
Error-correcting Source Code

Yasuhiro Ajiro, Kazunori Ueda

?

, Kenta Cho

??

Department of Information and Computer Science

Waseda University

4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169-8555, Japan

fajiro,uedag@ueda.info.waseda.ac.jp

In Proc. Fourth International Conference on

Principles and Practice of Constraint Programming (CP98),

LNCS 1520, Springer-Verlag, Berlin, 1998, pp. 40{54.

Abstract. We study how constraint-based static analysis can be applied

to the automated and systematic debugging of program errors.

Strongly moding and constraint-based mode analysis are turning to play

fundamental roles in debugging concurrent logic/constraint programs as

well as in establishing the consistency of communication protocols and

in optimization. Mode analysis of Moded Flat GHC is a constraint satis-

faction problem with many simple mode constraints, and can be solved

e�ciently by uni�cation over feature graphs. We have proposed a sim-

ple and e�cient technique which, given a non-well-moded program, di-

agnoses the \reasons" of inconsistency by �nding minimal inconsistent

subsets of mode constraints. Since each constraint keeps track of the

symbol occurrence in the program that imposed the constraint, a min-

imal subset also tells possible sources of program errors. The technique

is quite general and can be used with other constraint-based frameworks

such as strong typing.

Based on the above idea, we study the possibility of automated debugging

in the absence of mode/type declarations. The mode constraints are usu-

ally imposed redundantly, and the constraints that are considered correct

can be used for correcting wrong symbol occurrences found by the di-

agnosis. As long as bugs are near-misses, the automated debugger can

propose a rather small number of alternatives that include the intended

program. Search space is kept small because constraints e�ectively prune

many irrelevant alternatives. The paper demonstrates the technique by

way of examples.

1 Introduction

This paper proposes a framework of automated debugging of program errors

under static, constraint-based systems for program analysis, and shows how and

why program errors can be �xed in the absence of programmers' declarations.

The language we are particularly interested in is Moded Flat GHC [7][8] proposed

in 1990. Moded Flat GHC is a concurrent logic (and consequently, a concurrent

constraint) language with a constraint-based mode system designed by one of

the authors, where modes prescribe the information ow that may be caused by

the execution of a program.
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Languages equipped with strong typing or strong moding

3

enable the detec-

tion of a type/mode errors by checking or reconstructing types or modes. The

best-known framework for type reconstruction is the Hindley-Milner type sys-

tem [3], which allows us to solve a set of type constraints obtained from program

text e�ciently as a uni�cation problem.

Similarly, the mode system of Moded Flat GHC allows us to solve a set of

mode constraints obtained from program text as a constraint satisfaction prob-

lem. Without mode declarations or other kinds of program speci�cation given by

programmers, mode reconstruction statically determines the read/write capabil-

ities of variable occurrences and establishes the consistency of communication

protocols between concurrent processes [8]. The constraint satisfaction problem

can be solved mostly (though not entirely) as a uni�cation problem over feature

graphs (feature structures with cycles) and can be solved in almost linear time

with respect to the size of the program [1]. As we will see later, types also can

be reconstructed using a similar (and simpler) technique.

Compared with abstract interpretation usually employed for the precise anal-

ysis of program properties, constraint-based formulation of the analysis of basic

properties has a lot of advantages. Firstly, thanks to its incremental nature, it

is naturally amenable to separate analysis of large programs. Secondly, it allows

simple and general formulations of various interesting applications including er-

ror diagnosis.

When a concurrent logic program contains bugs, it is very likely that mode

constraints obtained from the erroneous symbol occurrences are incompatible

with the other constraints. We have proposed an e�cient algorithm that �nds a

minimal inconsistent subset of mode constraints from an inconsistent (multi)set

of constraints [2]. A minimal inconsistent subset can be thought of as a minimal

\explanation" of the reason of inconsistency. Furthermore, since each constraint

keeps track of the symbol occurrence(s) in the program that imposed the con-

straint, a minimal subset tells possible sources (i.e., symbol occurrences) of pro-

gram errors. Our technique can locate multiple bugs at once. The technique is

quite general and can be used with other constraint-based frameworks such as

strong typing.

Since the conception of the above framework of program diagnosis and some

experiments, we have found that the multiset of mode constraints imposed by a

program usually has redundancy and it usually contains more than one minimal

inconsistent subset when it is inconsistent as a whole. Redundancy comes from

two reasons:

1. A non-trivial program contains conditional branches or nondeterministic

choices. In (concurrent) logic languages, they are expressed as a set of rewrite

rules (i.e., program clauses) that may impose the same mode constraints on

the same predicate.

2. A non-trivial program contains predicates that are called from more than

one place, some of which may be recursive calls. The same mode constraint

may be imposed by di�erent calls.

3

Modes can be thought of as \types in a broad sense," but in this paper we reserve

the term \types" to mean sets of possible values.
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We can often take advantage of the redundancies and pinpoint a bug (Sect. 3)

by assuming that redundant modes are correct. The next step worth trying is

automated error correction. We can estimate the intended mode of a program

from the parts of the program that are considered correct, and use it to �x small

bugs, which is the main focus of this paper.

Bugs that can be dealt with by automated correction are necessarily limited

to near-misses, but still, automated correction is worth studying because:

{ serious algorithm errors cannot be mechanically corrected anyway,

{ if the algorithm for a program has been correctly designed, the program is

usually \mostly correct" even if it doesn't run at all, and

{ real-life programs are subject to a number of revisions, upon which small

errors are likely to be inserted.

Our idea of error correction can be compared with error-correcting codes in

coding theory. Both attempt to correct minor errors using redundant informa-

tion. Unlike error-correcting codes that contain explicit redundancies, programs

are usually not written in a redundant manner. However, programs interpreted

in an abstract domain may well have implicit redundancies. For instance, the

then part and the else part of a branch will usually compute a value of the

same type, which should also be the same as the type expected by the reader of

the value. This is exactly why the multiset of type or mode constraints usually

has redundancies.

It is not obvious whether such redundancies can be used for automated error

correction, because even if we correctly estimate the type/mode of a program,

there may be many possible ways of error correction that are compatible with the

estimated type/mode. The usefulness of the technique seems to depend heavily

on the choice of a programming language and the power of the constraint-based

static analysis. We have obtained promising results using Moded Flat GHC and

its mode system, with the assistance of type analysis and other constraints.

The other concern in automated debugging is search space. Generate-and-test

search, namely the generation of a possible correction and the computation of its

principal mode (and type), can involve a lot of computation, but we can prune

much of the search space by using `quick-check' mode information to detect non-

well-modedness. Types are concerned with aspects of program properties that

are di�erent from modes, and can be used together with modes to improve the

quality of error correction.

2 Strong Moding and Typing in Concurrent Logic

Programming

We �rst outline the mode system of Moded Flat GHC. The readers are referred

to [8] and [9] for details.

In concurrent logic programming, modes play a fundamental role in estab-

lishing the safety of a program in terms of the consistency of communication

protocols. The mode system of Moded Flat GHC gives a polarity structure (that
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determines the information ow of each part of data structures created during

execution) to the arguments of predicates that determine the behavior of goals.

A mode expresses this polarity structure, which is represented as a mapping from

the set of paths to the two-valued codomain fin ; outg. Paths here are strings of

pairs, of the form hsymbol; argi, of predicate/function symbols and argument po-

sitions, and are used to specify possible positions in data structures. Formally,

the set P

Term

of paths for terms and the set P

Atom

of paths for atomic formulae

are de�ned using disjoint union as:

P

Term

= (

X

f2Fun

N

f

)

�

; P

Atom

= (

X

p2Pred

N

p

)� P

Term

;

where Fun/Pred are the sets of function/predicate symbols, and N

f

/N

p

are

the sets of possible argument positions (numbered from 1) for the symbols f/p.

The purpose of mode analysis is to �nd the set of all modes (each of type

P

Atom

! fin; outg) under which every piece of communication is cooperative.

Such a mode is called a well-moding. Intuitively, in means the inlet of information

and out means the outlet of information. A program does not usually de�ne a

unique well-moding but has many of them. So the purpose of mode analysis is to

compute the set of all well-modings in the form of a principal (i.e., most general)

mode. Principal modes can be expressed naturally by mode graphs, as described

later in this section.

Given a mode m, we de�ne a submode m=p, namely m viewed at the path

p, as a function satisfying (m=p)(q) = m(pq). We also de�ne IN and OUT

as submodes returning in and out , respectively, for any path. An overline ` '

inverts the polarity of a mode, a submode, or a mode value.

A Flat GHC program is a set of clauses of the form h:- G | B, where h is

an atomic formula and G and B are multisets of atomic formulae. Constraints

imposed by a clause h:- G | B are summarized in Fig. 1. Rule (BU) numbers

uni�cation body goals because the mode system allows di�erent body uni�cation

goals to have di�erent modes. This is a special case of mode polymorphism that

can be introduced into other predicates as well [2], but in this paper we will not

consider general mode polymorphism because whether to have polymorphism is

independent of the essence of this work.

For example, consider a quicksort program de�ned as follows:

quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).

qsort([], Ys0,Ys ):- true | Ys=

1

Ys0.

qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L),qsort(S,Ys0,Ys1), Ys1=

2

[X|Ys2], qsort(L,Ys2,Ys3).

part(

-

,[], S, L ):- true | S=

3

[], L=

4

[].

part(A,[X|Xs],S0,L ):- A>=X | S0=

5

[X|S],part(A,Xs,S,L).

part(A,[X|Xs],S, L0):- A< X | L0=

6

[X|L],part(A,Xs,S,L).

From the entire de�nition, we obtain 53 constraints which are consistent. We

could regard these constraints themselves as representing the principal mode of

the program, but the principal mode can be represented more explicitly in terms

of a mode graph (Fig. 2). Mode graphs are a kind of feature graphs [1] in which



5

� �

(HF) m(p) = in, for a function symbol occurring in h at p.

(HV) m=p = IN , for a variable symbol occurring more than once in h at

p and somewhere else.

(GV) If some variable occurs both in h at p and in G at p

0

,

8q 2 P

Term

�

m(p

0

q) = in ) m(pq) = in

�

.

(BU) m=h=

k

; 1i = m=h=

k

; 2i, for a uni�cation body goal =

k

.

(BF) m(p) = in, for a function symbol occurring in B at p.

(BV) Let v be a variable occurring exactly n (� 1) times in h and B at

p

1

; : : : ; p

n

, of which the occurrences in h are at p

1

; : : : ; p

k

(k � 0).

Then

�

R

�

fm=p

1

; : : : ;m=p

n

g

�

; if k = 0;

R

�

fm=p

1

;m=p

k+1

; : : : ;m=p

n

g

�

; if k > 0;

where the unary predicate R over �nite multisets of submodes rep-

resents \cooperative communication" between paths and is de�ned

as

R(S)

def

= 8q 2 P

Term

9s 2 S

�

s(q) = out ^ 8s

0

2 Snfsg

�

s

0

(q) = in

��

:

� 

Fig. 1. Mode constraints imposed by a program clause h :- G | B or a goal

clause :- B.

1. a path (in the graph-theoretic sense) represents a member of P

Atom

,

2. the node corresponding to a path p represents the value m(p) (# = in ,

" = out),

3. each arc is labeled with the pair hsymbol; argi of a predicate/function symbol

and an argument position, and may have a \negative sign" (denoted \�" in

Fig. 2) that inverts the interpretation of the mode values of the paths beyond

that arc, and

4. a binary constraint of the formm=p

1

= m=p

2

orm=p

1

= m=p

2

is represented

by letting p

1

and p

2

lead to the same node.

Mode analysis proceeds by merging many simple mode graphs representing

individual mode constraints. Thus its decidability is guaranteed by the decid-

ability of the uni�cation algorithm for feature graphs. The principal mode of a

well-moded program, represented as a mode graph, is uniquely determined, as

long as all the mode constraints imposed by the program are unary (i.e., con-

straint on the mode value of, or the submode at, a particular path) or binary (i.e.,

constraint between the submodes at two particular paths). Space limitations do

not allow us to explain further details, which can be found in [9].

A type system for concurrent logic programming can be introduced by classi-

fying a set Fun of function symbols into mutually disjoint sets F

1

; : : : ; F

n

. A type



6

� �

<q,1> <q,2> <q,3> <p,1> <p,2> <p,3>
<p,4>

< . ,1>
< . ,2>

< . ,2>

< . ,1>

� 

Fig. 2. The mode graph of a quicksort program. q stands for qsort and p stands for

part. The mode information of the toplevel predicate and uni�cation goals is omitted.

here is a function from P

Atom

to the set fF

1

; : : : ; F

n

g. Like principal modes, prin-

cipal types can be computed by uni�cation over feature graphs. Constraints on a

well-typing � are summarized in Fig. 3. The choice of a family of sets F

1

; : : : ; F

n

is somewhat arbitrary. This is why moding is more fundamental than typing in

concurrent logic programming.

Mode and type analyses have been implemented as part of klint, a static

analyzer for KL1 programs [11].

� �

(HBF

�

) �(p) = F

i

, for a function symbol occurring at p in h or B.

(HBV

�

) �=p = �=p

0

, for a variable occurring both at p and p

0

in h or B.

(GV

�

) 8q 2 P

Term

�

m(p

0

q) = in ) � (pq) = �(p

0

q)

�

, for a variable occur-

ring both at p in h and at p

0

in G.

(BU

�

) �=h=

k

; 1i = �=h=

k

; 2i, for a uni�cation body goal =

k

.

� 

Fig. 3. Type constraints imposed by a program clause h :- G | B or a goal

clause :- B.
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3 Identifying Program Errors

When a concurrent logic program contains an error, it is very likely (though

not always the case) that its communication protocols become inconsistent and

the set of its mode constraints becomes unsatis�able. A wrong symbol occurring

at some path is likely to impose a mode constraint inconsistent with correct

constraints representing the intended speci�cation.

A minimal inconsistent subset of mode constraints can be computed e�-

ciently using a simple algorithm

4

. Let C = fc

1

; : : : ; c

n

g be a multiset of con-

straints. Algorithm 1 below �nds a single minimal inconsistent subset S from

C when C is inconsistent. When C is consistent, the algorithm terminates with

S = fg. false is a self-inconsistent constraint used as a sentinel.

� �

Algorithm 1:

c

n+1

 false;

S  fg;

while S is consistent do

D  S; i 0;

while D is consistent do

i i+ 1; D  D [ fc

i

g

end while;

S  S [ fc

i

g

end while;

if i = n+ 1 then S  fg

� 

The readers are referred to [2] for a proof of the minimality of S, as well

as various extensions of the algorithm. Note that the algorithm can be readily

extended to �nding multiple bugs at once. That is, once we have found a minimal

subset covering a bug, we can reapply the algorithm to the rest of the constraints.

In the algorithm, the merging of constraint sets and the checking of their

consistency are realized mostly as the uni�cation of mode graphs and the check-

ing of its success/failure. Although the algorithm is quite general, its e�ciency

hinges upon the fact that there is a pair of e�cient algorithms for computing

the union of constraint sets and checking its consistency.

Our experiment shows that the average size of minimal inconsistent subsets

is less than 4, and we have not yet found a minimal inconsistent subset with

more than 11 elements. The size of minimal subsets turns out to be independent

of the total number of constraints, and most inconsistencies can be explained by

constraints imposed by a small range of program text.

Because we are dealing with near-misses, we can assume that most of the

mode constraints obtained from a program represent an intended speci�cation

and that they have redundancies in most cases. In this case, one can often pin-

point a bug either

4

The algorithm described here is a revised version of the one proposed in [2] and takes

into account the case when C is consistent.
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1. by computing a maximal consistent subset of size n� 1 and taking its com-

plement, or

2. by computing several overlapping minimal inconsistent subsets and taking

their intersection.

Algorithm 2 described below combines these two alternative policies of pin-

pointing. To reduce the amount of computation, we do not compute all minimal

subsets; instead, for each element (say s

i

) of the initial inconsistent subset S, we

execute Algorithm 1 after removing s

i

from C, which will lead to another min-

imal subset if it exists. Thus Algorithm 2 simultaneously computes constraints

suspected by the two policies.

Let S = fs

1

; : : : ; s

m

g be a minimal subset obtained by Algorithm 1, and

getminimal(C) be a function which computes a minimal inconsistent subset

from a multiset C of constraints using Algorithm 1 above:

� �

Algorithm 2:

T  S;

for j  1 to m do

S

0

 getminimal(Cnfs

j

g);

if S

0

= fg then

output fs

j

g as a solution of Policy 1

else T  T

_

[S

0

;

end for

� 

Here, T is a multiset of constraints what serves as counters of the numbers

of constraints occurring in S and (various versions of) S

0

, and

_

[ is a multiset

union operator. T records how many times each constraint occurred in di�erent

minimal subsets. Under Policy 2, constraints with more occurrences in T are

more likely to be related to the source of the error.

Algorithm 2 is useful in locating multiple bugs at once. That is, once we have

obtained a minimal inconsistent subset S, we can apply Algorithm 2 to re�ne

the subset and remove only those constraints in the re�ned subset from C.

When Policy 1 outputs a single constraint imposed by an erroneous symbol

occurrence, we need not consider Policy 2. However, there are cases where Policy

1 outputs no constraints or more than one constraint, in which case Policy 2 may

better tell which constraints to suspect �rst.

Algorithm 2 is not always able to re�ne the initial set S, however. For in-

stance, when S is the only minimal inconsistent subset, the algorithm will output

all the elements of S by Policy 1 and will �nd no alternative subset by Policy 2.

Fortunately, this is not a serious problem because S is usually quite small.

4 Automated Debugging Using Mode Constraints

Constraints that are considered wrong can be corrected by
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{ replacing the symbol occurrences that imposed those constraints by other

symbols, or

{ when the suspected symbols are variables, by making them have more oc-

currences elsewhere (cf. Rule (BV) of Fig. 1).

In this paper, we focus on programs with a small number of errors in variables

and constants; that is, we focus on errors in terminal symbols in abstract syntax

trees. This may seem restrictive, but concurrent logic programs have quite at

syntactic structures (compared with other languages) and instead make heavy

use of variables. Our experience tells that a majority of simple program errors

arise from the erroneous use of variables, for which the support of a static mode

system and debugging tools are invaluable.

An algorithm for automated correction is basically a search procedure whose

initial state is the erroneous program, whose operations are the rewriting of

the occurrences of variables or constants, and whose �nal states are well-moded

programs

5

. This can be regarded also as a form of abductive reasoning which,

from a presumably correct mode constraint B and the moding rules of the form

\if A then B" (or \B for A") as shown in Fig. 1, infers a syntactic constraint A

that is considered correct.

The symbols to be substituted in the correction are chosen from the constants

or other variables occurring in the same clause. When the symbol to be rewritten

occurs in the head, we should also consider replacement by a fresh variable. We

don't have to try to form the mode graphs of all the alternative programs; from

the set C nS, we can derive a replacement guideline, namely simple constraints

to be satis�ed by the substituted symbol. Any replacement that violates the

guideline will not lead to a well-moded program and can be rejected immediately.

Error correction may require the rewriting of more than one symbol occur-

rence. We perform iterative-deepening search with respect to the number of

rewritings, because the assumption of near-misses implies that a simpler cor-

rection is more likely to be the intended one. These ideas have been partially

implemented in the kima analyzer for KL1 programs [10].

5 Using Constraints Other Than Modes

When error correction requires the rewriting of more than one symbol occur-

rence, the iterative-deepening search may report a large number of alternative

solutions, though they always include an intended one.

Using both the mode system and the type system reduces the number of

alternatives greatly. Modes and types capture di�erent aspects of a program,

and rather few of well-formed programs are both well-moded and well-typed.

We can expect that there are only a small number of well-moded and well-typed

program syntactically in the `neighborhood' of the given near-miss program.

5

Here, we assume that errors can be corrected without changing the shape of the

abstract syntax tree, though we could extend our technique and allow occurrences

of terminal symbols to be simply added or deleted.
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The reason why a type system alone is insu�cient should become clear by

considering programs that are simple in terms of types such as numerical pro-

grams. The mode system is sensitive to the number of occurrences of variables

(rule (BV) in Fig. 1) and can detect many errors that cannot be found by type

analysis. However, even when the programs are simple in terms of types, types

can be useful for inferring what constant should replace the wrong symbol.

Other heuristics from our programming experiences can reinforce the frame-

work as well:

1. A singleton variable occurring in a clause body is highly likely to be an error.

2. A solution containing a variable occurring more than once in a clause head

is less likely to be an intended one.

These heuristics are not as ad hoc as it might look; indeed they can be replaced

by a uni�ed rule on constraint strength:

{ A well-moded solution with weaker mode constraints is more likely to be an

intended one.

A singleton variable occurring at p in a clause body imposes a constraint m=p =

OUT , which is much stronger than m(p) = out . Similarly, a variable occurring

more than once at p

1

, p

2

, : : : in a clause head imposes a constraint m=p

i

= IN .

We could use more surface-level heuristics such as the similarity of variable

names, but this is outside the scope of this paper.

6 Experiments and Examples

We show some experimental results and discuss two examples of automated

debugging. The examples we use are admittedly simple but that can be justi�ed.

First, we must anyway start with simple examples. Second, we have found that

most inconsistencies can be explained by constraints imposed by a small range of

program text, as we pointed out in Sect. 3. So we strongly expect that the total

program size does not make much di�erence in the performance or the quality

of automated debugging.

6.1 Experiments

We applied the proposed technique to programs with one mutation in variable

occurrences. We systematically generated near-misses (each with one wrong oc-

currence of a variable) of three programs (there are many ways of inserting a

bug) and examined how many of them became non-well-moded, whether au-

tomated correction reported an intended program, and how many alternatives

were reported. Table 1 shows the results. In the table, the column \total cases"

shows the numbers of cases examined, and the column \detected cases" shows

how many cases lead to non-well-moded programs. For non-well-moded pro-

grams, we examined how many well-moded alternatives were proposed by the

automated debugger by depth-1 search. In this experiment, we did not apply

Algorithm 2 to re�ne a minimal inconsistent subset.
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The programs we used are list concatenation (append), the generator of a

Fibonacci sequence, and quicksort. We used the de�nitions of predicates only,

that is, we did not use the constraints that might be imposed by the caller of

these programs.

The row \mode only" indicates the results using mode constraints only, ex-

cept that when correcting errors we regarded singleton variables in clause bodies

as erroneous. In this experiment, minimal inconsistent subsets, when found, al-

ways included constraints imposed by the wrong symbol occurrence, and the

original, intended programs were always included in the sets of the alternatives

proposed by the algorithm.

Table 1. Single-error detection and correction

Program Analysis Total Detected Proposed alternatives

cases cases 1 2 3 4 5 6 7 �8

append mode only 57 33 16 4 1 0 5 4 2 1

new variable 13 11 7 0 0 1 1 2 0 0

mode & type 57 44 19 3 2 5 1 3 0 0

fibonacci mode only 84 43 28 7 0 0 0 2 3 3

new variable 15 14 6 3 0 0 0 2 2 1

mode & type 84 57 34 2 0 2 2 3 0 0

quicksort mode only 245 148 84 33 2 3 1 8 7 10

new variable 45 43 24 2 0 3 2 4 3 5

mode & type 245 189 93 33 5 9 0 5 2 1

A bug due to a wrong variable occurrence often results from misspelling

(say the confusion of YS and Ys), in which case the original variable is likely to

be replaced by a variable not occurring elsewhere in the clause. The row \new

variable" shows the statistics of this case, which tells most errors were detected

by mode analysis.

The row \mode & type" shows the improvement obtained by using types as

well. The column \detected cases" shows that some of the well-moded erroneous

programs were newly detected as non-well-typed. Note that the experiments

did not consider the automated correction of well-moded but non-well-typed

programs. For fibonacci and quicksort, we assumed that integers and list

constructors belonged to di�erent types. For append, we employed a stronger

notion of types and assumed that the type of the elements of a list could not be

identical to the type of the list itself.

The results show that the use of types was e�ective in reducing the number

of alternatives. More than half of non-well-moded near-misses were uniquely

restored to the original program. Thus, programmers can bene�t much from the

support of constraint-based static analysis by writing programs in a well-moded

and well-typed manner.
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6.2 Example 1 | Append

As an example included in the above experiment, we discuss an append program

with a single error. This example is simple and yet instructive.

R

1

: append([], Y,Z ):- true | Y=

1

Z.

R

2

: append([A|Y],Y,Z0):- true | Z0=

2

[A|Z], append(X,Y,Z).

(The head should have been append([A|X],Y,Z0))

Algorithm 1 computes the following minimal inconsistent subset of mode

constraints:

Mode constraint Rule Source symbol

(a) m=happend; 1ih.; 2i = IN (HV) Y in R

2

(b) m=happend; 1i = OUT (BV) X in R

2

This tells that we should suspect the variables X and Y in Clause R

2

. The

search �rst tries to rewrite one of the occurrences of these variables (iterative-

deepening), and �nds six well-moded alternatives:

(1) R

2

: append([A|X],Y,Z0):- true | Z0=

2

[A|Z], append(X,Y,Z).

(2) R

2

: append([A|Y],X,Z0):- true | Z0=

2

[A|Z], append(X,Y,Z).

(3) R

2

: append([A|Y],Y,Z0):- true | Z0=

2

[A|Z], append(Y,Y,Z).

(4) R

2

: append([A|Y],Y,Z0):- true | Z0=

2

[A|Z], append(Z0,Y,Z).

(5) R

2

: append([A|Y],Y,Z0):- true | Z0=

2

[A|Z], append(A,Y,Z).

(6) R

2

: append([A|Y],Y,Z0):- true | Z0=

2

[A|Z], append(Z,Y,Z).

Types do not help much in this example, though Alternative (5) can be elimi-

nated by an implicit type assumption described in Sect. 6.1 that list constructors

and the elements of the list cannot occupy the same path. Alternatives (3), (4),

(5) and (6) are programs that cause reduction failure for most input data, and

can be regarded as less plausible solutions because of the two occurrences of Y

in the clause heads that impose stronger constraints than intended.

What are Alternatives (1) and (2)? Alternative (1) is the intended program,

and Alternative (2) is a program that merges two input lists by taking their ele-

ments alternately. It's not `append', but is a quite meaningful program compared

with the other alternatives!

In this example, Algorithm 2, if applied, will detect Constraint (b) as the

unique result of Policy 1. This means that there must be some problems with

the variable X, which in turn means that X must either be removed or occur more

than once. Search of well-moded programs �nds the same number of alternatives,

but the search space is reduced because we do not have to consider the rewriting

between Y and variables other than X.

6.3 Example 2 | Quicksort

Next, we consider a quicksort program with two errors.
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1: R

1

: quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).

2: R

2

: qsort([], Ys0,Ys ):- true | Ys=

1

Ys0.

3: R

3

: qsort([X|Xs],Ys0,Ys3):- true |

4: part(X,Xs,S,L), qsort(S,Ys0,Ys1),

5: Ys2=

2

[X|Ys1], qsort(L,Ys2,Ys3).

(the uni�cation should have been Ys1=

2

[X|Ys2])

Algorithm 1 returns the following minimal inconsistent subset:

Mode constraint Rule Source symbol

(a) m(hqsort; 3i) = in (BF) \[]" in R

1

(b) m=h=

1

; 1i = m=hqsort; 3i (BV) Ys in R

2

(c) m=h=

1

; 2i = m=h=

1

; 1i (BU) =

1

in R

2

(d) m=hqsort; 2i = m=h=

1

; 2i (BV) Ys0 in R

2

(e) m(h=

2

; 2i) = in (BF) \." in R

3

(f) m=h=

2

; 2i = m=h=

2

; 1i (BU) =

2

in R

3

(g) m=h=

2

; 1i = m=hqsort; 2i (BV) Ys2 in R

3

This subset is inconsistent because two inconsistent constraints can be de-

rived from it:

m(hqsort; 2i) = out , by (a), (b), (c) and (d),

m(hqsort; 2i) = in, by (e), (f) and (g).

It is worth noting that this example is rather di�cult|the minimal subset is

rather large and Algorithm 2 does not �nd an alternative minimal subset. That

is, there is no redundancy of mode constraints in the formation of the di�erence

list representing the result.

Thus we cannot infer the correct mode of the path hqsort; 2i and other paths,

and automated debugging should consider both of the possibilities, m(hqsort;

2i) = in and m(hqsort; 2i) = out .

We consider the correction of both constants and variables here. It turns out

that all depth-1 corrections are non-well-moded. There are six depth-2 correc-

tions that are well-moded:

(1) Line 1: quicksort(Xs,Ys):- true | qsort(Xs,Zs,Zs).

(2) Line 1: quicksort(Xs,Ys):- true | qsort(Zs,Ys,Zs).

(3) Line 1: quicksort(Xs,Ys):- true | qsort(Xs,c,Ys).

(4) Line 1: quicksort(Xs,Ys):- true | qsort(c,Ys,Xs).

(5) Line 5: Ys2=

2

[X|Ys2],qsort(L,Ys1,Ys3).

(6) Line 5: Ys1=

2

[X|Ys2],qsort(L,Ys2,Ys3).

Here, c is some constant.

Typing doesn't help much for this example. The assumption that integers

and list constructors should not occupy the same path does not exclude any of

the above alternatives.

However, usage information will help. Suppose we know that quicksort is

used as m(hquicksort; 1i) = in and m(hquicksort; 2i) = out . This excludes
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Alternatives (1), (2) and (4). We can also exclude Alternative (5) by static

occur-check (Ys2 occurs on both sides of uni�cation).

Of the remaining, Alternative (6) is the intended program that sorts items

in ascending order. It is interesting to see that Alternative (3) is a program for

sorting items in descending order by choosing `[]', the simplest element of the list

type, as the constant c. This is not an intended program, but is a reasonable and

approximately correct alternative which should not be rejected in the absence

of program speci�cation.

7 Related Work

Most previous work on the mode analysis of (concurrent) logic languages was

based on abstract interpretation, and focused mainly on the reasoning of program

properties assuming that the programs were correct. In contrast, constraint-

based mode analysis can be used for diagnosis as well as optimization by assum-

ing that correct programs are well-moded.

Analysis of malfunctioning systems based on their intended logical speci�-

cation has been studied in the �eld of arti�cial intelligence [4] and known as

model-based diagnosis. Model-based diagnosis has similarities with our work in

the ability of searching minimal explanations and multiple faults. However, the

purpose of model-based diagnosis is to analyze the di�erences between intended

and observed behaviors. Our mode system does not require that the intended

behavior of a program be given as mode declarations, and still locates bugs quite

well.

Wand proposed an algorithm for diagnosing non-well-typed functional pro-

grams [12]. His approach was to extend the uni�cation algorithm for type re-

construction to record which symbol occurrence imposed which constraint. In

contrast, our framework is built outside any underlying framework of constraint

solving. We need not modify the constraint-solving algorithm but just call it. Be-

sides its generality, our approach has an advantage that static analysis does not

incur any overhead for well-moded/typed programs. Furthermore, the diagnosis

guarantees the minimality of the explanation and often re�nes it further.

Comparison between Moded Flat GHC and other concurrent logic/constraint

languages with some notions of moding can be found in [2].

8 Conclusions and Future Work

We studied how constraint-based static analysis could be applied to the auto-

mated and systematic debugging of program errors in the absence of mode/type

declarations. We showed that, given a near-miss Moded Flat GHC program, our

technique could in many cases report a unique solution or a small number of

reasonable solutions that included the intended program.

If a programmer declares the mode and/or type of a program, that infor-

mation can be used as constraints that are considered correct. In general, such

constraints are useful in obtaining smaller minimal inconsistent subsets. How-

ever, our observation is that constraints implicitly imposed by the assumption of
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well-modedness (and well-typedness) is strong enough for automatic debugging

to be useful.

It is a subject of future work to extend our framework to the correction of

non-terminal program symbols (i.e., function and predicate symbols), mainly in

terms of search space. It is yet to see whether the proposed framework works

well for other programming paradigms such as typed functional languages and

procedural languages, but we would claim that the concurrent logic/constraint

programming paradigm bene�ts enormously from static mode/type systems.
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