
\)

-_._.- -- --- ---_._-----------

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1984

EFFICIENT STREAM/ARRAY PROCESSING
IN LOGIC PROGRAMMING LANGUAGES

317

Kazunori Ueda and Takashi Chikayama

C&:C Systems Research Laboratories
NEC Corporation

4-1-1, Miyazaki, Miyamae-ku, Kawasaki 213 Japan

ABSTRACT

The Concurrent Prolog predicate for merging n in­
put streams is investigated, and a compilation technique
tor getting its efficient code is presented. Using the. tech­
nique, data are transferred with a .delay independent of
n. Furthermore, it is shown that the addition and the
removal of an input stream can be done within an average
time of 0(1). The predicate for distributing data on an
input stream to fa output streams can also be. realized as
efficiently as n-ary merge. The compilation technique for
the distributt predicate can further be applied to the im­
plementation of mutable arrays thaf allow constant-time
accessing and updating. Although the efficiency stated
above could be achieved by a sOphisticated compiler, the
codes should be provided directly by the system to get rid
of the bulk ot source programs and the time required to
compile them.

1 INTRODUCTION

When we implement a large-scale distributed sys­
tem in a parallel logic programming language such as
Concurrent Prolog (Shapiro 1983) and PARLOG (Clark
and Gregory 1984), the performance of the system will
be influenced significantly by how efficiently streams as.
interprocess communication channels can be merged and
distributed. This paper deals with implementation tech­
niques of the predicates that merge many input streams
and those which distribute data on a single input stream
into multiple output streams.

The language we chose for the following discussions
is Concurrent Prolog. However, the results obtained are
applicable also to PARLOG. For readers unfamiliar with
Concurrent Prolog, an outline of Concurrent Prolog is
described in Appendix I.

This paper focuses on implementation on conventional
sequential computers. Of course, to demonstrate the
viability of Concurrent Prolog on parallel computers, the
scope of discussion cannot be limited to sequential com­
puters. However, even on a parallel architecture, it would
be very likely for each processor to deal with multiple
processes for the following reasons. First, the number
of processes a user can create should not be limited to
the number of processors available. Second, even if a lot
of processors are available, the best way to allocate two
processes which communicate intensively with each other

ICOT Research Center
Institute for New Generation Computer Technology

1-4-28, Mita, Minato-ku, Tokyo 108 Japan

and have little portions executable in parallel may well be
to allocate them on the same prace.ssor. In that event,
the techniques presented here will be directly applicable
to communication within each processor.

1.1 Importanee or StreamJ In Concurrent Prolog

Parallelism or coroutining in Concurrent Prolog is
realized by expres.sing individual processes via predicate
calls or goals which are executed in AND-parallel, and in­
terprocess communication via shared variables appearing
as arguments. The shared variables express lists of data
or messages flowing among (usually two) predicates: As
program execution proceeds, the values of the lists are
gradually instantiated to the end. The definition of a
predicate is the specification of (the relationship between)
values that the shared variables as its arguments can take,
and a goal can be regarded. as a process which processes
the sequences of data represented by shared variables from
the top downwards through tail recursion. We use the
term 'stream· to refer to shared variables which are used
in this manner.

Note that in Concurrent Prolog, 'process' and 'stream·
are nothing but pragmatic concepts.

As is clear from the above explanation, communica­
tion with other processes is accomplished not by specify­
ing their process names, but by instantiating (in the case
of sending) or by checking (in the case of receiving) the
streams which have already been laid between processes.
Therefore, the efficiency of stream operations-sending,
receiving, merging, and distributing-are of crucial im­
portance.

1.2 Necesllty or Dynamic, Multiwa)' Stream Merging and
Distribution

Streams need not be merged or distributed if several
processes are linearly connected by shared variables to
perform pipeline processing. However, if there is a process
that needs to receive data or .messages from many other
processes-e.g., a process that manages shared resources­
a merging process must be put at the front-end:

:- p1(et ), p2(C2 ), ••• , pn(Cn ),

f7Urge(C,C11, C2 ?, ..., Cn?), ,hared:.re.ource(C?).

In order to accept messages from an indefinite number



318

of processes, it must also be possible to dynamically n.ry
the number of input streams to be merged. In other words.
if a .process needs to communicate with a shared proceu, it
must issue a request to the front-end merging procell (by
using other input streams or a 'request' Itream). and let
up anew inputatream. Alternatively, a new Itreamcould
be laid by attaching a binary merge to one of the existing
input streams, but a delay proportional to the number
of communicating processes will arise it this method is
repeatedly used.

As for message distribution, if it is done as broadcast­
ing, each process need only share the broadcast stream.
However, if a process wants to communicate with another
process to which none of its streams directly leads, com­
munication must be enabled via,the manager of the des­
tination process. The manager procesl must appropriately
distribute messages according to the destinations attached
to the messages.

Again, it must be possible to dynamically change the
number of processes to be managed.

1.3 Previous Research

(Shapiro and Mierowsky 1984) deals with the problem
of merging an indefinite number of streams (henceforth
the number of input streams will be denoted by n). They
demonstrated

(1) a method to ensuren-bounded waiting and a maxi­
mum delay of O(n) by using an unbalanced tree con­
sisting of binary mergers, and

(2) a method to ensure n-bounded waiting and amaxi­
mum delay of O(1og n) by using a 2-3 tree (Aboet aI.
1974) consisting of binary and ternary mergers.

The term 'n-bounded waiting' was defined by them
to mean that any message arriving at the merging process
wilIbe overtaken by no more than n· input messages from
other streams.

The delay of O(n) in Method (1) above is probably
unacceptable when n is large enough and the trafiic is
heavy. This·method may be practical, however,· in the case
of essentially costly communication such as interprocess
communication in mUlti-processor environments.

Method (2) is a major improvement over (I) in terms of
delay. In procedural languages, however, the delay of in­
terprocess communication does not depend on the number
of senders as long as it is simulated on a sequential com­
puter. Therefore, also in logic programming languages, it
is desirable to achieve a constant-time delay.

(Kusalik 1984) also deals with bounded-wait merging
of n streams. He showed a method to ensure bounded-wait
merging without· resort to operational characteristics of an
underlying machine or interpreter. One of his solutions
has O(1ogn) delay, but the number of input streams can­
not be changed. The other solutions can merge indefinite
number of streams, but they are inefficient.

The above two ,paPers concentrate on how to program
n-ary merge having the desired prOPerties. On the other

hand, .. this paper is devoted to how to compile a rather
intuitive n-ary merge program.

Gelernter (Gelernter 1984) discusses the suitability of
Coneurrent Prolog for the description of multi-process
systems. He concludes that interprocess communication
using merge networks are 'not only bulky but unduly con­
stricting'. It should be noted, however, that this .criticism
is not from the viewpoint of descriptive power or efficiency.

2 OBJECTIVES

We have the following two objectives:

(1) When the number of input streams n is fixed, to
realize on a sequential computer n-ary merge and
'di6tri6ute with a maximum delay or 0(1).

(2) To extend the solution to (1) to the case where n varies
dynamically.

It is clear that (1) cannot be accomplished through the
combination of binary and ternary mergers or distributors.
The predicates must process all messages directly at the
top level:

m.erge([X IY.}, Xl, , IX f XA;], , X,,)
:- merge( Y., Xl, , Xl!, , X,,).

di.tri6ute([(k, X) , X .l, Yl , ...• [X IYl }, , Y,,)
:- distributee Xs!, Yl , ... , Yl, , Y,,).

If these predicates are interpreted, the time for tail
recursion can be proportional to the. size of each clause
(=O{nJ). However, if compiled. these predicates promise
to yield higheremciency, as will becnscussed in 3.1.

When considering the above n-ary merge and distri6­
ute, we cannot define 'delay' as the depth of a tree. So we
will define the word 'delay' as

• the time passed from the arrival of a message at a goal
in an input-wait state until the original input-wait state
is restored by tail-recursion, during which the message
is transferred to· output streams.

The delay is calculated by the number of primitive opera­
tions which can be accomplished within a unit time on a
sequential computer.

2.1 OutlIne or Sequential Implementation or Coneurrent
ProloK

Examples of Concurrent Prolog implementation on
a sequential computer include (Shapiro 1983) and (Nitta
1984), but both are interpreters. Here, we assume the
implementation of a compiler which follows the guidelines
stated in (Shapiro 1983 (unpublished». What follows is a
brief explanation· of the process management technique.

The descriptors of conjunctive goals make up a cir­
cular list called an AND-loop, and the descriptors of un­
committed clauses composing a predicate make up a cir­
cular list called an OR-loop (Figure 1).

Each element of an AND-loop is, until it is committed,
the parent of an OR-loop comprising eandidate clauses;



319

: ::J Pred. call k·· ..·..·········
. ,. . t

u VI
!Cl~~se !<·"::::-\·Clause t-::"::1 CI~se {

(a) AND-loop (b) OR-loop

Figure 1. AND-looP and OR-loop

.~­
r~l
~ ~

.....J p k.
'l_'~l

(The PrograJI)
(cO) :- p.
(cl) p :- 011, g121 bl1, b12.
(c2) p :- g21, g22 I true.

...............:.. _.,f~

~
:C2
L__J

\. I

I _ ,-
i g I J g??L'. :'.~< ~ LE.J-<

.:/

~ .

~.. ~Cl~l.
~. ~_-iI ••

r- ....:.: ~.=of' 1
..~... : '·'1 g 12 rc:"

Figure 2. Tree Structure Constructed by AND/OR- loop

~: ~k :

Ic 1'ri ~2 I
1 success L.---J

..........:f. commit

~
........JP k;.

L-..--. ,:, c:::;-

Ic 1' r51~0
success

...........~ ....

- success

~ ~
: p :

;··· ..·ir.-
~ fai Jure

@ ..... :...k'r~""

.r.. ·~C~l~i;.
~

........ ;.

...1[....,
faj lure

Figore 3. ChangeS and The ir Propagation of AND/OR loop



320

after commitment, ,it is replaced by a doubly-linked list
representing goals of the body. If the body is empty, the
element 01 the original AND-loop disappears., The parent
of an AND-loop, having lost all elements, is considered a
success. On the contrary, failure of any AND-loop element
is the failure of the parent (Figure 3).

Each element of an OR-loop represents a candidate
clause which' has not been committed yet, and is the
p.arent of the AND-loop whose elements represent goals
of the guard. The success of an OR-loop element im­
plies the commitment of the corresponding clause. On the
contrary, when some element of an OR-loop fails, that
element simply disappears. The parent of an OR-loop,
having lost all elements, is considered a failure (Figure 3).

The system has a queue called Procell Queue in which
leaf elements of a tree composed of AND/OR-loops (i.e.,
elements which are not parents of other loops: see Figure
2)await scheduling. In unification, a suspended clause due
to some read-only variable is added onto the waiting list
attached to that. read-only variable instead of waiting in
Proce•• Queue. This clause will be re-scheduled when the
read-only variable is instantiated.

One possible optimization of the above method is to
perform the unification of a clause head and the execution
of simple goals in a guard as an indivisible operation. We
call this immediate cbeck. If an immediate check succeeds,
we can avoid creating an OR-loop. In other cases, an OR­
loop is created 'for those clauses which have suspended
during immediate check and which have succeeded in im­
mediate check but have complex guards, and they go into
a wait state.

3 IMPLEMENTATION OF THE
MERGE, PREDICATE

3.1 Examination or n-ary muge

The n-ary merge can be expressed by n clauses of the
following form if one ignores the 'base cases' for termina­
tion which will be dealt with in Section 3.3.5.

• The kth clause:
merge(!XJ Y.l,X1, ••• ,IX f Xi}, .. • ,X,,)

:-merge( Y., XlJ ... , Xi!, ... ,X,,).

This predicate has the following characteristics.

(1) To see if the cth clause is selectable, one need only
test the unification of the Oth and the cth argUments
(henceforth we number the arguments starting with
0).

(2) Upon the tail recursion employing the cth clause, only
the Oth and the cth arguments change compared with
the original call. Therefore, the argument list or the
tail-recursive call can be made by slightly modifying
that of the original call.

(3) When all clauses are in a wait state and one of the
argument variables is instantiated,. there is only one
clause, (or two, even including the base case) which
needs to be re-examined.

Now we will consider tail recursion. The arguments
which do not change by tail recursion have the general
property that they do not alter, the wait condition of each
of the clauses. Suppose that a predicate is called, that its
cth clause is not selected due to the suspension {or failure)
of the unification of the kth argument, and that the dth
c1auie is selected instead. In this case, even after the tail
recursion, the unification of the kth argument of the cth
clause should suspend (or fail) provided:

• the kth argument of the dth clause does not change by
tail recursion, and

• the read-only variable that suspended' the unification of
the kth argument of the cth clause does not become
instantiated by' the unification of other arguments of
the dth clause.

If we state this in terms of n-arymerge, we get the
following.

(4) Upon the tail recursion employing the cthclause, the
following clauses become new candidates:

(a) the cth clause itself

(b) clauses which were candidates in a previous eall
but have not been examined

(c) clauses which need no longer suspend as the result
of the instantiation of read-only variables.

Possibility (c) does not exist under normal circum­
stances, so we can ignore it. Possibility (b) refers
to. the clauses that have been 'carried over', so that
once they are examined, they will either become non­
candidates (by. suspension or failure) or they will be
selected and again become candidates after tail recur­
sion. Therefore, the average number or clauses to be
checked, after each tail recursion does not depend on
the total number of clauses.

From the above considerations, we can conjecture that
n-ary muge can process each message within a constant
time. Note that the implementation technique of sequen­
tial Prolog that takes advantage of the characteristics (1)
and (2) appears in (Warren 1980).

3.2 Implementation Teclmique tor the Fixed-Alit)' Merge

To efficiently implement n-ary merge, the following
are necessary.

(1) Even if all clauses suspend, an OR-loop (having 0(71)
elem.ents) is not created for them, and they are made
to wait at the predicate-call level.

(2) The argument list is re-utilized.

(3) In order to prevent examination of clauses not worth
examining, candidate dauses are managed within the
process descriptor (descriptor of the goal).

The implementation technique of predicates that fol­
lows these guidelines is described below in Sections 3.2.1
to 3.2.3. Since the description is general, it is applicable
to predicates other than merge as long as they have no
guards..Hereafter, the number oldanses composing the
predicate will be denoted by M, and the number of argu­
ments by N.



Figure 4. Sample Data Structure or Su,pend/Fail Table

3.2.1 Conftguratlon or a Procell Descriptor

A process descriptor has the following items.

(1) AND Broth.er,: Two pointers for constructing an
AND-loop.

(2) Proce" Queue Pointer: A pointer for designating the
next element in a Proceu Queue.

(3) Candidate Queue: A queue of candidate clauses of the
call managed by the current process descriptor. M
elements.

(4) Clause State,: An array indicating whether each
clause is in the candidate, .u.pend, or ! ail state. M
elements.

(5) Clau,e Backward Pointer,: An array of pointers for
designating entries on the waiting lists of read-only
variables that suspended unification. M elements (one
element for each clause). Each pointer is meaningful if
and only if the corresponding Clause State is ,uspend.

(6) Suspend/Fail Table: The reasons why a particular
clause was not .selected can be attributed to some
of the caller's arguments. Thus, if these· arguments
change upon tail recursion, that clause may become
selectable. Therefore, a table of pairs (c, Ie), where c
is the number of the suspended or failing clause and le
is the number of the argument that may be the cause,
is maintained. This table must enable eftlcient

• sequential· retrieval of elements containing c, and
• deletion of elements containing le.

For example, the structure shown in Figure 4 fulfills
this condition. The· maximum number of elements
depends on the program; in the case of merge, it is
OeN+M)=O(n).

(1) Fail Count: The total number of clauses that cannot
be selected for the current call.

(8) Progr4m Code: A pointer to the predicate's code.

(9) Argument List: N elements.

3.2.2 Operation.

A ..Creation o! a Process Descriptor

When a predicate is newly called (Le., not as a tail
recursion), the arearor the process descriptor is allocated
and its entries are set up as follows:

321

• all clauses are entered in Candidate Queue (3),

• all Claule States (4) are set to candidate,

• all Clau,e Backward Pointer, (5Jare left undefined,

• Su,pend/Fail Table (6) is cleared,

• Fail Count (1) is set to 0, and

• Program Code (8) and Argument List (9) are set up.

The completed process descriptor is entered in the
AND-loop by appropriately modifying AND Brothers (I)
of this and neighboring goals. It is also entered in Process
Queue by making it designated by the last element's
Proces, Queue Pointer (2).

B. Selection o! a Clau,e

B-1. It Candidate Queue is not empty, instructions for
unifying the arguments of the first candidate (say the cth
clause) and the arguments of the caller (Argument List of
the process descriptor) are executed. In the case of merge,
only the in.structions for the nth and the cth arguments
are executed.

• Ir this succeeds, the body is executed (see D).

• Irthis fails,
(1) the generated binding is undone,
(2) Fail Count is incremented by 1,
(3) Clause State of the clause is set to ! ail,
(4) Suspend/Fail Table is updated (cf. 3.2.3), and
(5) other candidate clauses are tested.

• If this suspends,
(1) the generated binding is undone,
(2) Clause State of the clause is set to suspend,
(3) Suspend/Fail Table is updated,
(4) the pair (p, c), where p is the pointer to the process

descriptor and c is the number of the clause, is
entered in the waiting list of the read-only variable
that caused the suspension,

(5) Claule Bacleward Pointer for the clause is made to
point to the pair entered in (4), and

(6) other candidate clauses are tested.

B-2. If Candidate Queue is empty and Fail Count is
equal to M(= the number of clauses), the goal ends
with failure. Otherwise, execution of the current goal is
suspended.

C. Instantiation o! Read-Only Variables

When a read-only variable is instantiated, the follow­
ing is done for each entry (p, c) in the waiting list of that
read-only variable.

• The following is done for the process descriptor desig­
nated by p.

(1) Clau.eState of the cth clause is set to candidate,.
and c is entered in. Candidate Queue.

(2) All elements of the form (e, -) ('-' means 'don't
care') are deleted from Suspend/Fail Table.

(3) This process descriptor is entered in Proces8 Queue.

D.E:ucution o/the Body

It a recursive call is contained in the body of· the
committed clause (say the cth clause), the followillgtasks



322

are done.

(1) Assume that the arguments of the head and the argu­
ments ofthe recursive call dif!'er in the kith, k2th, ... ,
kIth arguments. For each ki (i=l, ...,l), the following
are done.
• Elements of the form (d, kil are searched from

Suspend/Fail Table, and ror each d, the following
are done.
• If Clatue State of the dth clause is .fail,· Fail

Count is decremented by 1. If it is ""spend, the
entry of the waiting list pointed to by Clause
Backward Pointer is eliminated.

-Clause State of the 4th clause is set to candidate,
and d is entered in Candidate Queue.

• Elements of the form (d, -)are deleted from
Susptmd/Fail Table.

• , The kith element of Argument List is rewritten.

(2) The cth clause is entered in Candidate Queue.

(3) Clause selection (cf. B) takes place.

If calls other than a recursive call are contained, new
process descriptors are generated for them.

If there is no recursive call, the area for the original
process descriptor can be released after the pointers from
the waiting lists or read-only variables are eliminated.
However, there are· cases in which this area can be re­
utilized for optimization (cl. 3.4).

3.2.3 Managementot Suspend/Fail Table

If the cth clause of n-ary merge is called as foHows,

Oth dh

merge(Ys, ... ,Xs!, ...J.

unification of the eth argument luspends. In this case,
the cause of suspension lies only in the eth argument of
the caller; even if another clause were selected and tail
recursion took place, this would not remove. the cause.
However, we cannot always attribute the suspension or
failure of the unification of the cth argument only to the
cth argument. Consider the following example:

Oth 1.t dh

merge([31 Y sl, [31 Zs), ... , [21 Xs}, ... ).

If unification is done from the left, unification of the cth
argument fails, but we .should attribute the cause also to
the Oth argument. Actually, if the first clause. is selected
and tail recursion takes place, the cth clause immediately
becomes selectable.

To generalize, when the unification of the kth argu­
ment of the cth clause suspends or fails, all arguments
(numbered k l , ... , ki, ... , kl ) 'related to' the kth argu­
ment in the cth clause should be ~ntered in Suspend/Fail
Table in theform(c, kilo

Here, the term A is 'related to' (henceforth denoted by
R t ) the term B if and only if there are variables within A
which are 'related to' variables within Biand the variable
VI is related to the variable V2 means that VI andV2 are ,

related by the reflexitive transitive closure of the following
relation R v •

• Relation Fl,,: both variables appear together in a goal
of the guard (if the guard is empty,· R; is the sameness
of the variables).

Ezample: For the cth clause of n-ary merge, the quotient
AIR of· the set of arguments A by Rt is

{ {O, c}, {I}, .. 0' {c-1}, {c+1}, ..., {n} }.

For the clause

p(l,J,K,L,M) :- a(I,J), b(J,K), c(L,M) I true.

we ge.t
{{0,1,2},{3,4} }.

However, to efficiently implement n-ary merge, the
above rules for updating Suspend/Fail Table must be
slightly modified. If (0, c) is entered in Suspend/Fail
Table when the cth clause suspends, the cth clause will
be returned to Candidate Queue even by the tail recur·
sion of another clause and the desired efficiency is not
achieved. However, the Oth argument. usually does not
cause suspension, ~d in this case, (0, c) need not be
entered in Suspend/Fail Table. Therefore, in cases of
suspension where

(1) the kth argument of the caller isa read-only variable
(viewed at execution time) and

(2) the kth argument of the head is a non-variable term
(viewed at compil~ time),

only (e,k) should be entered in Suspend/Fail Table. This
is all right because the cause of suspension is clearly not
in the other arguments related to the kth argument.. The
number of elements that are simultaneously entered in
SUSPend/Fail Table does not exceed

",(maximumsize of the elements 01\
L- '(set of arguments)/Rt ' ).

clA",.C.

In the case of n-ary merge, this value is O(n).

3.3 Propertle. of the Flxed-Arltr Merge

We will now examine the properties ofn-ary mergt
compiled using the technique presented in 3.2. The exist­
ence of base-case clauses will not be considered here. It
will be discussed later in 3.3.5.

3.3.1 Space EfBe1eney

The size of each item of a process descriptor other
than Suspend/Fail Table is clearly no·gre.aterthan O(n),
and the size of Suspend/Fail Table is O(n), as indicated
in 3.2.3. Therefore, the size of each process descriptor is
O(n). The size of the program code will be discussed in
3.3.4.

3.3.2 TIme EtIlelenq

A. The generation of process descriptors: O(n), but this
need only be done once at· the beginning.

--------------------------~----------_._-----



B. Unification: The time required ror the unification of
the ·head of each clause is 0(1), because unification
must be attempted for no more than two arguments.
If a data structure such as the one shown in Figure
X is assumed, the time required for the tasksaccom­
panying suspended/failed unification (Le., updating of
Suspend/Fail Table and the waiting lists of read-only
variables) is also 0(1).

,C. Instantiation of a read-only variable: 0(1) for each
task.

D. Tail recursion: When thecth clause is selected, the
Oth and the cth arguments change. However, as .long
as merge is used in a usual manner, the Oth argument
will not be the caUse of wait or failure, and the only
clause waiting at the cth argument is the c:th clause
itself. Consequently, the only new candidate is the cth
clause. Furthermore, only two entries of Argument
Lilt need be rewritten. Therefore,the overall time
required is 0(1).

The above shows that the time required for processing
a message reaching n-ary merge in an input-wait state
does not depend on n.

3.3.3 Order of Claule Checking

Individual clauses of n-ary fMrge are checked in the
order they are entered in Candidate Queue. Since a
selected clause is reentered at the tail of the queue, 71­
bounded waiting is achieved. Moreover, suspended or fail­
ing clauses are not in Candidate Queue, so they do not
inftuence the efficiency.

3.3.4 Program SlIe

The codes for operations A and C in 3.2.2 is common
to all predicates and have the size of 0(1). The size of the
code for n-ary merge is 0(71), because the code for each
clause describes operations B and D, whose size is O{l).

However, since the codes for individual clauses are
almost the same, they can be parameterized with respect.
to the clause numbers. If this is done, the code sizi! for
the whole predic,ate is drastically reduced to 0(1).

This parameterization could be accomplished by a
sophisticated compiler capable of detecting similarit.ies
among the clauses. However, even if such a compiler
were employed, it would not reduce the size of the source
program (0(712»and the time required for compilation.
Furthermore, there maybe only a few programs which
can benefit from this optimization..Considering all these
things, the most realistic approach is to let the system
provide the code for n-ary merge.

Now we have n-ary merge at a code size of 0(1).. This,
however, is still unsatisfactory. ~he system has to provide
n-ary merge for every n. If these were to be proTided
,individually, the amount ofcode·wouId be O{n".G~)' nm~

being the maximum value of n.

However, here again, drastic optimization is possible.
Because the code for n-arymerge remain almost the s,ame
if n changes, it can be. parameterized with respect to n.

323

This being done, the· amount of code for merging any
number of inputs becomes 0(1).

Note that it is mandatory that these codes be proVided
by the system, because the size of the corresponding source
program is O(nm~3).

3.3.5 Base Case

To terminate the call of merge, a clause describing
the base case or termination condition must be carefully
supplied. The clause

merge([}, [], ... , [D.

is logically correct, but it cannot be efficiently processed
by the above implementation technique-unification must
be performed for every argument. An alternative solution
uses otherwise construct:

m.erge([], [}, ... , [D :- otherwi,e I true.

An otherwiu goal in a guard succeeds if and when all
other guards fail (Shapiro and Takeuchi 1983). Im.ple­
mentation of this construct is simple: a clause contain­
ing otherwile in its guard should be put into Candidate
Queue only after Fail Count reaches the number of clauses
not containing oth'trwile. With otherwiu, the base-case
clause retains the efficiency-of the predicate.

3.4 Dynamic Change of the Number of Input Streams

A fbced-arity merge predicate is useful only when the
number of inputs is statically known. We will now expand
this to allow the addition of new streams and the removal
of terminated streams. The program shown below has an
additional (the (-l)th) argument for accepting requests of
new input streams.

• The kth clause (transfer)
merge.(S, [X IY,l, X lr ••. , [X IXl]"", X,,)

:- 'merge(S, Y', Xl, ... , Xl!, ... , Xft}.

• The Oth. clause (addition)
merge([X"+1 , SI, Y I, Xl, , X,,)

:- merge( S7, YI, Xl, , X"' X,,+d.

• The (-k)th clause (removal)
merge(S, X I, Xl, .. , I [}, ••• , X"-lr X,,)

:- merge(S, X" Xl, ... , X", ... , X"-l)'

• Base Case
merge([ I, [}).

The clauses for stream addition and removal are not
tail recursive. However, if process descriptors forthe·goals
in the bodies can be constructed.by slightly modifying the
original ones, it will be much more eftlcient· than to create
ones from scratch.

In Concurrent Prolog, process descriptors must be
managed by a general memory management technique,
not by a simple stack .scheme. Here we will assume that
the Buddy system (Knuth 1968) is employed. The size of
each partitioned area will then be a power of two, and each
process descriptor is created in one of these areas. When it



324

is created, its fields must be placed according to the size
of the area allocated so that the cost of relocation with
the addition and removal of stream's is minimal. Then,
even if the number of input! changes, most of the existing
information need not be moved as long as the same area
can accommodate the new descriptor.

Here we will show the operations to be performed
when the (-n)th to Oth clauses are selected and the
process descriptor can be reused. When considering the
reuse of process descriptors, unused must be added as one
of the possible states that Clause State can take, and
when the arearor Clause States is allocated, the unutil­
ized portion should be filled with unused's.

A. When the Oth Clause i, Selected and a New Stream
is Added

(I) (Operations accompanying the addition of the
±(n+1)th clauses) If Clause States of the (n+l)th
and the -(n+l)th clauses are not candidate, they
are set to candidate and those clauses are entered in
Candidate Queue.

(2) The Oth clause is entered in Candidate Queue.

(3) The (-l)th argument of Argument List is updated.

(4) The program code is replaced (If' the program is
parameterized with respect to n, only the parameter
value is replaced).

B. When the (-c)th Clause (c>O) is Selededand an
Empt1l Stream is Removed

(1) (Operations accompanying the change of the cth ar­
gument) Elements of the form (c', c) (only(c, c) can
exist, if any) are retrieved from Suspend/Fail Table.
For each c', the following is done.
• If Clause State of the c'th clause is jail, Fail Count

is decremented by 1. If it is suspend, the entry
in the waiting list pointed to by Clause Backward
Pointer for the c'th clause is deleted.

• Clause State of the c'th clause is set to candidate,
and c' is entered in Candidate Queue.

• Elements of the form (c', -) (only(c, c) can exist,
if any) are deleted from Suspend/Fail Table.

(2) (Operations accompanying disappearance of the ±nth
clauses)

• If Clau,e State or the nth clause is fail, Fail Count
is decremented by 1. The same is done for the
(-n)th clause.

• Elements of· the form (±n, -) are deleted from
Suspend/Fail Table.

• (Nothing is done with the ±nth clauses in Candi­
date Queue. When they are dequeued, nothing is
due other than to change their ClQu8e StfJte, to
undejined.)

(3) The (-c)th clause is entered in Candidate Queue.

(4) The cth argument of Argument List is updated.

(5) The program code is replaced.

It is clear that both A and B can be accomplished
within a constant time.

If the area for the current process descriptor cannot

be reused to add a new stream, it is necessary to allocate
anew area. of twice the size and to move to that area. On
the contrary, if it becomes possible to express the process
descriptor with half the size of the current area (by the
repeated removal of streams), the process descriptor can
be packed and the unused area collected can be. freed.
These operations are shown below.

A'. Addition oj Stream, Entailing Mornngto a New
Area

(1) An area twice the size of the current process descriptor
area is allocated.

(2) All items of the original process descriptor are copied.

(3) The entries designated by all meaningful Clau&e
Backward Pointers (Le., ones for suspended clauses)
are made to point to the new area.

(4) T'he operations described above in A are done.

B'. Deletion of Streams Entailing Compaction

(1) The operations described above in B are done.

(2) Candidate Queue is examined and the ±nth clause!
are deleted, if any.

(3) The original process descriptor is packed in the top
halfof the current area.

(4) The bottom half of the· area is released.

We will now consider the time complexity of A' and
B'. If the time needed for memory all~cation and release is
ignored, both A' and B' can be done within a time propor­
tional to· n. The time complexity. of memory allocation
and release by Buddy· system is

O(log(size of the whole area managed by
the Buddy system».

This value, however, is determined only by the execution
environment of the program, which is independent of n.
Therefore, if the execution environment is fixed, the· time
needed for A' and B' is O(n).

In order to add and remove streams within an average
time of O{l), it must be guaranteed that the frequency
of doing operation A' or B' is at most once every O(n)
times. This is easily achieved by doing B' only when it
becomes possible to represent the process descriptor with
(for example) .one-fourth of the current area.

4 IMPLEMENTATION OF THE
. DISTRIBUTE PREDICATE

For the implementation technique of the distribute
predicate, o~y outlines will be presented here.

4.1 Distribution to a FlxedNumber or Output Streams

The predicate distribute with n output streams is
expressed by n+1 clauses of the following form:

• The kth clause
di,tribute(I(k,X) I Xs], Y1 , •. ·, [X IYAJ, , Y )

:- distributee X sT, Yl, ... , Yk, , Y ).

• TheOth clause
distribute{[ I, II, ... , {D·

--------------------------------_._.



--

First., we will consider the situation where there is
no wait. .Random accessing of clauses must be imple­
mented because, if the lit to nth clauses were individually
checked, the time complexity would be O(n). The DEC­
lO Prolog compiler (Warren 1977) generates a code that
selects clauses using the hash Talue of the principal functor
of the first argument. HoweTer, this is inadequate for
stream-oriented programming. In the cue of didribute,
hashing by the tertiary functor (a functor of the third
leTel) of theflrst argument is necessary to select a clause
within a constant time.

Next, as we did with fMrge, we will consider how to
achieve the code size of 0(1). Parameterization of the
codes of each clause is of course necessary. In the cue
of di,tribute; we Ihouldfurther make use of the fact that
clauses canbe selected by simple indexing which does not
involve hashing: a hash table requires an area of O(n).

What if there i,s a wait! In usual situations, the
cause of wait is the Oth argument. In this case, if the
1st to ith clauses all individually go into wait, the desired
efficiency cannot be achieTed. Those clauses should al­
ways be managed together: not only when indexing, but
also while waiting. In other words, they should be entered
in the waiting lists or read-only variables as a cluster
of clauses. When their suspension is released, theap­
propriate clause should beaelected by indexing.

4.2 Dynamic Change of the Number of Output Stream·s

As in the case of merge, dynamic change of the num­
ber of output streams is important. This can be imple­
mented by adding the following clauses:

• Addition
diBtribute{[groV1(Y"+l) IX.t},Yh , Y,,)

:- di,tribute( X ,T., Yl, , Y", Y,,+l).

• Deletion
di,tribeute([.thrinii X '1, Y1 , ••• , Y,,-l, Y,,)

:- di,tribute( X 'T, Y1, ... , Y~l).
In order to efficiently change the number of output
streams, a method similar to the one described for merge
in 3.4 can be applied.

5 APPLYING IMPLEMENTATION TECHNIQUE
OF DISTRffiUTION PREDICATES

TO MUTABLE ARRAYS

The lack of mutable arrays (arrays of rewritable ele­
ments) is· often mentioned as one. of the problems of
Prolog. Of course, arrays can be simulated bytJl8ert and
retr4d, but such arrays are not logical arrays. One direc­
tion to realise logical arrays is to make a correspondence

• Arrays: data of the array type

• Operations on arrays: predicates haTing array argu-
ments

and to gain efficiency by a dedicated data structure.
HoweTer, it is also possible to make the followingcorre­
spondence1

1 Recently thil wal pointed outallO by ErikllOD and RaYDer
(EriluloD and Rayner 1984).

325

• Arrays: goals (processes)

• Operations on arrays: messages in streams

by the. pro.gram

arrav(n, S) :- arrav(S, Xl, , X,,).

arraV( [read(k,Xl) I S], Xl, , Xl, , X,,)
array( 5T, Xl, , X", , X,,)."

(for i=l, ... , n)

array{[V1rite(k, Yj;) IS], X lr ••• , Xj;, , X,,)
arrav( 51, Xl, ... , Yj;, , X,,).

(for i=l, ... ,n).

This is a rather natural solution if we regard arrays
as mutable objects. This program has properties very
similar to di,tribute, and if the implementation technique
for diltribute is applied,coDstant-time accessing and up.­
dating is realised. It is also' possible to add clauses for
inquiringand/or changing the number of elements. Note
that all transactions with an array object are done through
the argument 5 of the binary arravpredicate; a program­
mer need not have direct access to each element.

6 CONCLUSIONS AND FUTURE WORKS

The properties of n-ary merge written in Concurrent
Prolog were investigated and an implementation which
transfers each message with a delay independent of n
was presented. Furthermore, it was shown that an input
stream can be added and removed within an aTerage time
of 0(1). With respect to n-ary distribute also, outlines for
an implementation as. efficient as merge were presented.
Mutable arrays that allow constant-time accessing and up­
dating were shown to be realizable by the same implemen­
tation technique as that for di,tribeute.

Rowenr, it was concluded that these predicates
should be supported directly by the system. If the system
provides them, merge and di,tribute for all arities can be
realized with the constant-sise code. On the other hand,
it is unrealistic to obtain the code by compiling a source
program proTidedby the user, not from the viewpoint of
the efficiency of the code obtained, but from the viewpoint
of the bulk of the source program and the time needed for
compilation. Nevertheless, it is favorable in many respects
(e.g., for the construction of programming systems) that
the semantics of the system-supplied code is expressible
as a Concurrent Prolog program.

The suggested technique for the implementationo! n­
ary merge has a problem that it does not work efficiently
when a bounded bufrer (Takeuchi and Furukawa 1983) is
connected to the output stream. However, it is expected
that this problem can be SOITed by improving clause wait
and scheduling.

The most important future tasks are to describe large­
scale systems in Concurrent Prolog, to estimate the cost
of interprocesscommunication,· and toconflrm the useful­
ness of the suggested capabilities. It is also important to
consider an efficient implementation of int.erprocess com­
municationin parallel environments.



326

ACKNOWLEDGMENTS

The authors thank to Katsuya Hakozaki, Masahiro
Yamamoto, Kazuhiro Fuchi, and Kouichi Furukawa for
providing a stimulating place in which to work. Thanks
are also due to Ehud Shapiro for oft'e.ring them hints to
embark on this study, as well as to Akikazu Takeuchi for
valuable suggestions.

to reduce a process.. Two· restrictions prevent an -all-out
parallelism. Regarding Or-parallelism, only the guards
are executed in parallel. Once a guard .system terminates,
the computation or other Or-parallel guards are aborted.­
Regarding And-parallelism, read-only annotations can en­
force rather severe constraints on the order and pace in
which processes can be reduced.

APPENDIX I

The outline of Concurrent Prolog is given below by
quoting (Shapiro and Takeuchi 1983).

A. Syntax

A Concurrent Prolog program is a finite set of guarded­
clauses.. A guarded-clause is a universally quantified logi­
cal axiom of the form

Concerning the declarative semantics of a guarded
clause, the commit operator reads like a conjunction: A'is
implied by the G's and the B's. The read-only annotations
can be ignored in the declarative. reading.

Procedurally, a guarded-clause Junctions similar to an
alternative in. a guarded-command. To reduce a process
A using a clause Al :- G IB, unify A with AI, and,
if successful, recursively reduce G to the empty system,
and, if successful, commit to that clause, and, if successful,
reduce A to B.

where the G's and the B's are atomic formulas., also called
unit goals. A is called the clause's head, the G's are called
its guard, and the B's its body. When the guard is empty
the commit operator -,- may be omitted. Clauses may
contain variables marked read-only, such as X!. We follow
the Prolog-l0 syntactic conventions: constants begin with
a lower-case letter, and variables with an upper-case letter.
The special binary term IX , Yl is used to denote the list
whose head (car) is X and tail (cdr) is Y. The constant [l
denotes the empty list.

B. Semantic,

A :- Gl, G2, ... , Gm IBl, B2, ... Bn. m,n~O.

REFERENCES

Aho, A. V., Hopcroft, J. E., and Ullman, J. D.,Tbe Design
and Analysis of Computer Algoritbms, Addison Wesley,
Reading, Mass., 1974.

Clark,K. L. and Gregory, S.,PARLOG: ParaIlelProgram­
ming in Logic, Research Report DOC 84/4, Dept. of
Computing, Imperial College, London, 1984.

Eriksson, L.-H. and Rayner, M., Incorporating Mutable
_Arrays into Logic Programming, Proc. Second Interna­
tional Logic Programming Conference, pp. 101-114, 1984.

Gelernter, D., A Note on Systems Programming in Con­
current Prolog, Proc. 1984 Int. Symp. on Logic Program­
ming,pp. 76-82, 1984.

Knuth,D. E., Tbe Art 0/ Computer Programming, Vol.l:
Fundamental Algorithms, Addison-Wesley, Reading, Mass.,
1968.

Kusalik, A. J., Bounded-Wait Merge in Sbapiro's Concur­
rent Prolog, New Generation Computing, Vol. 2, No.2,
pp. 157-169, 1984.

Nitta,K., On Concurrent" Prolog Interpreter, Preprintor
the 8th WGSF Meeting, Information Processing Society
of Japan, 1984 (in Japanese).

Shapiro, E. Y., A Subset of Concurrent Prolog and Its
Interpreter, ICOT Tech. Report TR-003, Institute for
New Generation Computer Technology, 1983.

Shapiro, E. Y., Notes on Sequential Implementation of
Concurrent Prolog: Summary of Discussions in ICOT,
1983 (unpublished).

The reduction of a process may suspend or fail during
almost any of these steps. The unification of the process
against the head of the clause suspends if it requires the
instantiation of variables occurring as read-only in A. It
fails if A and Al are not unifiable. The computation of
the guard system Gsuspends if any of the processes in it
suspends, and fails if any of them fails.

.The commitment operation is the most delicate, and
grasping it fully is not required for the understanding of
the example programs in this paper. It suffices to say
that partial results computed by the first two steps of the
reduction-unifying the process.against the head of the
clause, and solving the guard-are not accessible to other
processes in A's system prior to the commitment, and that
after commitment all the Or-parallel attempts to reduce
A using other clauses are abandoned.

The reduction of all processes in a system can beat­
tempted in parallel, and similarly the -search for a clause

Shapiro, E. and Mierowsky, C., Fair, Biased, and Sel/­
Balancing Merge Operators: Tbeir Specification and Im­
plementation in Concurrent Prolog, Proc. 1984 Int. Symp.

. on Logic Programming, .pp. 83-90, 1984.

Shapiro, E. and Takeuchi, A., Object Oriented Program­
ming in Concurrent Prolog, New Generation Computing,
Vol. 1, No.1, pp. 25-48, 1983.

Takeuchi, A. and Furukawa, K., Implementing Interpro­
cess Communication in Concurrent Prolog, 27th IPSJ
National Conference,3E-7, 1983 (in Japanese).

Warren,D. H., Implementing PROLOG-Compiling Preej:­
kate Logic Programs, Vol.1-2, D. A. I. Research Report
No. 39, Dept. of Artificial Intelligence, University of
Edinburgh, 1977.

Warren, D. H., An Improved Prolog Implementation
W1Uch Optimises Tail Recursion, Proc. Logic·· Program­
mingWorkshop,pp. I-II, 1980.


