a multiset of goals with a possibly empty input substi-
tution and getting an observable output substitution
(= pas) is called a transaction, and a computation is
modeled as a �nite sequence of transactions. The set
of all possible computations of a multiset of goals con-
stitutes the model of that multiset. Any computation
made without the risk of the failure of uni�cation is
preserved by the transformation rules. Anomalous be-
havior such as failure and deadlock is also modeled,
unlike the least Herbrand model which comprises suc-
cessful cases only. Thus the model can be used also
for showing that the transformation cannot introduce
those anomalies.

2 PRELIMINARIES

This section brie
y introduces notions related to sub-
stitution and uni�cation, most of which can be found
elsewhere ((Lloyd 1984), for example).

A term and an atom(ic formula) are de�ned as
usual. We consider �nite terms and atoms only. An
in�nite computation may create in�nite structures in
the limit, but we are concerned with transactions that
are of a �nite nature. By VAR we denote the denu-
merable set of all variables.

An expression is a term, an atom, or a syntactic
entity (legally) made up of terms, atoms and connec-
tives in GHC (`:-', `,', `|'). By var(e) we denote the
set of all the variables appearing in an expression e. A
simple expression is either a term or an atom.

A substitution is a mapping from the set of variables
to the set of terms, which is extended to a mapping
from the set of expressions to the set of expressions in
the usual manner. A substitution acts as an identity
except for �nitely many variables, so it is described as
a �nite set of the form

fv1 / t1; : : : ; vn / tng; n � 0;

where vi's are distinct variables, ti's are terms, and
vi 6� ti for 1 � i � n. (We use � and 6� to denote
the syntactic equality and inequality of simple expres-
sions.) Each element of a substitution is called a bind-
ing.

Given a substitution � = fv1 / t1; : : : ; vn / tng,
by domain(�) we denote the set fv1; : : : ; vng and by
range(�) the set var(t1) [� � � [var(tn).

The composition of two substitutions is de�ned as
follows. Let � = fu1 / s1; : : : ; un / sng and � = fv1 /
t1; : : : ; vn/tng. Then the composition �� (substitutions
will be used as post�x operators throughout) is a �nite
set obtained from fu1/s1�; : : : ; un/sn�g[� by deleting

(1) all the elements ui / si� such that ui � si� and

(2) all the elements vi / ti such that vi 2 domain(�).

A substitution � is said to be idempotent i� �� =
�. An idempotent substitution enjoys the following
property (Lassez et al. 1987):

Proposition 2.1. �� = � () domain(�) \
range(�) = ; (empty set).

Idempotent substitutions are adequate for modeling in-
formation in logic programming. A non-idempotent
substitution introduces a variable whose occurrences
are about to be rewritten, contrary to the single-
assignment property of logical variables. Fortunately,
the uni�cation algorithms employed in most logic pro-
gramming systems calculate idempotent mgu's de�ned
below.

Now we de�ne uni�cation. A substitution � is said
to be an idempotent most general uni�er (idmgu) of
two simple expressions t1 and t2 i�

(1) t1� � t2� and

{ 2 {

(2) 8�(t1� � t2� ! � = ��).

It is easy to see that if such � exists for t1 and t2, it
is idempotent and is an mgu in any other proposed
senses (Lassez et al. 1987). The following theorem,
which directly follows from the Uni�cation Theorem in
(Robinson 1979), guarantees that we need only con-
sider idmgu's:

Theorem 2.2. If two simple expressions t1 and t2 are
uni�able then there is an idmgu of them.

Example. We consider various uni�ers of two vari-
ables X and Y: fX/Yg and fY/Xg are idmgu's; fX/W;Y/Wg
is an idempotent uni�er that is not most general; and
fX / W; Y / W; W / Yg is a non-idempotent, most general
uni�er.

From now on, we assume all the substitutions we con-

sider to be idempotent.

As the above example shows, an idmgu may not
be unique if we take the renaming of variables into
account. However, some idmgu's may be preferable to
others. For example, in SLD-resolution employing a
selected goal p(X) and a clause with the head p(A), we
usually prefer replacing A by X to the other way around
both on paper and in implementation.

Accordingly, we introduce a means to obtain a sub-
stitution with preferable directions of bindings. Let V
be a set of variables. A substitution � is said to be
smallest with respect to V i� 8(v / t)2 � (v 2 V ^ t 2
VAR ! t 2 V). In other words, no variable-to-variable
binding in � can replace a variable in V by a variable
not in V .

Proposition 2.3. Given two simple expressions t1 and
t2 and a set V of variables, there is an idmgu of t1 and
t2 smallest w. r. t. V i� t1 and t2 are uni�able.

Proof. By construction from an arbitrary idmgu of t1
and t2.

Uni�cation can be de�ned for a multiset of equa-
tions as well as for two simple expressions. Let S =
fs1 =t1; : : : ; sn= tng, where si's are ti's are terms. Then
� is said to be an idmgu of S i� it is an idmgu of two
terms f(s1; : : : ; sn) and f(t1; : : : ; tn), f being an arbi-
trary n-ary function symbol. The set S is said to be
solvable i� it has an idmgu.

Some miscellaneous notions. Let � =
Sn

i=1fvi / tig.

Then by � we denote the set of equations
Sn

i=1fvi = tig.

It is easy to show that � is an idmgu of �. Finally,
we de�ne the restriction �je of a substitution � to an
expression e as follows:

�je = f (v / t) 2 � j v 2 var(e) g:

3 FLAT GHC

We �rst de�ne a rather abstract syntax of GHC. A
GHC program is a set of guarded clauses of the follow-
ing form:

h :- G | B

where h is an atom and G and B are multisets of atoms.
The atom h is called the head and an atom in G or B
is called a goal. The part of a guarded clause before
the commitment operator `|' is called the guard and
the part after `|' is called the body. G and B are mul-
tisets rather than sets because two syntactically iden-
tical goals may commit to di�erent clauses. One pre-
de�ned binary predicate, `=', is provided for unifying
two terms.

A program is invoked by a goal clause

:- B

where B is a multiset of goals.

Flat GHC imposes restriction on the guard goals
of each clause. A guard goal of a Flat GHC program
must be either

� a uni�cation goal of the form t1= t2, or

� a call to a test predicate, where a test predicate is
made up of clauses with empty bodies.

Note that a goal calling a test predicate never gets
instantiated, and that its result (whether it succeeds or
not) is uniquely determined depending on the values of
the arguments.

For convenience, from now on we will use the fol-
lowing notational conventions: GU denotes the multi-
set of the uni�cation goals in a guard, GN denotes the
multiset of the non-uni�cation goals in a guard, BU

denotes the multiset of the uni�cation goals in a body,
and BN denotes the multiset of the non-uni�cation
goals in a body. Also, by C: :C 0 we denote a clause
C of which C0 is a variant using fresh variables.

Now we describe an operational semantics of Flat
GHC. Note that this does not specify how a Flat GHC
program must be executed.

To execute a multiset of goals means to execute
each constituent goal in parallel. In this paper we as-
sume that the goals in a multiset may be executed by
unfair scheduling. The multiset of goals succeeds when
the constituent goals all succeed.

A uni�cation goal t1 = t2 tries to unify t1 and t2.
What complicates things is that it may possibly be ex-
ecuted in parallel with other uni�cation goals that may
instantiate t1 and/or t2. However, here we adopt the
simplest scheme: t1 = t2 is executed as an atomic ac-
tion and their idmgu is applied to all the goals being

{ 3 {

executed. This overspeci�cation of the operational se-
mantics will be compensated in the semantic model in
Section 4. The goal t1 = t2 succeeds (also said to be
reduced) when t1 and t2 become identical.

The execution of a non-uni�cation goal g proceeds
as follows: The goal g searches for a clause C: : (h :-

GU [GN | B) such that

� fg� =hg [GU has an idmgu � such that g�� � g�

and

� GN� succeeds,

where � is a substitution given in the meantime by
other uni�cation goals running in parallel with g. If
g �nds such C, then g, now instantiated to g�, com-
mits to C and its body B� is executed. We also say
that g� is reduced to B� using C. We assume that
if there are clauses to which g� can commit, g� will
eventually commit to one of them. This is true even
if the guard of some clause falls into in�nite compu-
tation. Our computation is fair with respect to the
computation of guards in this sense. Note, however,
that we still have choice nondeterminism in commit-
ment and some clause may be ignored by every goal.
A non-uni�cation goal succeeds if and when it commits
to some clause and its body succeeds.

Finally, we introduce notations for reducibility re-
lations between a non-uni�cation goal g and a clause
C: : (h :- GU [GN | B):

+(g; C)
def
= 9� ((� is an idmgu of fg=hg [GU)

^ (g� � g) ^ (GN� succeeds))

�(g; C)
def
= :9� +(g�; C)

?(g; C)
def
= :+(g; C) ^ 9� +(g�;C)

They stand for \reducible as is", \irreducible" and
\possibly reducible with more information", respec-
tively. Exactly one of +, � and ? holds for g and C.
When GU = ;, the de�nition of +(g; C) is simpli�ed
to

9� ((g � h�) ^ (GN� succeeds)):

Section 5.1 shows how to eliminate GU . Recall that
in Flat GHC, it is uniquely determined whether \GN�

succeeds" or not.

4 A SEMANTIC MODEL

This section gives a semantic model of a multiset of
goals with which the correctness of program transfor-
mation will be discussed.

First of all, we clarify our approach to the semantic
model. We choose to model the parallel execution of
a multiset of goals as the set of all possible serialized

computations (simply called computations here). Each
computation is considered to have two aspects: internal
(concrete) and external (abstract).

Internally, a computation is a possible sequence of
reductions to which substitutions may be incrementally
given from outside. Consider the parallel execution of
two goals g1 and g2. The reduction of g1 using C1 must
precede the reduction of g2 using C2 in any computa-
tion in the model containing them i� the reduction of
g2 using C2 needs directly or indirectly a substitution
generated by the body of C1 derived from g1. If no
such dependency exists, those reductions will appear
in any order.

Externally, a computation starting with a multiset
B0 of goals is viewed as a sequence h�1; �1i h�2; �2i : : :
of transactions with B0. A (normal) transaction h�i;
�ii is an act of providing B0 with a possibly empty in-
put substitution �i and getting an observable (see be-
low) output substitution �i. Each normal transaction is
realized by a �nite number of reductions. In addition
to normal transactions, some special transactions are
introduced to model the failure of uni�cation, deadlock
(the irreducibility of non-uni�cation goals), and in�nite
reductions without observable substitutions.

Communication between a multiset B0 of goals and
the rest of the goals is done only through the variables
in B0. Suppose the �rst transaction h�1; �1i has been
made and B0 is reduced to B1 that represents `the rest
of the computation'. Then, the next transaction must
be made through the variables in B0�1�1; the vari-
ables in B1 n B0�1�1 are not accessible. In general,
var(B0�1�1 : : : �k�k) is called the interface for the rest
of the computation represented by Bk.

Now let us formalize the model of a multiset Bi of
goals under a program P , with which substitutions are
communicated through an interface var(B). The model
is denoted as [[BijB]]P . [[BjB]]P is abbreviated to [[B]]

P
.

[[BijB]]P is a set of �nite sequences of transactions and
satis�es the following properties. Since we may want
to make no transaction with Bi, we �rst have

(0) � 2 [[BijB]]P , where � is an empty sequence of trans-
actions.

We then consider all possible concrete computa-
tions of Bi to which an input substitution �i is given
initially but no subsequent input is given, and classify
them into four cases (not mutually exclusive) according
to their pre�xes:

(1) Normal transaction. There is a sequence of reduc-
tions

Bi�i = Bi;0 �! Bi;1 �! � � � �! Bi;k = Bi+1

such that

{ 4 {

� �0i is an idmgu of the multiset of all the uni-
�cation goals executed in the sequence that is

smallest w. r. t. var(B�i), and

� �0i is observable, that is, �i
def
= �0ijB�i 6= ;.

Then, we divide �i into two (idempotent) substi-
tutions �i1 and �i2 such that

(N1) �i = (�i1�i2)jB�i (that is, �i1�i2 and �i have
the same e�ect on B�i),

(N2) �i1 = �i1jB�i , �i1 6= ; (that is, �i1 is observ-
able), and �i1 is smallest w. r. t. var(B�i),

(N3) �i2 = �i2jB�i�i1 , and

(N4) those variables in �i1 and/or �i2 but not in �i
are all fresh variables.

We can always �nd at least one such pair of �i1
and �i2 by letting �i1 = �i and �i2 = ;, and there
may be many others. Now for every possible pair
of �i1 and �i2, we have

8~t
�
~t 2 [[(�i2 [Bi+1)jB�i�i1]]P

! h�i; �i1i~t 2 [[BijB]]P
�
:

(2) Failure. There is a possibly empty sequence of re-
ductions Bi�i �! � � � �! Bi+1 such that the mul-
tiset of the uni�cation goals in Bi+1 is unsolvable.
Then

h�i;>i 2 [[BijB]]P :

(3) Success and Deadlock. There is a possibly empty
sequence of reductions Bi�i �! � � � �! Bi+1 such
that none of its pre�xes (including the whole se-
quence) cause normal transaction or failure and
that Bi+1 allows no further reduction. Then

�
h�i;?successi 2 [[BijB]]P ; if Bi+1 = ;;
h�i;?deadlocki 2 [[BijB]]P ; otherwise.

(4) Divergence. There is an in�nite sequence of reduc-
tions Bi�i �! � � �. Then

h�i;?divergencei 2 [[BijB]]P :

Now [[BijB]]P is de�ned as the smallest set (or the
intersection of all the sets) satisfying the above proper-
ties, where we regard two or more sequences as identical
if their di�erences come only from the di�erent naming
of fresh variables (introduced in a sequence of reduc-
tions and in the division of �i). Note that di�erent
abstract computations may be obtained from a con-
crete computation, and that an abstract computation
may be obtained from di�erent concrete computations.
Our notion of an abstract computation is at a similar

level of abstraction to a behavior in (Lichtenstein et al.
1987), but the de�nitions are quite di�erent.

The transactions h�i;>i, h�i;?successi, h�i;
?deadlock i and h�i;?divergencei are called special trans-
actions. Of these, success, deadlock and divergence
mean the inactivity of a multiset of goals and cannot
be distinguished from outside. Therefore, we may omit
the subscripts of ? when the di�erences are not impor-
tant.

Some notes on the above model will be useful. First
of all, each element of a model is a �nite sequence. This
means that we are modeling a multiset of goals using
the set of all �nite transactions with it. A consequence
of this is that we cannot handle some properties that
could be observed only at in�nity. This, however, does
not mean that we cannot model perpetual processes;
it is quite possible to deal with programs that are use-
ful but essentially non-terminating. This point will be
discussed further in Section 8.

Item (1) says that we may observe the result of
uni�cation using two or more transactions even when
the uni�cation is speci�ed by a single goal. We want
to leave it to implementations how uni�cation is per-
formed and how output substitutions are applied. A
variable being observed may be instantiated to an in�-
nite term in the limit, but we require that each trans-
action be of a �nite nature; it should return a �nite set
of bindings after �nite computation.

Since Items (1) and (2) are not exclusive, the pro-
cess of a computation may be observed from outside
even if it is doomed to fail. However, we have given up
the idea of specifying precisely what can be observed
before a computation fails. This is because the behav-
ior of a failing multiset of uni�cation goals is hard to
de�ne and not very important. Note that we have `oc-
cur check' as a consequence of the �niteness of terms.

Modeling inactivity as well as normal transactions
is important, because we want to distinguish between
a program that will eventually produce a non-empty
output and one that may or may not produce it. For
example, let P be

�
(p(X) :- ; | fX=1g); (p(X) :- ; | ;)

	
and Q be �

(p(X) :- ; | fX=1g)
	
:

Then, h;;?i is in [[p(X)]]
P
but not in [[p(X)]]

Q
, while

h;; fX / 1gi is both in [[p(X)]]
P
and in [[p(X)]]

Q
.

Output substitutions �1; �2; : : : in an abstract
computation h�1; �1i h�2; �2i : : : are called partial an-
swer substitutions (pas's), since if the computa-
tion ends with h�n;?successi, the universal closure
8(B�1�1�2�2 : : : �n) is a logical consequence of the
declarative reading of the program.

{ 5 {

The example below shows how the model cir-
cumvents the Brock-Ackerman anomaly (Brock and
Ackerman 1981). Let P (in the syntax following DEC-
10 Prolog) be:

d([A|-],O) :- true | O=[A,A].

merge([A|X1],Y, Z) :- true |

Z=[A|Z1], merge(X1,Y,Z1).

merge(X, [A|Y1],Z) :- true |

Z=[A|Z1], merge(X,Y1,Z1).

merge([], Y, Z) :- true | Z=Y.

merge(X, [], Z) :- true | Z=X.

p1([A|Z1],O) :- true | O=[A|O1], p11(Z1,O1).

p11([B|-],O1) :- true | O1=[B].

p2([A,B|-],O) :- true | O=[A,B].

g1(I,J,O) :- true |

d(I,X), d(J,Y), merge(X,Y,Z), p1(Z,O).

g2(I,J,O) :- true |

d(I,X), d(J,Y), merge(X,Y,Z), p2(Z,O).

Then, the computation

fI / [5|-]g; fO / [5|O1]g

�
belongs both to [[g1(I;J; O)]]

P
and to [[g2(I;J; O)]]

P
, but

fI / [5|-]g; fO / [5|O1]g

�

fJ / [6|-]g; fO1 / [6]g

�
belongs only to [[g1(I;J; O)]]

P
and not to [[g2(I;J; O)]]

P
.

5 TRANSFORMATION RULES

Now we are in a position to describe the set of rules for
transforming an initial program P0 to P1, P2 and so
forth. Actual transformation will consist of the rewrit-
ing of existing clauses and the introduction of new,
auxiliary clauses. However, we treat those new clauses
as if they had been in P0, following the formulation
of (Tamaki 1987). One purpose of this is to justify
the introduction of new clauses, which usually intro-
duces new possible computations. The set of those new
clauses in P0 is referred to as D. D must satisfy the
following conditions:

(D1) 8g 8C 2 D 8C 0 2 P0 n fCg (+(g; C) ! �(g; C 0))
(that is, a clause in D does not `overlap' with
any other clauses.)

(D2) 8(h :- G | B)2P0 8g2B 8C2D (�(g;C)) (that
is, a body goal in a clause in P0 cannot commit
to a clause in D.)

(D3) Each clause in D must be of the form

h0 :- ; | B0
N ; var(h0) � var(B0

N):

These conditions are to guarantee the correctness of
folding (Section 5.4).

5.1 Normalization

Normalization transforms a clause C in Pj to a normal
form by executing the uni�cation goals in it as far as
possible.

First, we `execute' the uni�cation goals in the
guard. Let C be

C: : h :- GU [GN | B:

If GU is unsolvable then let Pj+1 be Pj n fCg.
Otherwise, let C 0 be

C0: : h� :- GN� | B�;

where � is an idmgu of GU .

Then we `execute' the uni�cation goals in the body
of C 0 now of the form

C 0: : h0 :- G0N | B0
U [B0

N :

If B0
U is unsolvable, stop the program transformation

(we are not interested in improving a program that
may fail). Otherwise, let � be an idmgu of B0

U smallest
w. r. t. var(h0). �jh0 stands for the output substitution
of C 0. Finally, let Pj+1 be (Pj n fCg) [fC 00g, where
C00 is

C00: : h0 :- G0
N | �jh0 [B0

N�:

Note that we can ignore G0
N in simplifying B0

U ,
because G0N has been solved when B0

U is executed.

The rest of the rules in the subsequent sections
assume that all the clauses in a program have been
normalized.

5.2 Immediate Execution of a Body Goal

We have two rules based on unfolding: immediate ex-
ecution (below) and case splitting (Section 5.3). The
distinction is not made in the transformation of or-
dinary logic programs, but it is necessary in GHC in
which guard plays a crucial role.

Consider a goal g and a clause C. In ordinary logic
programming, g is either reducible or irreducible to the
body of C, depending on whether g and the head of
C are uni�able. In GHC, however, there is the third
case, in which g is reducible to the body of C only

when g is appropriately instantiated. The unfolding
rules must correctly deal with such a synchronization
condition expressed in the guard of C. Case splitting
is provided exactly for this purpose, while immediate
execution deals with the unfolding which does not in-
volve synchronization. Case splitting may look more
powerful, but immediate execution can be applied in
less limited contexts.

{ 6 {

Now we state the rule of immediate execution. Let
C 2 Pj be

C: : h :- GN | BU [BN

and BN = fgg [B0
N (fgg \B0

N = ;). If the conditions

(I1) 8Ck2Pj (+(g; Ck) _ �(g;Ck))

(I2) 9Ck2Pj (+(g; Ck))

both hold, then for each Ck: : (hk :- GNk | Bk) 2 Pj
such that +(g; Ck) holds, make a clause

C0k: : h :- GN | BU [Bk� [B0
N

where � is an idmgu of g and hk smallest w. r. t. var(g),
and let Pj+1 be (Pj nfCg) [fC

0
k j +(g; Ck)g.

Let us see why Condition (I2) is necessary. Suppose
C1 = (p(X) :- ; | fqg), C2 = (p(X) :- ; | fX=1g) and
Pj = fC1; C2g. The goal p(X) may either deadlock
or get the substitution fX / 1g. However, if we applied
immediate execution to C1, Pj+1 would be fC2g, under
which the goal p(X) will not deadlock.

5.3 Case Splitting

Let C 2 Pj be

C: : h :- GN | BU [BN

and BN = fg1; : : : ; gng. Case splitting requires the
following conditions:

(C1) BU = ;

(C2) 8g 8C 0 2 Pj n fCg (+(g; C) ! �(g; C 0)) (that is,
C does not `overlap' with other clauses.)

If both hold, make a clause C0ik for each pair of gi 2 BN

and Ck 2 Pj of the form

Ck: : hk :- GNk | Bk

as follows:

� If gi and hk cannot be uni�ed then let C 0
ik = ?.

Otherwise, let � be an idmgu of them smallest
w. r. t. var(gi). (Intuitively, �jgi stands for an input
substitution necessary (and su�cient if GNk = ;)
for gi to commit to Ck.) If the condition

(C3) (domain(�jgi) [range(�jgi))nvar(hk) � var(h)

holds, let C 0ik be

C0ik: : h� :- GN� [GNk� | (BN nfgig)� [Bk�:

Otherwise, let C 0
ik = ?.

Finally, let Pj+1 be (PjnfCg) [fC0ik j C
0
ik 6= ?g.

For a goal reduced using C to generate an output
substitution, at least one more reduction is necessary

because C has no uni�cation goals in its body. Case
splitting enumerates all the possibilities for the �rst
such reduction.

Condition (C1) is necessary because �jgi and GNk

are promoted to the guard of C. If BU 6= ;, to observe
the output substitution from BU might require more
input substitution under Pj+1 than under Pj .

The purpose of Condition (C2) is just the same as
that of Condition (I2). Without (C2), the behavior of
a goal g might change in the event that g can commit
to C but to none of the C0ik's.

Condition (C3) requires that the condition for gi
to commit to Ck, expressed as �jgi , be promoted to
the guard of C 0

ik without being diminished. Suppose
gi = q(X,Y,Z,U) and hk = q(V,V,f(W),-). Then
�jgi = fX / Y; Z / f(W)g, which states that X must be
identical to Y and the principal function symbol of Z
must be unary f. Then, p(X,Y,Z) is a legal head of C
which will be instantiated to p(Y,Y,f(W)) in C 0

ik, but
if we dropped any of X, Y and Z from p(X,Y,Z), the
condition represented by �jgi would not be promoted
correctly. Condition (C3) is the formalization of the
`input relatedness' condition in (Furukawa et al. 1987).

5.4 Folding

The Folding rule is similar to that of Tamaki and Sato.
A clause used for folding must belong to D but need
not necessarily belong to Pj .

Let C 2 Pj be

C: : h :- GN | BU [BN

and BN = K [B0
N (K [B0

N = ;), where K is the
multiset of goals to be folded. Let the clause to be
used for folding (2 D) be

C00: : h00 :- ; | B00
N ; (var(h00) � var(B00

N)):

Folding requires the following four conditions to
hold:

(F1) 9�0 (K = B00
N�

0)

(F2) Let � be a substitution such that K = B00
N� and

� = �jB00

N

. We intend to replace K in C by h00�.

The condition for this is:

9� ((K� = B00
N�jh00) ^ (domain(�)

\ var(h :- GN | BU [B0
N) = ;));

that is, K and B00
N�jh00 are variants and � does

not rewrite C except for K.

(F3) C is either the result of applying transformation
rules to a clause of P0nD zero or more times, or

{ 7 {

the result of applying case splitting to a clause in
P0 at least once.

If they all hold, then let Pj+1 be (Pj n fCg) [fC
0g,

where C 0 is

C0: : h :- GN | BU [h00� [B0
N :

Conditions (F1) to (F3) may look complex, but
are very similar to those in (Tamaki 1987). Conditions
(F1), (F2) and (D1) together guarantee that the im-
mediate execution of h00� in C 0 yields C and only C.
Condition (F3) is to avoid introducing in�nite reduc-
tions by, say, folding a clause in D \ Pj by itself. To
preserve the semantics of a non-terminating program,
we require the case-splitting, rather than the immedi-
ate execution, of a clause in D to be folded in future.
There may be various sets of conditions for correct fold-
ing (for example, see (Kanamori and Fujita 1986)), but
our set su�ce at least for process fusion.

6 CORRECTNESS OF THE RULES

A transformation sequence P0, P1, : : : preserves the
meaning of P0 in the sense that for any multisets of
goals B0 and B and for any i > 0 and n > 0, the
following hold:

(1) A computation h�1; �1i : : : h�n�1; �n�1ih�n; �ni be-
longing to [[B0jB]]P0

belongs also to [[B0jB]]Pi ,
and vice versa, if none of the computations h�1;
�1i : : : h�k�1; �k�1ih�k;>i for 1 � k � n belong to
[[B0jB]]P0

.

(2) Item (1) holds also when we replace \�n" by any
of \?success", \?deadlock" and \?divergence".

(3) A computation h�1; �1i : : : h�n�1; �n�1ih�n;>i be-
longing to [[B0jB]]P0

belongs also to [[B0jB]]Pi ,
and vice versa, if none of the computations h�1;
�1i : : : h�k�1; �k�1ih�k;>i for 1 � k < n belong to
[[B0jB]]P0

.

These can be shown using the induction on the
lengths of abstract computations. The basic task is
to show that if a multiset B0 of goals allows a com-
putation beginning with a normal transaction h�1; �1i
that leaves a multiset B1 of goals, then there is, under
another program, the same transaction that leaves the
equivalent multiset of goals. Since each normal trans-
action is made up of a �nite number of reductions, we
can apply to it the proof technique used in (Tamaki
and Sato 1984) which is based on manipulation of �-
nite proof trees. The use of idempotent substitutions
for the presentation of the rules serves to avoid the
complication of the proof.

The same technique can be used also for proving
that if [[B0jB]]P0

contains h�1;>i, h�1;?successi and/or

h�1;?deadlocki, [[B0jB]]Pi also contains them, and vice
versa. A proof on h�1;?divergencei requires somewhat
di�erent technique because it must handle in�nite se-
quences of reductions. A complete proof will be found
in (Ueda and Furukawa 1989).

7 EXAMPLES

This section illustrates how to apply our transforma-
tion rules to process fusion (Furukawa and Ueda 1985).
We consider a simple program that computes a se-
quence of the partial sums of an integer sequence.

integerSums(I,N,Sums) :- true |

integers(I,N,Is), sums(Is,Sums). (1)

integers(I,N,Is) :- I=<N |

Is=[I|Is1], I1:=I+1, integers(I1,N,Is1). (2)
integers(I,N,Is) :- I >N | Is=[]. (3)

sums(Is,Sums) :- true | sums1(Is,0,Sums). (4)

sums1([], -,Sums) :- true | Sums=[]. (5)
sums1([I|Is1],S,Sums) :- true |

S1:=I+S, Sums=[S1|Sums1],

sums1(Is1,S1,Sums1). (6)

Our objective is to obtain a single-process program
which computes the same sequence. We start by exe-
cuting the body goals of Clause (1) until we have two
tail-recursive goals:

Clause (1)??yImmediate Execution

integerSums(I,N,Sums) :- true |

integers(I,N,Is), sums1(Is,0,Sums). (7)

Then we introduce a new clause for the �nal sin-
gle process by parameterizing the second argument of
sums1 and leaving Is local. This is the key step which
requires heuristics; however, the only heuristics needed
is to generalize parameters. The resulting clause is:

fused-integerSums(I,N,S,Sums) :- true |

integers(I,N,Is), sums1(Is,S,Sums). (8)

The second argument of sums1 is generalized to a
variable S, and it is included in the clause head. Now
we try to obtain a single tail-recursive program using
case-splitting and folding:

Clause (8)??yCase Splitting

fused-integerSums(I,N,S,Sums) :- I=<N |

Is=[I|Is1], I1:=I+1, integers(I1,N,Is1),

sums1(Is,S,Sums). (9)
fused-integerSums(I,N,S,Sums) :- I >N |

Is=[], sums1(Is,S,Sums). (10)

{ 8 {

Clause (9)??yNormalization

fused-integerSums(I,N,S,Sums) :- I=<N |

I1:=I+1, integers(I1,N,Is1),

sums1([I|Is1],S,Sums).??yImmediate Execution

fused-integerSums(I,N,S,Sums) :- I=<N |

I1:=I+1, integers(I1,N,Is1),

S1:=I+S, Sums=[S1|Sums1],

sums1(Is1,S1,Sums1).??yFolding by (8)

fused-integerSums(I,N,S,Sums) :- I=<N |

I1:=I+1, S1:=I+S, Sums=[S1|Sums1],

fused-integerSums(I1,N,S1,Sums1). (11)

Clause (10)??yNormalization and Immediate Execution

fused-integerSums(I,N,S,Sums) :- I >N |

Sums=[]. (12)

The remaining task is to express the original pred-
icate integerSums in terms of the newly introduced
predicate fused-integerSums:

Clause (7)??yFolding by (8)

integerSums(I,N,Sums) :- true |

fused-integerSums(I,N,0,Sums). (13)

The resulting clauses (11), (12) and (13) give a new
de�nition of the integerSums program. This program
contains only one tail-recursive process; the interme-
diate stream Is and the operations on it have been
eliminated. If the program is to be executed on one
processor, the compiled code of the new program will
usually be better than the code obtained by compiling
the original two tail-recursive procedures separately.

We will next show how we can deal with a stream
transformer that may absorb some of the input ele-
ments.

evenSquare(Xs,Ys) :- true |

evenseq(Xs,Es), squareseq(Es,Ys). (14)

evenseq([X|Xs1],Es) :- even(X) |

Es=[X|Es1], evenseq(Xs1,Es1). (15)
evenseq([X|Xs1],Es) :- odd(X) |

evenseq(Xs1,Es). (16)

squareseq([E|Es1],Ys) :- true |

Y:=E^2, Ys=[Y|Ys1], squareseq(Es1,Ys1). (17)

Let us �rst split Clause (14), as we did in the in-

tegerSums example:

Clause (14)??yCase splitting

evenSquare([X|Xs1],Ys) :- even(X) |

Es=[X|Es1], evenseq(Xs1,Es1),

squareseq(Es,Ys). (18)
evenSquare([X|Xs1],Ys) :- odd(X) |

evenseq(Xs1,Es), squareseq(Es,Ys). (19)

Clause (18)??yNormalization and Immediate Execution

evenSquare([X|Xs1],Ys) :- even(X) |

evenseq(Xs1,Es1),

Y:=X^2, Ys=[Y|Ys1], squareseq(Es1,Ys1).??yFolding by (14) (Assume D = fClause (14)g.)

evenSquare([X|Xs1],Ys) :- even(X) |

Y:=X^2, Ys=[Y|Ys1], evenSquare(Xs1,Ys1).(20)

Clause (19)??yFolding by (14)

evenSquare([X|Xs1],Ys) :- odd(X) |

evenSquare(Xs1,Ys). (21)

Clauses (20) and (21) have replaced Clauses (14)
to (17).

8 DISCUSSIONS

The last section discusses three aspects of the tech-
nicalities presented above: applicability, presentation,
and justi�cation of the rules.

Applicability of the rules. Our transformation tech-
nique is interesting in that it can be used for pro-
grams with interaction. Both programs with two-way
(demand-driven) communication and programs with
one-way communication (pipelining) can be handled.
The current set of rules is a fundamental tool for the
simple improvement of programs, and various tech-
niques proposed for ordinary logic programs could be
adapted for inclusion in an enhanced set of rules. We
did not argue the transformation of guard goals, but it
could be introduced somewhat independently.

Presentation of the rules. The presentation of the
rules should be interesting in its own right. Firstly,
they have been simpli�ed owing to the use of normal
forms. Secondly, the use of idempotent substitutions
with preferred directions of bindings was helpful in for-
malizing the rules. This suggests that substitutions
with such properties are an appropriate tool for mod-
eling information in (concurrent) logic programming.
The presentation using the algebra of terms and sub-
stitutions shows a good conformity with the synchro-
nization rule of GHC. However, the use of uni�cation
for interprocess communication brings about some dif-
�culty also. That is, the semantics and implementa-
tions must provide against the failure of uni�cation,

{ 9 {

while a GHC program that fails is usually regarded
as erroneous. The possibility of failure seems to be the
price of
exible interprocess communication realized by
uni�cation.

Justi�cation of the rules. We have given a simple
semantics based on transactions with which to justify
the rules. A transaction is a �nite fragment of a compu-
tation. It is abstract enough, and because of its �nite
nature we could use existent tools to describe and rea-
son about it. A transaction is a natural unit of com-
putation from users' point of view. The strengths of
our semantic model are that it handles essentially non-
terminating programs and that it handles anomalous
behavior in contrast with the success set semantics of
logic programs. These are very important for interac-
tive programs. The current rules are designed so that
they preserve any behavior in principle. They could be
simpli�ed further if they were allowed to diminish the
possibility of anomalous transactions like deadlock.

In designing the semantic model, we were faced
with two problems: the modeling of failing computa-
tions (as described above) and the treatment of fair-
ness. As for the latter, we chose to allow execution un-
fair with respect to the selection of body goals reduced
from the initial goals. As a consequence, a normal
transaction or failure that would necessarily happen
under fair execution may not happen, and divergence
that would not happen under fair execution may hap-
pen. This choice contributes much to the simplicity of
the semantics. While a model of fair execution will be
needed as well, the proposed semantics should be use-
ful because there is still some controversy as to whether
fairness should be assumed by the language rules, and
because some implementations of GHC adopt unfair
scheduling. Partial orders of transactions may be a
better alternative to sequences since we need not con-
sider the fairness of interleaving, but it is yet to be
studied how to use partial orders in our framework in
which information is modeled as substitutions.

ACKNOWLEDGMENTS

The authors are indebted to Masaki Murakami, Akira
Okumura and Akikazu Takeuchi for valuable sugges-
tions and discussions. Thanks are also due to the mem-
bers of the ICOT Research Center and the Parallel
Software Working Group of ICOT who participated in
the seminars on the transformation of GHC programs.

REFERENCES

Brock, J. D. and Ackerman, W. B. (1981) Scenarios:
A Model of Non-determinate Computation. In Formal-

ization of Programming Concepts, Diaz, J. and Ramos,
I. (eds.), LNCS 107, Springer-Verlag, pp. 252{259.

Furukawa, K., Okumura, A. and Murakami, M. (1987)
Unfolding Rules for GHC programs. In Proc. Work-

shop on Partial and Mixed Computation, Bj�rner, D.
et al. (eds.), Gl. Avern�s, Denmark.

Furukawa, K. and Ueda, K. (1985) GHC Process Fu-
sion by Program Transformation. In Second Conf.

Proc. Japan Soc. Softw. Sci. Tech., pp. 89{92.

Kanamori, T. and Fujita, H. (1986) Unfold/fold Trans-
formation of Logic Programs with Counters. ICOT
Tech. Report TR-179, ICOT, Tokyo.

Lassez, J. -L., Maher, M. J. and Marriott, K. (1987)
Uni�cation Revisited. In Foundations of Deductive

Databases and Logic Programming, Minker, J. (ed.),
Morgan Kaufmann, pp. 587{625.

Lichtenstein, Y., Codish, M. and Shapiro, E. (1987)
Representation and Enumeration of Flat Concurrent
Prolog Computations. In (Shapiro 1987), Chapter 27.

Lloyd, J. W. (1984) Foundations of Logic Program-

ming. Springer-Verlag.

Robinson, J. A. (1979) Logic: Form and Function. Ed-
inburgh University Press.

Shapiro, E. Y. (ed.) (1987), Concurrent Prolog: Col-

lected Papers, Vol. 1{2, The MIT Press.

Tamaki, H. and Sato, T. (1984) Unfold/Fold Transfor-
mation of Logic Programs. In Proc. Second Int. Logic

Programming Conf., Uppsala Univ., Sweden, pp. 127{
138.

Tamaki, H. (1987) Program Transformation in Logic
Programming Languages. In Program Transformation,
Fuchi, K. (editor-in-chief), Kyoritsu Shuppan, Tokyo,
pp. 39{62 (in Japanese).

Ueda, K. (1985) Guarded Horn Clauses. ICOT Tech.
Report TR-103, ICOT, Tokyo (revised in 1986). Re-
vised version in Proc. Logic Programming '85, Wada,
E. (ed.), LNCS 221, Springer-Verlag, 1986, pp. 168{
179. Also in (Shapiro 1987), Chapter 4.

Ueda, K. (1986a) Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of a
Guard, ICOT Tech. Report TR-208, ICOT, Tokyo (re-
vised in 1987). Also in Programming of Future Genera-

tion Computers, Nivat, M. and Fuchi, K. (eds.), North-
Holland, 1988, pp. 441{456.

Ueda, K. (1986b) Introduction to Guarded Horn
Clauses. ICOT Tech. Report TR-209, ICOT, Tokyo.

Ueda, K. and Furukawa, K. (1989) Forthcoming paper
to appear as ICOT Tech. Report, ICOT, Tokyo.

{ 10 {

