#
i
i
S
%II
.
Q
Ol
LL
Tl
W

IEEE COMPUTER SOCIETY
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

IEEE
COMPUTER

SOCIETY @

CONCURRENT PROLOG COMPILER ON TOP OF PROLOG

Kazunori Ueda

C&C Systems Research Laboratories
NEC Corporation
4-1-1, Miyazaki, Miyamae-ku, Kawasaki 213 Japan

ABSTRACT

A Concurrent Prolog compiler, whose target language
is (sequential) Prolog, was implemented in Prolog. The ob-
ject program obtained can further be compiled into machine
codes by a Prolog compiler. Due to the similarity among
the source, target and implementation languages, the com-
piler and the runtime support were small and very rapidly
developed. Benchmark tests showed that (twice) compiled
Concurrent Prolog programs ran 2.7 to 4.4 times faster and
2.7 to 5.3 times slower than comparable Prolog programs
running on the interpreter and compiler, respectively, of the
same Prolog system. After these experiments, the Concurrent
Prolog compiler was modified to obtain a compiler of the new
parallel logic programming language, GHC (Guarded Horn
Clauses), and almost the same efficiency was achieved. These
compilers will serve for practice of parallel logic programming.

1 INTRODUCTION

Since Shapiro proposed Concurrent Prolog and its
interpreter , that interpreter had been used for the practice
of parallel logic programming around us. Although the inter-
preter, written in Prolog, was concise and useful for experi-
ments of small programs, the slowdown from the bare Prolog
system on which the interpreter ran amounted to two orders
of magnitude.

Therefore, we decided to develop a Concurrent Prolog
compiler. Writing a compiler is important, because in order
to demonstrate the viability of the language, it is necessary to
provide a programming environment in which one can write
and test parallel logic programs of considerable size.

We chose (sequential) Prolog for the target and the
description language for the following reasons.

(1) A Prolog program can be compiled into efficient machine
codes ™.

(2) Similarity among the source, target, and description lan-
guages enables rapid development.

(3) We can get a portable implementation.

fa

CH2205-3/85/0000/0119$01.00 © 1985 IEEE

and

19

Takashi Chikayama

ICOT Research Center
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108 Japan

(4) The laborious work.of writing system predicates is greatly
reduced by interfacing between Concurrent Prolog and
Prolog.

We omit the syntax and the semantics of Concurrent
Prolog here, which will be found in other documents’ &9

Our approach is similar to the approach taken by Clark
and Gregory when they wrote a PARLOG system on top
of Prolog4. However, it did not optimize unification, and
its performance on a compiler-based Prolog implementation
has not been reported. We tried to get maximum efficiency
on a compiler-based Prolog implementation, both to make
our compiler as practical as possible, and to know how fast
Concurrent Prolog programs run.

2 LINGUISTIC AND NON-LINGUISTIC FEATURES

Our implementation is basically a compiler version of the
original interpreter7. Some linguistic extensions we have made
are as follows:

(1) Metacall facilities® have been provided. The metacall
predicate ‘call’ has three arguments:

call(Goals, Result, Interrupt)

The argument Result gets the value ‘success’ upon suc-
cessful termination of Goals. When one instantiates
Interrupt to ‘stop’, the execution of Goals is aborted
and Result gets the value ‘stopped’.

(2) Input and output have been made applicative. There is
no ‘read’ or ‘write’ predicate a la Prolog. Instead, we
have ‘instream’ and ‘outstream’ predicates which take
one argument: a stream of request messages. Each request
message must be an appropriate Prolog I/O goal. For
example, if the goal

outstream([write(ok), nl | _1)

is executed, the message ‘ok’ followed by a newline is
output. In order to guarantee the uniqueness of the input
and output streams, neither ‘instream’ nor ‘outstream’
can be called twice.

(3) Mode declaration facilities similar to those of DEC-10
Prolog1 have been provided. The purpose is to get smaller
and more efficient codes.

On the other hand, we inherit the following linguistic and
non-linguistic restrictions from the original interpreter.

(1) Selection of candidate clauses is not done in a pseudo-
parallel manner. That is, until the head unification or
the execution of the guard of some clause has suspended
or failed, another clause is not tried.

(2) There is no distinction between suspension and failure. A
goal for which there are no immediately selectable clauses
may be re-scheduled, whether the cause is ultimate failure

or suspension.

&)

Goals which have suspended due to read-only annotations
do busy-waiting.

Although these might look true restrictions at a glance,
they actually cause little inconvenience to the execution of
useful Concurrent Prolog programs that currently exist:

(1) There have been few programs that require the (pseudo-)
parallel execution of two or more guards. Moreover, such
programs can be rewritten to programs that need no OR-
parallelism by using metacall and other facilities.

(2) Typical Concurrent Prolog programs, which perform their
tasks using stream communication, are written so that all

goals may succeed except for small ones in guards.

(3) By employing bounded depth-first scheduling (see below),
the number of suspensions can be made small compared

with the number of reductions in most applications.

Non-linguistic features include scheduling strategies and
trace facilities.

Since conjunctive goals must be solved in (pseudo-) paral-
lel, we have to decide how to schedule the goals. We decided
to use ome goal queue, and employed 100-bounded depth-
first scheduling as a default strategy. N-dounded depth-
first scheduling means that each newly-scheduled goal is n-
reducible. A newly-scheduled goal is a goal which was en-
queued at the rear and is now taken from the front. That a
goal G is n{> 0)-reducidle means that when G is reduced to
Bi, ..., Bm by the clause

H:-G1, ..., Gk | Bf, ..., Bm.

each Bi (i=1, ..., m) is (n-1)-reducible prior to the execution
of the other goals in the queue. That a goal G is O-reducible
means that G must be pushed at the rear of the goal queue
and the goal at the front must be scheduled.

It is easy to see that n-bounded depth-first scheduling
is so general as to interpolate breadth-first and depth-first
scheduling. Bounded depth-first scheduling has both the fair-
ness of breadth-first scheduling and the efficiency of depth-
first scheduling, as we will see later.

120

The bound value can be specified at run time. When
finite-bounded depth-first scheduling is unnecessary, one can
generate a simpler code that uses depth-first scheduling and
will gain more efficiency.

Execution trace is enabled by compiling a source program
with a ‘trace’ option.

3 COMPILATION TECHNIQUE

A general advantage of compiler approach is that we
can statically determine parts of what we must determine at
run time in interpreter approach. In the case of Concurrent
Prolog, such parts include scheduling and unification. These
two aspects are discussed in the following.

3.1 Scheduling

Our compiler has inherited the following notions from
Shapiro’s original interpreter:

(1) a queue (represented as a difference list) of goals to be
solved

(2) a flag showing whether computation may deadlock or not

(3) a cycle marker for detecting termination and deadlock of
computation.

However, our compiler has not inherited a scheduler predi-
cate. The compiler generates one Prolog predicate (object
code) for each Concurrent Prolog predicate, and when such
a Prolog predicate is called, it is given as arguments a goal
queue, which will be called a continuation hereafter. The
called predicate must perform a scheduling task by itself,
which consists of continuation management and the call of
another (Prolog) goal. This goal is either the first goal in the
given continuation or a goal provided by the predicate itself.
In the former case, we must pop the first goal, give it the rest
of the continuation and call it. In the latter case, the given
continuation must be passed to the goal. A Prolog predicate
generated by the compiler never fails unless it calls a nonex-
istent predicate.

Each Prolog predicate generated by the compiler consists
of the following three parts:

(1) (optional) prelude part for tracing and clause indexing,

(2) clause-by-clause part (one Prolog clause for each Concur-
rent Prolog clause) for doing reductions, and

(3) postlude part for re-scheduling itself in case all clauses
fail to commit or the bound value reaches zero.

Figure 1(a) and 1(b) show the source and the object pro-
grams of quicksort. Note that candidate clauses are tested
sequentially in our implementation.

Each compiled clause has five additional arguments:

(1) A counter maintaining the current bound value necessary
for bounded depth-first scheduling.

gsort ([Pivot|Xsl,Ys0,Ys2) :-

:-fastcode.

X YsO-Ys2: d-list
part(Xs?,Pivot,Small,Large),

gqsort(Small?,Ys0, [Pivot|Ys1]),
qsort{Large?,Ys1,kYs2) .

gsort([],Ys,Ys). % Ys-Ys: empty d-list

part({X!{Xs],Pivot,Small, [X|Large]) :- Pivot < X |
part(Xs?,Pivot,8mall,Large).

part([X!Xs], Pivot, [X|Small], Large) :- Pivot >= X |

part(Xs?, Pivot,Small,Large).

part(l1,-,[1. D).

(a) Concurrent Prolog source program

% Compiler option
:-public gsort/8.
:-mode qsort(?,?,?, +,?,-,+,+).

LI R]

gsort(Argt,Ys0,Ys2, Bold,H,T,Flag,BO) :-

ulist(Argl,Pivot,Xs),
Bold > 0, !,
Bnev is Bola-1i,
part(Xs?,Pivot,Small,Large,
Bnevw,
{$(gsort(small?,Ys0, {Pivot|Ys1],
Bnew,H1,T1,Flagl,BO),
H1,T1,Flagl).
$(qsort (Large?,Ys1,Ys2,
Bnew,H2,T2,Flag2,B0),
H2,T2,Flag2) % and 2nd gsort
% to the top of the contsnuation

% Argi={Pivot|Xs]
% Bound check
% Decrement bound

% Push 1st gqsort

! H,
T,nd,B0).

qsort(Argl,Ys0,Ys1, Bold,H,T,Flag,B0) :-

un1l(Argl), unity(Yso,Ys1), % YsO=Ys1, Argi=[]
Bold > 0, !, X Bound check
HE={$(Goal,H1,T,nd) |H1], % Pop the first goal, give
incore(Goal) . % appropriate continuation and
X deadlock flag, and schedule it

qsort (Argl,Arg2,Arg3,
Bold,
[$(Goal,H1,T1,Flag) |H1],
[$(qsort(Argl, Arg2,Arg3,
BO,H2,T2,Flag2,B0), X push gsort stself,
H2,T2,Flag2)[T1],
:- incore(Goal). % and call it

% Suspension processing

%X Pop the first goal,

Flag,BO)

:-public part/9.

:-mode part(?,?,?,?, +,?,-,+,4).

part(Argi,Pivot,Small,Arg4, Bold,H,T,Flag,BO) :-
ulist(Argl,Xt,Xs), % Arg1=[X1|Xs]
ulist(Arg4,X2,Large), % Arg4=[x2|Large]

unify(X1,X2), % X1=X2

Bold > O, % Bound check
cpvait(Pivot,Pivot_w), % Wait for Pivot
cpwait(X1,Xi_w), X and X1

Pivot_w < Xi_w, !, % and compare them
Bnew is Bold-1, % Decrement bound
part(Xs?,Pivot,Small,Large, Bnew,H,T,nd,BO).

part(Argl, Pivot,Arg3,Large, Bold,H.T.Flzg,BO) -
ulist(Argi,Xi,Xs), ulist(Arg3,X2,Small),
unify(X1,X2), Bold > O,
cpvait(Pivot,Pivot_w), cpwait(X1,Xi_w),
Pivot_w >= Xi_w, !, Bnew is Bold-1,
part(Xs?,Pivot,Small,Large, Bnew,H,T,nd,BO).

part(Argl,_,Arg3,Arg4, Bold,H,T,Flag,BO) :-
unil(Argl), unil(Arg3d), % Argt=[], Arg3=[1,
unil (Arg4), % Arga={]
Bold > O, !,
H={$(Goal,H1,T,nd) |[H1], incore(Goal).

part(Argl,Arg2, Arg3,Arg4,
Bold, [$(Goal,H1,T1,Flag)H1],
[$(part(Argl, Arg2,Arg3, Arg4,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2 yiT1],
Flag,BO) :- incore(Goal).

(b) Object program in DEC-10 Prolog

Fig. 1 Compiling Concurret Prolog into Prolog

(2), (3) The head and the tail of the difference list repre-
senting a continuation.

(4) A deadlock flag showing whether or not some goal has
been reduced since the last occurrence of the cycle marker.
This flag is used by the next cycle marker for deadlock
detection.

(5) The initial bound value given at run time.

Each element of a continuation has the following form.

$(Goal, Qh, Qt, Deadlock-flag)

Goal is a Prolog goal corresponding to some Concurrent
Prolog goal. When Goal is called, its additional arguments
must be given appropriate values. Qh, Qt, and Deadlock-flag
are ‘taps’ of Goal used for this purpose. That is, Qh, Qt, and
Deadlock-_flag have been unified with the second, the third,
and the fourth additional arguments of Goal, respectively.

A Concurrent Prolog clause

121

Head :- Guard | Body.

is transformed into a Prolog clause of the following form.

(receiving arguments) : -
(Head unification),
(bound check),
(executing Guard), !,
(decrementing bound),
(scheduling Body).

The ‘bound check’ and ‘decrementing bound’ parts are
not generated if depth-first scheduling is specified.

The last part, ‘scheduling Body’, does the following
things.

(1) When no body goals exist (i.e., Body is ‘true’), the first
goal in the continuation is called.

(2) When just one body goal exists, that goal is given the
same continuation that the current clause has received,
and it is called.

:- public *$END'/3.
*$END’ ([3,-.2)

% Succeeds if no goals remain

*$END’ ([$(Goal ,H1,T1,d) |H1]l, X Pop the first goal
[$(’SEND* (H2,T2,Dnd2), % and push itself
H2,T2,Dnd2)IT1],
% If deadlock flag s ‘nd’
X then call the popped goal

nd) :-
incore(Goal) .

Fig. 2 System predicate for the detecion
of deadlock and termination

:- mode ulist(?,-,-).

:- public ulist/3.
ulist({HIT] ,H,T)
ulist(X?,H,T) :- nonvar(X), ulist(X,H,T).

:- public unil/1. 1~ mode unil(?).
unil([}) - ¢.
unil(X?) :- nonvar(X), unil(X).

:- public cpwait/2. :- mode cpwait(?,?).
cpwait(X?,Y) :- !, nonvar(X), cpwait(X,Y).
% Here, 1st arg is @ non-variable.

cpvailt (X, X).

Fig. 3 Some system predicates for
unification and synchronization

(3) When two or more body goals exist, the second and the
subsequent goals are put at the front of the continuation,
and the first goal is called with the modified continuation.

Upon such a call, the fourth additional argument, the dead-
lock flag, is set to ‘nd’ (for ‘no deadlock’).

Of the above three cases, only the first case needs an
indirect call; in the other cases, at least one of the body goals
is directly called as long as the current bound value is not
zero.

Avoiding indirect calls is important for efficiency. A
major application of Concurrent Prolog is to describe a dis-
tributed system in which constituent processes, represented
as conjunctive goals, communicate with one another using
shared variables as strea.ms1 . In this case, most of the reduc-
tions use tail-recursive clauses having just one body goal.
Our compiler translates such clauses into tail-recursive Prolog
clauses. Since advanced Prolog implementations realize tail-
recursion optimization which avoids the growth of the local
stack and re-utilizes information left on the stack, a tail-
recursive Concurrent Prolog program is expected to have good
properties. Assume that 100-bounded depth-first scheduling
is used and that <€ 1% of reductions use clauses with no
bodies. Then, 99% of predicate calls are done by efficient
direct scheduling.

The clause for handling suspension is included in the
‘postlude’ part of each predicate. It pushes the current goal
at the rear of the given continuation, and calls its first goal.

Deadlock and termination are detected by a cycle marker:
a call to the system predicate *$END’ (Figure 2). This predi-
cate receives a continuation and a deadlock flag, and simply

122

terminates if the given continuation is empty. If the continua-
tion is not empty and the deadlock flag has been set to ‘nd’
since the last call of *$END’, it enqueues itself, resets the
deadlock flag to ‘d’ (for ‘deadlock’), and calls the first goal
in the continuation. Otherwise, the predicate *$END’ fails.
The goal ‘$END’ is given as the initial continuation of a goal .
which is input from the terminal.

The object code of a clause having metacall facilities
has to do more complex continuation processing. The goals
to be solved under metacall facilities form a private queue
with a special cycle marker, *$CALLEND’, pushed at the rear.
Goals in the private queue are initiated by its manager, a
*$CALL’ goal, which is entered in a (more) global queue.
‘When ‘$CALL’ is called, the current continuation is not passed
to the *$CALL’ itself, but to the *$CALLEND* goal at the rear
of the private queue maintained by the *$CALL’ goal. Then
‘$CALL’ examines whether a stop message has arrived, and
if not, calls the first goal of its private queue, which starts
the execution of the private queue. When *$CALLEND’ is
called after a while, it pushes the ‘$CALL" goal managing
the new, reduced private queue at the rear of the global con-
tinuation, and calls the first goal in the continuation. If the
goals to be solved under metacall facilities are uninstantiated,
a different goal, *$COMPCALL’, is used instead of *$CALL’. A
*$COMPCALL" goal waits until the goals are instantiated, forms
a private queue, and then does the same thing as *$CALL’
does.

3.2 Uniflcation

Our implementation employs a Prolog functor ‘?’ to
represent read-only annotations. To realize the suspension
mechanism of Concurrent Prolog, the unification procedure
must be defined as a Prolog predicate. However, because one
of the two terms to be unified is specified as a head argument,
specialized unification procedures can be used depending on
the form of the argument. The use of specialized unification
procedures diminishes run-time overhead.

The code for unification is expanded at the beginning of
each clause body in the form of a sequence of goals. For
example, assume that one of the head arguments of some
Concurrent Prolog clause is a list [T1 | T2], where T1 and
T2 are some terms. The corresponding Prolog code first tries
to unify the goal argument with the term [CAR | CDR1, and
if successful, executes the goals for processing its CAR and CDR
according to the forms of T1 and T2, which may in turn have
been expanded. This idea is similar to the one employed in
the DEC-10 Prolog compilerla: The only difference is that our
compiler can expand a unification procedure to any level, as
Warren’s new Prolog machine architecture!* enables.

Note that some unification procedures cannot be ex-
panded: a general unification procedure must be used for a
variable which occurs more than once in a head (e.g., the
variable Ys in ‘gsort’ in Figure 1).

Figure 3 shows the definitions of some unification and
synchronization procedures used in the program in Figure
1. The ‘cpwait’ predicate is used for interfacing between
Concurrent Prolog and Prolog. Note that these system predi-
cates in Prolog fail upon suspension: Suspension processing
is done by the last clauses of the predicates in which those
system predicates are called.

Mode declaration facilities allow a user to declare one of
the following three modes for each predicate argument.

(1) Index mode (“+’): allows clause indexing if the underlying
Prolog implementation allows it. The object code of a
predicate having this mode has a two-stage structure: the
first stage for waiting for the arguments of this mode, and
the second stage for clause selection. This mode is useful
when there are lots of clauses.

(2) Normal mode (‘?’): specifies that the argument be
processed in the ordinary way.

(3) Output mode (*-’): declares that the goal argument is
always an uninstantiated non-read-only variable. For ar-
guments of the output mode, implicit head unification of
Prolog is used instead of explicit unification procedures.

Figure 4 shows how object codes are affected by a mode
declaration.

4 PERFORMANCE

Table 1 shows some benchmark results. As for the
Concurrent Prolog compiler, four timing data were ob-
tained for each program: with bounded depth-first/depth-
first scheduling and with/without mode declarations. The
benchmark programs were timed also on the original inter-
preter with breadth-first scheduling. Moreover, for each pro-
gram, a Prolog program having the same input-output rela-
tion was written and timed. The Prolog system we used is
DEC-10 Prolog on DEC2060.

Table 1 shows that our object codes ran 12 to 220 times as
fast as the original interpreter. Moreover, they ran 2.7 to 4.4
times as fast as the comparable Prolog programs processed
by the DEC-10 Prolog interpreter. They were, of course,
slower than the comparable Prolog programs processed by
the compiler, but the stowdown was 1/2.7 to 1/5.3, which we
think is quite reasonable.

The ‘append’ program ran at more than 11.5kRPS (kilo
Reductions Per Second: equivalent to kLIPS if there are no
guards).

The mode declaration was effective for all the benchmark
programs. The speedup was 199 to 84%. As for the
benchmark programs, the source of improvement is the decla-
ration of the output mode. The speedup brought by changing
bounded depth-first scheduling to depth-first scheduling was
27% or less. :

The third program that performs bounded-buffer com-

123

municationw was inefficient, because process switching took
place very often. We can see from Table 1 that we can make
this program 2.75 times faster only by changing the buffer
size to 10.

The column showing the number of suspensions indicates .
that the bounded depth-first scheduling provides good be-
havior (except for bounded buffer programs). The ill behavior
of the one-bounded buffer program is inevitable, because that
behavior is what the program has explicitly specified.

5 BRIEF HISTORY

The system explained above is the second version. The
first version realized head unification optimization, but all
scheduling tasks were done by a scheduler predicate which
managed the goal queue. Therefore, the first version can
be considered as a step from the original interpreter towards
the second version. Although less efficient, the first version
had an advantage that detailed trace information could be
more easily obtained. This reflects the fact that the degree of
compilation was smaller compared with the second version.

Before writing the second version, we made several mock-
ups of object codes for simple programs and tested them.
After determining the object code format, it did not take
much effort to complete the compiler.

6 FROM CONCURRENT PROLOG TO GHC

6.1 GHC—Guarded Horn Clauses

After the Concurrent Prolog compiler was developed,
some problems were found in the Concurrent Prolog lan-
guage rulesu, and another parallel logic programming lan-
guage called Guarded Horn Clauses (GHC) was proposedlz.

The syntax of GHC is almost the same as that of
Concurrent Prolog and PARLOG. A GHC program is a finite
set of guarded Horn clauses of the following form

H :- G1, .. Gm | B1, ..., Bn. (m>0, n>0)

where H, Gi’s, and Bi’s are atomic formulas. A goal clause
has the following form:

:~ Bt, ..., Bn.

The semantics of GHC is different from that of Concurrent
Prolog in the following point. In Concurrent Prolog, the result
of any unification

e which is invoked directly or indirectly in the head or the
guard of a clause (hereafter we call this part a passive part)
and

e which binds a variable in the caller of that clause with a
non-variable term or another variable in that caller

append ([AIX],Y, [AIZ])
append ([1,Y.Y).

:- mode append2(+,?,-).

append2([AlIX],Y, [AlZ])
append2([],Y,Y).

:~ append(X,Y,Z).

:- append2(X,Y,Z).

(a) Concurrent Prolog source program

:=fastcode.

:-public append/8.

:-mode append(?,?,?, +,?,—,+,+).

append (Argl,Y, Arg3, Bold,H,T,Flag,BO) :-
ulist(Argl,A1,X), ulist(Arg3,A2,z),
unify(A1,A2), %X Head unification
Bold>0, !, %X Bound check
Bnew 1s Bold-1, % and updating
append(X,Y,Z, Bnew,H,T,nd,BO). X Tasl recursion

append(Argl,Y1,Y2, Bold,H,T,Flag,B0) :-

unil(Argl), unify(Y1,Y2), X Head unification
Bold>0, !, %X Bound check
H=[$(Goal,H1,T,nd) |H1], % Pop the nezt goal
incore(Goal) . % and call st

append (Argl,Arg2,Arg3,
Bold, [$(Goal,H1i,T1,Flag)|H1],
[$ (append(Argl , Arg2,Arg3, BO,H2,72,Flag2,B0),
H2,T2,Flag2)IT1]

Flag,BO) :- incore(Goal). X Suspension processing

:-public append2/8.
:-mode append2(?,?,?, +,?,-,+,4).

append2(Argl,Arg2,Arg3, Bold,H,T,Flag,BO) :-

cpwait(Argl, Argi_vw), % Wait for Argl

Bold > O, !, % Bound check

*$33append2’ (Argl_w,Arg2,Arg3,

Bold,H,T,Flag,B0). X Clause selection

append2(Argl,Arg2,Arg3,

Bold, [$(Goal,H1,T1,Flag)|H1],

[$ (appena2(Argi, Arg2,Arg3, BO,H2,T2,Flag2,B0),

H2,T2,Flag2)IT1],

% Suspension processing

% Unification for Argl
% and Arg3 is embedded
Bold,H,T,Flag,BO) :~- 1,
Bnev is Bold-1, % Bound updating
append2(X,Y,Z, Bnew,H,T,nd,B0). ¥ Tail recursion
*$$8appena2-([1,Y,Y, % Unification for Argl
% and Arg3 is embedded
Bold,H,T,Flag,BO) :- !,
H=[$(Goal,H1,T,nd) |H1], % Pop the nezt goal
incore(Goal). X and call it
*$8%append2” (Arg1,Arg2,Arg3,
Bold, [$(Goal,H1,T1,Flag)|H1],
[$(’$33append2’ (Argt,Arg2,Arg3,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2 YiTl,
:~ incore(Goal) . X Suspension processing

Flag,B0) :- incore(Goal).
*8append2°’ ([AIX],Y, [AlZ],

Flag,BO)

{b) Object program in DEC-10 Prolog

Fig. 4 The effect of mode declaration

Table 1. Concurrent Prolog Benchmark on DEC2060

Program Proces- Reduc- Suspen- Time(*2)/RPS(*3)

sing tions sions (compiler (compiler (interpreter)

(*1) without mode) with mode)
List concatena- B 502 0 — — 2313 / 217
tion (Append) BD100 502 0 887/ 5660 54.8/ 9160 —
(50040 D 502 0 79.0/ 6350 43.0/11700 —
elements) P 15.8/31800 11.9/42200 188 / 2670
Stream merge B 202 0 — — 1005 / 201
(1004-100 BD100 202 0 42.9/ 4710 28.7/ 7040 —
elements) D 202 0 38.4/ 5260 23.6/ 8560 —_

P 8.3/24300 8.0/25300 73.7/ 2740
Bounded buffer B 204 0 — — 1473 / 138
(size=1)(*4) BD100 204 200 147 / 1390 121 / 1690 —

D 204 200 143 / 1430 119 / 1710 —
Bounded buffer B 204 0 — — 1470 / 139
(size=10)(*4) BD100 204 20 60.2/ 3390 47.6/ 4290 -

D 204 20 56.3/ 3620 43.3/ 4710 —
Primes B 2778 8445 — — 80521 / 35
(2 to 300) BD100 2778 73 966 / 2880 769 / 3610 —
(without output) D 2778 0 886/ 3140 689 / 4030 —

/ P 216 /12900 188 /14800 2069 / 936
Quicksort, B 378 2225 — — 20233/ 19
(50 elements) BD100 378 0 125 / 3020 96.5/ 3920 —

- D 378 0 119 / 3180 91.3/ 4140 —
P 21.3/17700 17.3/21800 246 / 1540

*1 B—breadth-first scheduling; BD100—bounded depth-first scheduling (bound=100);
D—depth-first scheduling; P—Prolog-10 compiler (with ‘fastcode’ option) and interpreter.

*2 In milliseconds. Overhead for timing has been excluded:

*3 RPS—number of Reductions Per Second. An RPS value does not count reductions in
guards. RPS values of Prolog programs were calculated using the number of reductions of

the corresponding Concurrent Prolog programs.

*4 A Prolog counterpart does not exist.

124

gsort([Pivot|Xs], YsO, Ys2) :- true |
part(Xs, Pivot, Small, Large),
gsort(Small, YsO, [Pivot|Ysi]),
gsort(Large, Ysi, Ys2).

gsort([], Ys0, Ys1) :- true | YsO = Ys1.

part([X|Xs], Pivot, Small, Large) :- Pivot < X |

Large = [XIL1], part(Xs, Pivot, Small, L1).

part([X|[Xsl, Pivot, Small, Large) :- Pivot >= X |
Small = [X|S1], part(Xs, Pivot, S1, Large).

part([], - Small, Large)
Small = [], Large = [].

:- true |

(a) GHC source program

:~fastcode.
:-public gsort/8.
:-mode gsort(?,?,?, +,?,-,+,4).
qsort(Argi,Ys0,Ys2, Bold,H,T,Flag,BO) :-
nonvar (Argi), ulist(Argi,Pivot,Xs),
Bold > 0, !, Bnev is Bold-1,
part(Xs,Pivot,Small,Large,
Bnew,
[$(gsort(Small,Yso0, [Pivot|Ys1],
Bnew,H1,T1,Flagl,BO),
H1,T1,Flagl),
$(gsort(Large,Ys1,Ys2,
Bnew,H2,T2,Flag2,B0),
H2,T2,Flag2)
| H],
T, nd, BO).

gsort(Argi,Ys0,Ysi, Bold,H,T,Flag,BO) :-
nonvar (Arg1), unil(Argl),
Bold > O,
YsO = Ys1,!,
H = [$(Goal,H1,T,nd)|H1], incore{Goal).

qsort(Argl, Arg2,Arg3,
Bold, [$(Goal,H1,Ti,Flag) | H1],
[$(gsort(Argl,Arg2,Arg3, -
‘BO,H2,T2,Flag2,B0),
H2,T2,Flag2) | 111,

Flag,BO) :- incore(Goal).

:~public part/9.
:-mode part(?,?,?,?, +,?,-,+,4).
part(Argl, Pivot,Small,Large, Bold,H,T,Flag,BO)
nonvar (Argl), ulist(Argl.X.Xs),
Bold > O,
nonvar (Pivot), nonvar(X), Pivot < X,
Large = [XIL1], !,
Bnew is Bold-1,
part(Xs,Pivot,Small,L1, Bnew,H,T,nd,BO).

part(Argi, Pivot,Small,Large, Bold, H,T, Flag,BO)
nonvar (Arg1), ulist(Argi,X,Xs),
Bold > O,
nonvar (Pivot), nonvar(X), Pirot >= X,
Small = [Xis1], !,
Bnew is Bold-1,
part(Xs,Pivot,S1,Large, Bnew,H,T,nd,BO).

part(Argi,_, Small,Large, Bold,H,T,H,I) :-
nonvar (Argl), unil(Argi),
Bold > O,
Small = [}, Large = [1, !,
H = [$(Goal,H1,T,nd) | H1i], incore(Goal).

part(Argti Arg2,Arg3,Arg4,
Bold, [$(Goal,H1,T1,Flag) | H1],
[$(part (Argl,Arg2,Arg3,ATg4,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2) | T1],
Flag,BO) :- incore(Goal).

{(b) Object program in DEC-10 Prolog

:- public unil/1.
unil([1).

:- public ulist/3.
ulist([HIT], H, T).

;- mode unil(+).

:- mode ulist(+,-,-).

(c) System predicates for unification

Fig. 5 Compiling GHC into Prolog

must be recorded locally until commitment”*. In GHC, any
unification which makes such bindings simply suspends in-
stead. This modified rule provides GHC with a synchroniza-
tion primitive: Read-only annotation is no longer necessary.

The major difference of GHC from PARLOG and Kernel
PARLOG? is that GHC has neither modes or specialized
unifications at the lan%uage level. GHC shares the suspension
mechanism with Qute".

Figure 5(a) shows a quicksort program—GHC counter-
part of the program in Figure 1(a). Note that unification for
exporting bindings through head arguments must be specified

* Shapiro’s interpreter and our compiler do not maintain local
environments: all bindings are global. However, since these
systems perform clause selection as an indivisible operation
using Prolog’s backtracking, no problems arise.

in the body of a clanuse. Explicit unification (‘=’) is heavily
used for this purpose in a GHC program.

8.2 GHC Compiler

Due to the similarity of Concurrent Prolog and GHC, all
we had to do to develop a GHC system was to modify the
code generator for passive parts and some runtime support
routines including unification.

The current GHC system does not allow user-defined goals
in a guard, since this restriction makes generation of codes
for suspension easier. Suspension of unification invoked in
the passive part of a guarded Horn clause is realized by the
‘nonvar’ and ‘==’ goals expanded in Prolog codes. The goal
‘nonvar (X)’ precedes the codes for unification which may bind
X occurring in a head with a non-variable. The goal ‘X1==Xx2’
is generated for two GHC variables X1 and X2 which both

occur in a head and are unified in a guard. The predicate
‘=="ig also used for the unification operation involved in the
multiple occurrences of a variable in a head. Figure 5(b) shows
the object code of the GHC program shown in Figure 5(a).
Figure 5(c) shows the unification procedures used in Figure
5(b).

Compiled GHC programs ran almost as fast as the com-
parable Concurrent Prolog programs.

There are two approaches to allowing user-defined goals
in a guard: static approach and dynamic approach. In static
approach, one must analyze all user-defined goals in guards
to determine whether each piece of unification which may
be performed can suspend or not. This approach is used
in PARLOG for compile-time mode analysiss. Dynamic ap-
proach is used in Miyazaki’s compiler5. This compiler makes
use of the fact that in DEC-10 Prolog, a newer global variable
has a larger address than older ones. This fact enables dis-
tinguishing non-writable variables (in a caller) from writable
ones (newly created in a passive part) by using a ‘threshold’
address.

7 CONCLUDING REMARKS

‘We have implemented fast, portable compilers of Concur-
rent Prolog and GHC on top of Prolog. If a Prolog system is
available, one can immediately get started with parallel logic
programming.

Both Concurrent Prolog and GHC systems are less than
800 lines long. It took only a few days to have the first working
version of the Concurrent Prolog compiler. Modifying the
Concurrent Prolog system to make the GHC system took
one and a half days. In other methods, it would take much
more efforts to make a system with the same efficiency. It is
well known that Prolog is a good tool for rapid prototyping
of another logic programming language, but all these facts
show that an efficient Prolog implementation is a good tool
also for getting an efficient implementation of another logic
programming language rapidly.

REFERENCES

(1] Bowen D. L. (ed.), DECsystem-10 PROLOG User’s
Manual, Dept. of Artificial Intelligence, Univ. of Edin-
burgh, 1983. ‘

[2] Clark, K. L., Gregory, S., “PARLOG: Parallel Program-
ming in Logic,” Research Report DOC 84/4, Dept. of
Computing, Imperial College, London, 1984.

[3] Clark K. L., Gregory S., “Notes on the Implementation
of PARLOG,” Research Report DOC 84/16, Dept. of
Computing, Imperial College, London, 1984.

[4] Gregory S., “How to Use PARLOG (C-Prolog version),”
Dept. of Computing, Imperial College, London, 1984.

[5] Miyazaki, T., GHC-to-Prolog compiler, unpublished pro-
gram, 1985.

126

[6] Sato, M. and Sakurai, T., “Qute: A Functional Lan-
guage Based on Unification,” Proc. Int. Conf. on Fifth
Generation Computer Systems 1984, Institute for New
Generation Computer Technology, pp. 157-165, 1984.

[7] Shapiro, E. Y., “A Subset of Concurrent Prolog and Its
Interpreter,” ICOT Technical Report TR-003, Institute
for New Generation Computer Technology, 1983.

{8] Shapiro, E. and Takeuchi, A., “Object Oriented Program-
ming in Concurrent Prolog,” New Generation Computing,
Vol. 1, No. 1, pp. 25-48, 1983.

[9] Shapiro E., “Systems Programming in Concurrent Pro-
log,” Conf. Record of the 11th Arnual ACM Symp. on
Principles of Programming Languages, pp. 93-105, 1984.

(10] Takeuchi, A., Furukawa K., “Interprocess Communication
in Concurrent Prolog,” Proc. Logic Programming Work-
shop 83, Universidade nova de Lisboa, 1983.

[11] Ueda, K., “Concurrent Prolog Re-Ex@ined,” ICOT
Tech. Report TR-102, Institute for New Generation
Computer Technology, 1985.

[12] Ueda, K., “Guarded Horn Clauses,” ICOT Tech. Report
TR-103, Institute for New Generation Computer Tech-
nology, 1985.

[13] Warren, D. H. D., “Implementing PROLOG—Compiling
Predicate Logic Programs,” Vol. 1-2, D. A. 1. Research
Report No. 39, Dept. of Artificial Intelligence, University
of Edinburgh, 1977.

[14] Warren, D. H. D., “An Abstract Prolog Instruction Set,”
Tech. Report 309, Artificial Intelligence Center, SRI
International, 1983.

