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Abstract. Concurrent logic/constraint programming is a simple and
elegant formalism of concurrency that can potentially address a lot of
important future applications including parallel, distributed, and intel-
ligent systems. Its basic concept has been extremely stable and has
allowed efficient implementations. However, its uniqueness makes this
paradigm rather difficult to appreciate. Many people consider concur-
rent logic/constraint programming to have rather little to do with the
rest of logic programming. There is certainly a fundamental difference
in the view of computation, but careful study of the differences will lead
to the understanding and the enhancing of the whole logic programming
paradigm by an analytic approach. As a model of concurrency, concur-
rent logic/constraint programming has its own challenges to share with
other formalisms of concurrency as well. They are: (1) a counterpart of
λ-calculus in the field of concurrency, (2) a common platform for various
non-sequential forms of computing, and (3) type systems that cover both
logical and physical aspects of computation.

1 Grand Challenges

It seems that concurrent logic programming and its generalization, concurrent
constraint programming, are subfields of logic programming that are quite dif-
ferent from the other subfields and hence can confuse people both inside and
outside the logic programming community.

While most subfields of logic programming are related to artificial intelligence
in some way or other—agents, learning, constraints, knowledge bases, automated
deduction, and so on—, concurrent logic/constraint programming is somewhat
special in the sense that its principal connection is to concurrency.

Concurrency is a ubiquitous phenomenon both inside and outside computer
systems, a phenomenon observed wherever there is more than one entity that
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may interact with each other. It is important for many reasons. Firstly, the phe-
nomenon is so ubiquitous that we need a good theoretical and practical frame-
work to deal with it. Secondly, it is concerned with the infrastructure of com-
puting (the environment in which computer systems and programs interact with
the rest of the world) as well as activities within computer systems, and as such
the framework scales up. In other words, it is concerned with computing in the
large, and accordingly, programming in the large. Thirdly, it encompasses vari-
ous important forms of non-sequential computing including parallel, distributed,
and mobile computing.

Bearing this in mind, I’d like to propose the Grand Challenges of concurrent
logic/constraint programming.1 The theoretical computer science community is
struggling to find killer applications, but I would claim that, as far as concur-
rency is concerned, there are at least three important scientific challenges besides
finding killer applications.

1. A “λ-calculus” in the field of concurrency. It is a real grand challenge to try
to have a model of concurrency and communication which is as stable as
λ-calculus for sequential computation.
We have had many proposals of models of concurrency: Petri Nets [36],
Actors [2], Communicating Sequential Processes [24], and many formalisms
named X-calculus, X being Communicating Systems [29], π [30], Action [31],
Join [17], Gamma [4], Ambient [6], and so on.
Concurrent constraint programming [38] is another important model of con-
currency, though, unfortunately, it is often overlooked in the concurrency
community. I proposed Guarded Horn Clauses (GHC) as a simple concur-
rent logic language, but in its first paper I also claimed:

“We hope the simplicity of GHC will make it suitable for a par-
allel computation model as well as a programming language. The
flexibility of GHC makes its efficient implementation difficult com-
pared with CSP-like languages. However, a flexible language could
be appropriately restricted in order to make simple programs run
efficiently. On the other hand, it would be very difficult to extend a
fast but inflexible language naturally.”

— [51] (1985)

One of the reasons why there are so many models is that there are various
useful patterns of interaction, some of which are useful for high-level con-
current programming and others rather primitive. Here, a natural question
arises as to whether we can find a lowest possible layer for modeling concur-
rency. I am not sure if people can agree upon a single common substrate,
but still believe that the effort to have a simple and primitive framework (or

1 Concurrent constraint programming can be viewed both as a generalization of con-
current logic programming and as a generalization of constraint logic programming.
This article will focus on the former view since the challenges of concurrent con-
straint programming from the latter view should be more or less similar to those of
constraint logic programming.
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a few of them) is very useful and will lead to higher respect of the field. Note
that everybody respects λ-calculus but it still has a number of variants and
some insist that it is not fully primitive (see, for example, [1]).
Needless to say, a stable calculus is a challenge but is not an ultimate goal.
What we need next is a high-level programming language fully supported by
a stable theory.

2. Common platform for non-conventional computing. The next challenge is to
see if a common platform—the pair of a high-level concurrent language and
an underlying theory—can be the base of various forms of non-conventional
computing such as
– parallel computing,
– distributed/network computing,
– real-time computing, and
– mobile computing.

Historically, they have been addressed by more or less different communities
and cultures, but all these areas share the following property: unlike con-
ventional sequential computing, programmers must be able to access and
control the physical aspects of computation. At the same time, program-
mers don’t want to be bothered by physical considerations in writing correct
programs and porting them to different computing environments. These two
requirements are referred to as awareness and transparency (of/from physi-
cal aspects).
The fact that all these areas have to do with physical aspects means that
they all have to do with concurrency. They all make sense in computing
environments participated in by more than one physical entity such as ‘sites’
and ‘devices’. This is why it is interesting to try to establish a novel unified
platform for these diverse forms of non-conventional symbolic computing.

3. Type systems and frameworks of analysis for both logical and physical prop-
erties. The third grand challenge is a framework of static analysis to be built
into concurrency frameworks. The first thing to be designed is a type system.
Here I use the term “type system” in its broadest sense; that is, to have a
type system means to:

(a) design the notion of types, where the notion can be anything that is
well-defined and useful either for programmers or for implementations,

(b) define typing rules that connect the world of program text and the world
of types, and

(c) establish basic (and desirable) properties of well-typed programs such as
subject reduction and strong normalization.

So a type does not necessarily represent a set of possible values a syntac-
tic construct can denote in the standard semantics; for instance, a mode
(directionality of information flow) is thought of as a type in a broad sense.
As we know, types play extremely important roles in programming languages
and calculi. The fundamental difference between types and other formalisms
of program analysis (such as abstract interpretation) is that, although well-
typedness imposes certain constraints on allowable programs, the notion of
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types is exposed to programmers. Accordingly, types should be accessible to
programmers and should help them understand and debug their programs
better.
These features of type systems are expected to play key roles in concurrent
programming. A challenge here is to deal with physical as well as logical
properties of programs in a way accessible to programmers.

I believe addressing these scientific challenges is as essential as building killer
applications because, only with such endeavor, declarative languages and theory-
driven approach can find their raisons d’êtle.

2 Two Approaches to Addressing Novel Applications

It is natural to think that addressing novel applications requires a powerful pro-
gramming language with various features. A popular approach to making a logic
programming language more powerful is to generalize it or to integrate useful
features into it. Constraint logic programming, inductive logic programming,
higher-order logic programming, disjunctive logic programming, etc. are all such
generalizations. Some extensions are better thought of as integration rather than
generalization; examples are functional logic programming and multi-paradigm
extensions such as Oz [46].

However, there is a totally different approach to a more powerful language,
which I call an analytic approach. In an analytic approach, one tries to identify
smaller fragments of logic programs (or of extensions of logic programs) with
nice and useful properties that may lead to efficient implementation.

Note that what I mean by “powerful” here is not in terms of expressive
power. By identifying possibly important fragments of a general framework and
studying them carefully, one may able to establish new concepts with which one
can understand the whole framework in more depth and detail. Also, one may
find that some fragment allows far more efficient implementation. (A popular
example where simplicity is the source of efficiency is the RISC architecture.) One
may build programming tools that take advantage of the properties of fragments.
They are a source of power because it may open up new application areas that
could not be addressed by the general framework.

The above claim could be understood also from the following analogy: having
a notion of Turing machines does not necessarily mean that we don’t have to
study pushdown or finite-state automata. They have their values in their own
rights. Another example is the relationship between untyped and typed λ-calculi.
Yet another obvious example is the identification of Horn sentences from full
first-order formulae, without which the logic programming paradigm would not
exist today. Examples of smaller fragments of logic programming languages that
have been studied in depth are Datalog (no function symbols) and concurrent
logic languages (no search in exchange of reactiveness).

The analytic approach is useful also when one attempts to generalize or in-
tegrate features. Integration will succeed only after the features to be integrated
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have been well understood and the interface between them has been carefully de-
signed. A criterion of success is whether one can give clean semantics to the whole
integrated framework as well as to each component. If the components interact
only at the meta (or extralogical) level, the whole framework is considerably
more complicated (in terms of semantics) than their components, which means
the verification and manipulation of programs become considerably harder. This
issue will be discussed in the next section.

3 Logic Programming vs. Concurrent Logic Programming

Concurrent logic programming was born from the study of concurrent execu-
tion of logic programs. It turned out to enjoy a number of nice properties both
as a formalism and as a language for describing concurrency. In the logic pro-
gramming community, however, concurrent logic programming has always been
a source of controversy. Unfortunately, the controversy was by and large not very
technical and did not lead to deeper understanding of the paradigms.

A typical view of concurrent logic programming has been:

Concurrent LP = LP + committed choice

= LP− completeness

Although both the first and the second equations are not totally wrong, viewing
committed choice simply as losing completeness is too superficial.

Committed choice or don’t-care nondeterminism is an essential construct in
modeling reactive computing and has been studied in depth in the concurrency
community. It is essential because one must be able to model a process or an
agent that performs arbitration. (For instance, a receptionist will serve whoever
(s)he thinks comes first, rather than whoever comes first.) Semantically, it is
much more than just discarding all but one of possible execution branches. All
the subtleties lie in what events or information should be the basis of choice
operations; in other words, the subtleties lie in the semantics of guard rather
than the choice itself. The presence or absence of nondeterminism makes fun-
damental difference to the denotational semantics of concurrency (see [24] for
example). When I was designing Guarded Horn Clauses, I believed don’t-care
nondeterminism was so essential that it was a bad idea to retain both don’t-care
nondeterminism and don’t-know nondeterminism in a single model of computa-
tion.

Nevertheless, we also found in our experiences with concurrent logic lan-
guages that most of the predicates are deterministic and very few predicates
perform arbitration—even though they change the whole semantical framework.
Thus the aspect of arbitration is not to be overstated. A much more productive
view of concurrent logic programming will accordingly be:

Concurrent LP = LP + directionality of dataflow

= LP + embedded concurrency control
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This is more productive because it emphasizes the aspect of dataflow synchro-
nization, an important construct also in logic programming without committed
choice. Examples where dataflow synchronization plays important roles include
delaying, coroutining, sound negation-as-failure, and the Andorra principle [37].
Dataflow-centered view of the execution logic programs best captures the essence
of concurrent logic/constraint programs, as became clear from the ask + tell for-
mulation advocated by Saraswat [38].

Another reason why the above view is more productive is that it addresses
mode systems that prescribe the directionality of dataflow. Mode systems are
attracting more interest in various subfields of logic programming because

– it shares with type systems many good properties from which both program-
mers and implementations can benefit, and

– many (if not all) predicates we write have a single intended mode of use, and
there are a lot of situations where this fact can be exploited in interesting
ways.

For example, Mercury [47] takes full advantage of strong moding to yield very
efficient code.2 Inductive logic programming benefits from moding in reducing
search space [32]. Concurrent logic/constraint programming benefits enormously
from strong moding both in implementation and programming [61, 63, 13, 3], and
I strongly believe that

Moded Concurrent LP = ask + tell + strong moding

is one of the most flexible realistic models of concurrency.
It is vital to see that ordinary logic programming and concurrent logic pro-

gramming are targeted at different scopes. What logic programming is concerned
with include knowledge representation, reasoning, search, etc., while concurrent
logic programming aims at a simple programming and theoretical model of con-
currency and communication. Accordingly, concurrent logic languages should
aim at general-purpose algorithmic languages which can potentially act as coor-
dinators of more application-specific logic languages.

Since the conception of concurrent logic programming, how to reconcile two
essential features in parallel knowledge information systems, search and reactive-
ness, has been one of the most difficult problems. The two paradigms could be
integrated but should be done with utmost care. The solution adopted in PAR-
LOG [14] was to use all-solutions predicates (à la findall in Prolog) to interface
between the world of don’t-know nondeterminism and the world of don’t-care
nondeterminism. The key issue here is how to gather multiple solutions obtained
from different binding environments into a single data structure. Whether the
all-solutions construct can be given clean, declarative meaning and whether it
allows efficient implementation depend on the program and the goal for which

2 Note, however, that the mode system of Mercury is very different from the mode
system of Moded Flat GHC discussed in this paper; the former deals with the change
of instantiatedness, which is a temporal property, while the latter deals with polarity,
which is a non-temporal property [63].
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solutions are to be collected [33, 55]. Roughly speaking, the requirement has to do
with the proper treatment of logical variables. Existing all-solutions predicates
in Prolog involve the copying of solutions, exhibiting impedance mismatch.3

Moding seems to play an important role here; we conjecture that all-solutions
predicates can be given simple, object-level semantics if the program and the goal
are well-moded under an appropriate mode system similar to the mode system
for Moded Flat GHC [61].

Another example where moding played an important role in essentially the
same way is the First Order Compiler [41], a compiler from a class of full first-
order formulae into definite clauses.

The issue of clean interfacing arises in constraint logic programming systems
also. In realistic applications of constraint satisfaction, it is often crucial that a
constraint solver can run concurrently with its caller so that the latter be able to
observe and control the behavior of the former incrementally. However, language
constructs for doing so are yet to be refined.

4 An Application Domain: Parallel/Network
Programming

Where should concurrent logic/constraint programming languages find prom-
ising applications? I believe that the most important areas to address are parallel
and network applications for a number of reasons:

1. Even “modern” languages like Obliq and Java feature rather classical concur-
rency constructs such as monitors and explicit locking. In more traditional
languages like C or Fortran, parallel/network programming is achieved with
APIs such as MPI, Unix sockets, and POSIX threads. These constructs are
all low-level compared with synchronization based on dataflow and arbi-
tration based on choice, and programming with APIs seems to be a step
backwards from writing provably correct programs even though verification
is not impossible.

2. Parallel computing and distributed computing are considerably more difficult
than sequential computing. Good models and methodologies to build large
applications quickly are desperately called for.

3. These areas are becoming increasingly popular in a strong trend towards
large-scale global computing environments both for high-performance dis-

3 Oz features computation spaces (the pair of a local constraint store and a set of pro-
cesses working on the store) as first-class citizens, with which encapsulated search
can be programmed as higher-order combinators [45]. This approach is certainly
cleaner in that a set of solutions is represented using (procedures returning) com-
putation spaces instead of copied terms. In an analytic approach, however, we are
interested in identifying a class of programs and goals for which a set of solutions
can be represented without using higher-order constructs.
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tributed computing [16] and for virtual network communities such as Virtual
Places, Community Places and Matrix.4

4. These areas give us a good opportunity to demonstrate the power of small
and yet “usable” languages with an appropriate level of abstraction. It
seems essential to keep the languages simple enough—and much simpler
than Java—to be amenable to theoretical treatment and to make them as
easy to learn as possible. I anticipate that amenability to theoretical treat-
ment, if well exploited, will be of enormous practical importance in these
areas.

From a language point of view, the last point is the most challenging. Con-
sider writing secure network applications with mobile code. This involves various
requirements:

– Specification of physical locations (sites) where computation should take
place.

– Reasoning about resources, such as time, stack and heap, that the compu-
tation may consume. Without it, downloaded code might make a so-called
DoS (denial of service) attack by monopolizing computation resources.

– Security at various levels. Some of the high-level properties such as consis-
tency of communication protocols can be guaranteed by typing and moding.
Other high-level security issues may require more sophisticated analysis and
verification. Low-level security could partly be left to Java’s bytecode verifier
if we use Java or Java bytecode as a target language.

– Transmission of various entities across possibly heterogeneous platforms. In
addition to program code, linked data structures and symbols (usually given
unique IDs locally on each site) are the main points of consideration in
symbolic languages.

The requirements are so complicated and diverse that addressing them in
an ad hoc way would result in a theoretically intractable language. It is an
interesting and big challenge to obtain a language that allows and encourages
formal reasoning about physical and logical properties of programs.

It may be a good idea for declarative language communities to share a set
of (more concrete) challenges of the form “how can we program X in our for-
malisms?” to facilitate comparison between different paradigms. Instances of X

may be:

– dynamic data structures (e.g., cyclic graphs; most declarative languages just
ignore them, regrettably),

– live access counters of WWW pages,

– teleconferencing, and

– MUD (multi-user dungeon; text-based virtual reality).

4 Interestingly, the designers of Grid [16], Virtual Places, Community Places and Ma-
trix have all worked actively on concurrent logic/constraint programming.



Concurrent Logic/Constraint Programming: The Next 10 Years 9

5 Experiences with Guarded Horn Clauses and KL1

Although the progress has been admittedly slow, I am quite optimistic about
the future of concurrent logic/constraint programming. My optimism is based
on 15 years of our experiences with the paradigm since the initial stage of the
Japanese Fifth Generation Computer Systems (FGCS) project. Figures 1–2 show
the history of Guarded Horn Clauses (GHC) and KL1 as well as related events.
The role and the history of the kernel language in the FGCS project are discussed
in detail in my article in [44].

✎ ☞
– 1983 Concurrent Prolog [42] and initial version of PARLOG [14]
– 1983-84 Big controversy (inside ICOT) on LP vs. concurrent LP for parallel

knowledge information processing systems [44]
– 1985 First paper on GHC [51]
– 1985 GHC-to-Prolog compiler [52] used in our initial experiments
– 1985–86 GHC considered too general; subsetted to Flat GHC
– 1986 Prolog-to-GHC compiler performing exhaustive search [53]
– 1987 MRB (1-bit reference counting) scheme for Flat GHC [9]
– 1987 First parallel implementation of Flat GHC on Multi-PSI v1 (6 PEs) [25]
– 1987 ALPS [28] gave a logical interpretation of communication primitives
– 1987–1988 KL1 designed based on Flat GHC, the main extension being the

shoen construct [57]
– 1988 Parallel implementation of KL1 on Multi-PSI v2 (64 PEs) [34]
– 1988 Strand [15] (evolved later into PCN [7] and CC++ [8])
– 1988 PIMOS operating system [10]
– 1988 Unfold/fold transformation and transaction-based semantics [54]
– 1989 Concurrent Constraint Programming [38]
– 1989 Controversy on atomic vs. eventual tell (Kahn’s article in [44])
– 1989 MGTP (Model Generation Theorem Prover in KL1) project [19]

✍ ✌

Fig. 1. GHC, KL1, and related events (Part I)

5.1 GHC as the Weakest Fragment of Concurrent Constraint

Programming

After 13 years of research, heated discussions and programming experiences since
the proposal of GHC, it turned out that this simplest fragment of concurrent
constraint programming was surprisingly stable and versatile.

Let us see why it was so stable. GHC is thought of as the weakest Con-
current Constraint Language in the following senses: First, it features ask and
eventual tell (i.e., publication of constraints after committed choice) but not
atomic tell (publication upon committed choice). Second, its computation do-
main is a set of finite trees. Nevertheless, GHC as well as its ancestors featured
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✎ ☞
– 1989 Message-oriented implementation of Flat GHC [58]
– 1990 Mode systems for Flat GHC [58]
– 1990 Structural operational semantics for Flat GHC [59]
– 1990 Janus [39]
– 1991 Denotational semantics of CCP [40]
– 1991 AKL [26] (later evolved into Oz, Oz2, and Oz3)
– 1992 Parallel implementation of KL1 on PIM/m and PIM/p [48, 23]
– 1992 Various parallel applications written in KL1, including OS, biology, CAD,

legal reasoning, automated deduction, etc. [11, 22, 35]
– 1992 Message-oriented parallel implementation of Moded Flat GHC [60]
– 1992 KLIC (KL1-to-C compiler) designed [12]
– 1992 MGTP solved an open problem (IJCAI’93 award) [20]
– 1994 Proof system for CCP [5]
– 1994 Moded Flat GHC formulated in detail [61]
– 1994 ToonTalk, a visual CCP language [27]
– 1995 Constraint-based mode systems put into practice [63]
– 1996 klint, a mode analyzer for KL1 programs
– 1996 Strong moding applied to constraint-based error diagnosis [13]
– 1997 kima, a diagnoser of ill-moded programs
– 1997 KLIEG, a visual version of KL1 and its programming environment [50]
– 1997 Strong moding applied to constraint-based error correction [3]

✍ ✌

Fig. 2. GHC, KL1, and related events (Part II)

fundamental constructs for a concurrent programming language from the very
beginning:

– parallel composition,

– creation of local variables,

– nondeterministic (committed) choice,
– value passing, and

– data structures (trees, lists, etc.).

The last two points are in contrast with other models of concurrency such
as CCS and (theoretical) CSP that primarily focused on atomic events. GHC
was proposed primarily as a concurrent language, though it was intended to be
a model as well (Section 1).

Furthermore, GHC as well as its ancestors had the following features from
the beginning:

1. Reconfigurable process structures. Concurrent logic languages supported dy-
namic reconfiguration of interprocess communication channels and dynamic
creation of processes. Most mathematical models of concurrency, on the other
hand, did not feature reconfigurable process structures until π-calculus was
proposed in late 1980’s.



Concurrent Logic/Constraint Programming: The Next 10 Years 11

2. Object (process) identity. This is represented by logical variables (occurring
as the arguments of processes) through which processes interact with each
other. Although objects themselves are not first-class in GHC, the variables
identifying processes can be passed around to change the logical configura-
tion of processes. Hence the processes were effectively mobile exactly in the
sense of mobile processes in π-calculus.

3. Input/output completely within the basic framework. The input/output prim-
itives of “declarative” languages had generally been provided as marginal
constructs and in a quite unsatisfactory manner. I thought the design of
general-purpose languages should proceed in the opposite way by taking the
semantics of input/output constructs as a boundary condition of language
design. Concurrent logic programs are often thought of as less declarative
than logic programs, but real-life concurrent logic programs projected to
logic programs (by forgetting synchronization) are much more declarative
than real-life Prolog programs.

Later on, several important features were added:

1. KL1 [57] featured the notion of physical locations, though in a primitive form,
to allow programmers to describe load balancing of parallel computation.

2. The mode system [61] introduced the notion of (statically decidable) read/write
capabilities or polarities into each variable occurrence and each position of
(possibly nested) data structures. In well-moded programs, a write capabil-
ity can be passed around but cannot be copied or discarded, while a read
capability can be copied and discarded. Well-modedness can be established
by constraint-based mode analysis which is essentially a unification problem
over feature graphs.

3. Linearity analysis, which distinguishes between one-to-one and one-to-many
communication [64], enabled compile-time garbage collection and turned out
to play a key role in parallel/distributed symbolic computation. For instance,
parallel operations on an array in shared memory can be done without any
interference by splitting the array into pieces in-place, letting parallel pro-
cesses operate on its own piece in-place, and then merging the resulting
pieces in-place [62]. Both mode analysis and and linearity analysis support
resource-conscious programming by being sensitive to the number of occur-
rences of variables.

5.2 Logical Variables as Communication Channels

Most of the outstanding features of concurrent logic/constraint languages come
from the power and the flexibility of logical variables as communication channels.
Logical variables support:

– data- and demand-driven communication,
– messages with reply boxes,
– first-class channels (encoded as lists or difference lists),
– replicable read-only data, and
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– implicit redirection across sites.

It is surprising that all these features are supported by a single mechanism. This
uniformity gives tremendous benefits to theoretical foundations and program-
ming systems, since a single framework can cover all these features.

5.3 Evolution as Devolution

It is generally understood that concurrent logic programming evolved into con-
current constraint programming by ALPS’s logical interpretation of communi-
cation primitives [28] and Saraswat’s reformulation of concurrent logic program-
ming as a framework of concurrency [38]. However, I have an impression that
the role of concurrent constraint programming as a generalization of concur-
rent logic programming has been a bit different from the role of constraint logic
programming as a generalization of logic programming. While constraint logic
programming has found several useful domains and applications, the main con-
tribution of concurrent constraint programming has been in the understanding
of the essence of the framework and the promotion of the study of semantics. The
set of useful general-purpose constraint systems (other than obvious ones such
as finite trees, integers and floating-point numbers) for concurrent constraint
programming is yet to be identified.

Indeed, the history of the practice of concurrent logic programming could be
summarized as “evolution by devolution” [49]. As conjectured in [51] (quoted in
Section 1), GHC as the weakest fragment of concurrent constraint programming
(d)evolved first by disallowing nested guards (Flat GHC) and then by featuring
a mode system. Virtually all programs now written in KL1 and run by KLIC
[12] are well-moded, though KLIC currently does not support mode analysis. On
the other hand, there are only a few constructs added to KL1: shoen (a Japanese
word meaning ‘manor’) as a unit of observing and controlling computation, the
@node( ) construct for process migration, and priorities.

Strong moding has degenerated unification (a case of constraint solving) to
assignment to a variable, but has made GHC a much securer concurrent lan-
guage; that is, it guarantees that constraints to be published to a shared store
(binding environment) are always consistent with the current store. Linearity
analysis guarantees that some class of programs (including most sorting pro-
grams, for instance) can run without generating garbage. Both analyses are
useful not only for efficient implementation but also for the precise analysis of
computational cost, which is essential in real-time computing and network pro-
gramming with mobile code. In this way, degeneration may find new applications
which could not be addressed by more general languages.

Oz [46, 21] has taken a totally different approach from GHC. It has incor-
porated a number of new constructs such as ports (a primitive for many-to-one
communication), cells (containers of values that allow destructive update), com-
putation space (encapsulated store, somewhat affected by nested guards of full
GHC and KL1’s shoen), higher-order, etc., and has moved from fine-grained
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to coarse-grained concurrency. It still encompasses a concurrent constraint lan-
guage, but is now better viewed as a multi-paradigm language.

In contrast, I’d like to keep GHC a pure concurrent constraint language.
(Moded Flat) GHC is quite a small fragment but it is yet to be seen what addi-
tional constructs are really necessary to make pure concurrent logic/constraint
languages usable.

6 Some Failures and Problems

Although I’m optimistic about its future technically, concurrent logic/constraint
programming has experienced a number of non-technical problems.

1. Misleading names of the paradigms. Concurrent logic languages are primarily
concurrent programming languages though they retain the nice properties
of logic programming wherever possible, such as soundness of proof proce-
dures and declarative reading.5 Unfortunately, concurrency is so unpopular
in the logic programming community that concurrent logic programming
often sounds like nothing more than an incomplete variant of logic program-
ming. (An even worse name once used was committed-choice languages.)
Concurrent constraint programming (languages) sounds better in this re-
spect, but it has another problem. The conception of concurrent constraint
programming is often said to date from ALPS, but this often results in
the ignorance of its pre-history, the era of concurrent logic programming.
Concurrent logic languages are, by definition, (instances of) concurrent con-
straint languages.6

2. Community problem. Although concurrent constraint programming is an
elegant formalism of concurrency, it was born from logic programming, a
paradigm quite unpopular in the concurrency community and the commu-
nity of concurrent programming. So, this important paradigm can very easily
be forgotten by both the logic programming community and the communities
of concurrency theory and concurrent programming!

5 One may argue that whether a concurrent language retains nice properties of logic
programming is not very important, but this is not true. This criterion worked as a
strong guideline of language design and resulted in many desirable properties as a
concurrent language.

6 At an early stage, I had understood GHC computation in terms of the exchange of
bindings between processes rather than a restricted proof procedure:

“. . . it is quite natural to view a GHC program in terms of binding informa-
tion and the agents that observe and generate it.” “In general, a goal can be
viewed as a process that observes input bindings and generates output bind-
ings according to them. Observation and generation of bindings are the basis
of computation and communication in our model.”

— [56] (1986)
Of course, it was definitely after the proposal of concurrent constraint programming
that binding- (constraint-) centered view became popular and the study of semantics
made progress.
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3. Shortage of communication with neighboring communities. This is a very
general tendency and unfortunately applies to various communities related
to concurrency. There are many techniques independently invented in the
functional programming community, the (concurrent) object-oriented pro-
gramming community and the (concurrent) logic programming community.
Declarative arrays, frameworks of program analysis, scheduling of fine-grained
tasks, and distributed memory management are all such examples.
A bit more technical reason why concurrent logic/constraint programming
is still unpopular in the concurrency community at large may be that its
formulation looks rather indirect—popular and mundane idioms of concur-
rent programming such as objects, messages, and channels are all encoded
entities.

4. Few research groups. Except for research groups on semantics, there are only
two active (virtual) groups working on languages and implementation; one
is the group working on Oz and the other working on GHC/KL1. Many key
people who founded the field “graduated” too early before the paradigm
became well understood and ready to find interesting applications. However,
a good news is that most of them are working on the potential applications
of the paradigm discussed earlier in this article. This leaves us a challenge to
bridge the gap between what the paradigm offers and what the applications
require.

5. Textbooks. Good textbooks and tutorial materials are yet to be published.
There are some on concurrent logic programming, such as Shapiro’s survey
[43], but a tutorial introduction to the semantical foundations is still awaited.
It’s time to recast important concepts and results scattered over technical
papers and re-present them from the current perspective.

7 Conclusions

Concurrent logic/constraint programming has been a simple and extremely sta-
ble formalism of concurrency, and at the same time it has been a full-fledged
programming language. It is unique among many other proposals of concurrency
formalisms in that information, communication and synchronization are modeled
in terms of constraints, a general and mathematically well-supported framework.
It is unique also in that its minimal framework (with ask, eventual tell, parallel
composition, guarded choice and scoping) is almost ready for practical program-
ming. That is, there is little gap between theory (computational model) and
practice (programming language). The stability of the core concurrent constraint
programming with ask+eventual tell indicates that the logic programming com-
munity came up with something essential in early 1980’s and noticed it in full
in late 1980’s.

There seems to be a feeling that concurrent logic/constraint programming has
established an independent scientific discipline outside the logic programming
paradigm. There is certainly a fundamental difference in how computation is
viewed—one is on deduction while the other is on reactive agents. However, the
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fact that each paradigm features what the other does not have and the fact that
they still share a lot of technicalities at less fundamental levels strongly indicate
that they should benefit from each other. An interesting example of such bridging
can be found in Constraint Handling Rules [18], a concurrent constraint language
specifically designed for programming constraint systems.

Since concurrent constraint languages aim at general-purpose languages, they
can benefit from static analysis more strongly than logic programming languages
can. So I’d like to conclude this article by claiming that constraint-based static
analysis can make concurrent constraint programming a simple, powerful, and
safe language for

– parallel and high-performance computing,
– distributed and network computing, and
– real-time and mobile computing.

Its role in concurrent constraint programming is analogous to, but probably more
than, the role of type systems in λ-calculus.
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