
Validated Simulation of Parametric

Hybrid Systems Based on Constraints

February 2017

Shota MATSUMOTO

Validated Simulation of Parametric

Hybrid Systems Based on Constraints

February 2017

Waseda University

Graduate School of Fundamental Science and Engineering

Department of Computer Science and Engineering

Research on Parallel Knowledge Information Processing

Shota MATSUMOTO

Abstract

The purpose of this research is to develop a highly reliable simulator of hy-

brid systems, i.e., systems involving both discrete changes and continuous

evolutions. In particular, we aim at rigorous simulation of parametric hybrid

systems, which enables not only the analysis of possible behavior of models

but also the design of parameters that realize desired properties. Simulators

with interval arithmetic can reliably compute a reachable set of states, but

preserving the dependencies of uncertain quantities in models is still chal-

lenging.

In this thesis, first we discuss a simulation method that is based on sym-

bolic formula manipulation. This method can simulate all possible trajec-

tories of hybrid systems described by a constraint-based formalism. The re-

sults of computation is free from errors caused by floating-point arithmetic.

This method can perform case analysis if a target model includes qualitative

branching of trajecotries depending on parameters.

Next, we discuss integration of the symbolic method with conservative

overapproximation by interval arithmetic. We focus on (i) reducing compu-

tational costs of complex symbolic formulas and (ii) computing zero-crossings

of functions that cannot be handled analytically. This integrating method

uses affine arithmetic, the interval Newton method and the mean value theo-

rem. This method broadens the scope of applicable models and still preserves

the first-order dependencies of uncertain quantities throughout simulation.

Preservation of such dependencies improves the accuracy of the results be-

cause it reduces the shortcomings of näıve interval arithmetic.

We also discuss a symbolic simulator that implements the above methods.

It features bounded model checking as a natural extension of the symbolic

simulation. It is publicly available and has a web frontend that supports

plotting of parametric trajectories. We show the performance of the imple-

mentation with example models.

iii

Acknowledgments

The contributions in the thesis are achieved under great help of many people.

I thank Prof. Kazunori Ueda very much for encouraging and leading me in

the course of the research. His help has been very valuable and essential

to complete this research. I am really grateful to Prof. Masahide Kashi-

wagi for his helpful comments about validated numerical computation. The

simulation method in the thesis could not have been completed without his

suggestions. I thank the thesis committee members, Prof. Yasuo Matsuyama

and Prof. Toshiharu Sugawara for their comments and support to improve

the thesis. I want give my great thanks to Dr. Daisuke Ishii and Prof. Hi-

roshi Hosobe. Discussions with them have been illuminating. I appreciate

insightful opinions that the members of HydLa project and Ueda laboratory

gave me in our daily discussions. Finally, I would like to express the deepest

appreciation to my parents for their support over long years.

v

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Background . 1

1.2 Research Goals and Contributions 2

1.2.1 Symbolic Simulation Algorithm Based on Constraint

Solving . 3

1.2.2 Integrating Symbolic Simulation with Interval Arith-

metic . 3

1.2.3 Implementation of A Symbolic Simulator 4

1.3 Outline . 4

2 Preliminaries 7

2.1 Notations . 7

2.2 Constraints . 7

2.3 Interval Arithmetic . 8

2.4 Affine Arithmetic . 11

3 HydLa: A Constraint-based formalism of Hybrid Systems 13

3.1 Syntax . 14

3.2 Semantics . 16

3.2.1 Solving Constraint Hierarchy 17

3.2.2 Semantics of Basic HydLa 18

3.3 Example Program . 20

3.4 List Notation . 21

vii

4 Simulation Algorithm of Hybrid Systems 25

4.1 Symbolic Simulation . 25

4.1.1 Calculation of Maximal Consistent Set 28

4.1.2 Consistency Checking in Point Phase 28

4.1.3 Consistency Checking in Interval Phase 29

4.1.4 Calculation of Closure of Constraints 29

4.1.5 Example of Symbolic Simulation 32

4.2 Symbolic Simulation with Interval Arithmetic 33

4.2.1 Computation of Event Time with Interval Arithmetic . 36

4.2.2 Computation of Zero-crossings 37

5 HyLaGI: The Implementation 43

5.1 Web Frontend . 46

5.2 Bounded Model Checking . 47

5.3 Implicit Continuity . 47

5.4 Guards Referring to the Left-hand Limits of the Initial Time . 50

5.5 Scalability of HyLaGI . 50

5.5.1 Construction of Relation Graph 51

5.5.2 Simulation with Relation Graph 52

6 Experimental Results 57

6.1 Fully Symbolic Simulation . 57

6.1.1 Bouncing Particle with a Hole 57

6.1.2 Hot-air Balloon . 60

6.1.3 Electric Circuit . 62

6.1.4 Curling Stone . 63

6.2 Simulation with Interval Arithmetic 65

6.2.1 Two Water Tanks . 66

6.2.2 Bouncing Ball on A Sine Curve 68

6.2.3 Bouncing Ball on A Parabola 69

6.3 Summary of Experiments . 72

7 Related Work 77

8 Conclusion and Future Work 79

8.1 Conclusion . 79

8.2 Future Work . 80

References 83

List of Figures

1.1 Collision avoidance of aircrafts 2

2.1 Example of wrapping effect 10

2.2 Comparison of interval box and affine form 12

3.1 Syntax of HydLa . 15

3.2 HydLa program of bouncing ball 16

3.3 Trajectory of bouncing ball 17

3.4 Example of constraint hierarchy 18

3.5 The definition of ⟨x̄(t), Q⟩ |= P 20

3.6 Model overview of two water tanks 21

3.7 HydLa program of two water tanks 21

3.8 Syntax of HydLa with list notation 23

3.9 A model of one-dimensional billiard with list notation 24

4.1 Algorithm of the symbolic simulation 27

4.2 Algorithm of MCS . 29

4.3 Algorithm of CheckConsistencyPP 30

4.4 Algorithm of CheckConsistencyIP 30

4.5 Algorithm of CalculateClosure 31

4.6 HydLa program of throwing up a ball 32

4.7 Algorithm of the symbolic simulation with interval arithmetic 34

4.8 Algorithm of FindMinTimeInterval 35

4.9 Algorithm of CheckAndUpdateGuards 38

5.1 Overview of the implementation 44

5.2 Output text by HyLaGI . 45

5.3 Screen shot of webhydla . 47

5.4 Structure of Hydat . 48

5.5 Relation graph for one-dimensional billiard 53

xi

5.6 Relation graph for one-dimensional billiard on collision of the

first ball and the second ball 54

5.7 Relation graph for one-dimensional billiard on Interval Phases 55

6.1 Trajectories of the bouncing particle with a hole 58

6.2 HydLa program of the bouncing ball with a hole 59

6.3 HydLa program of hot-air balloon 60

6.4 Trajectory of balloon

(volume = 3) . 61

6.5 Trajectory of balloon

(exT = 2) . 61

6.6 Classifying cases in parameter space 61

6.7 Electric circuit (cited from [33]) 62

6.8 HydLa program of electric circuit 63

6.9 Behavior of vc . 63

6.10 Behavior of iL . 64

6.11 HydLa program of curling stone 64

6.12 The trajectory of the stone with uncertain threshold 66

6.13 The trajectory of the stone with uncertain friction 67

6.14 Trajectory of two water tanks (solid line: x1, dashed Line: x2) 67

6.15 Width of interval for two water tanks 68

6.16 Execution time for two water tanks 68

6.17 HydLa program of bouncing ball on a sine curve 69

6.18 Trajectory of bouncing ball (solid line: floor, dashed Line: Ball) 70

6.19 Width of interval for bouncing ball 70

6.20 Execution time for bouncing ball 71

6.21 HydLa program of bouncing ball on a parabola 71

6.22 Trajectory of a bouncing ball on a parabola 72

6.23 Width of interval for bouncing ball on a parabola 73

6.24 Execution time for bouncing ball on a parabola 74

6.25 Width of interval for parametric bouncing ball on a parabola . 74

6.26 Execution time for parametric bouncing ball on a parabola . . 75

List of Tables

2.1 Basic notations . 8

3.1 Correspondence between abstract and concrete syntax 16

5.1 ODEs handled by the backend solver (cited from [38]) 46

5.2 Terminating messages and their meanings 49

xiii

Chapter 1

Introduction

1.1 Background

Hybrid systems [23] are dynamical systems involving both discrete changes

and continuous evolutions. Interactions between computer programs and

physical environments can be naturally regarded as hybrid systems. Such

systems are also called cyber-physical systems, which are important applica-

tions of hybrid systems. (In some context, the term “cyber-physical system”

also has an aspect about control methods based on big data collected by

IoT sensors, however it is different from our focus.) Hybrid systems include

safety critical systems such as control of vehicles, nuclear plants, etc. Fig-

ure 1.1 shows an example of such hybrid systems, in which two aircrafts are

continuously cruising and discretely change their courses to avoid collision.

Therefore, safety is a major concern about hybrid systems. Rigorous han-

dling of computational errors is important for the validation and verification

of models because those errors may lead to qualitatively wrong results.

In the rigorous handling of hybrid systems, there are two major chal-

lenging points. The first challenge is to solve ordinary differential equations

(ODEs), which can be nonlinear and have no analytic solutions (e.g., the

Van der Pol oscillator). The second challenge is to compute cross points

of continuous trajectories and boundaries at which discrete events happen.

Also, it is important to be able to handle uncertainties in models, which are

caused by modeling errors, observation errors, deterioration of models due to

aging, etc. Many tools that enable rigorous analysis of such hybrid systems

have been developed [5][10][16][30][39][3][31][27]. Most if not all of the tools

are based on interval arithmetic [28], and can compute over-approximated

1

2 1 Introduction

Figure 1.1: Collision avoidance of aircrafts

reachable sets of systems.

Parametric hybrid systems, namely hybrid systems containing symbolic

parameters whose values may have lower and upper bounds, allow us to

express a family of hybrid systems. They have diverse applications including

the dependency-preserving modeling of uncertainties, the sensitivity analysis,

and the design of models and controllers. In existing tools, the dependencies

between uncertain quantities are ignored or handled only implicitly because

they mainly focus on reachability analysis of models.

1.2 Research Goals and Contributions

The main goal of this research is to develop a simulator that handles the

dependencies between uncertain quantities explicitly by parametric repre-

sentations of models. Two challenges here are to solve parametric ordinary

differential equations and to handle discrete changes of parametric hybrid

systems. Regarding the former challenge, we assume that a parametric ODE

is linear or can be safely enclosed by another linear parametric ODE (with ad-

ditional parameters representing approximation errors). This thesis focuses

1.2 Research Goals and Contributions 3

on the latter challenge. Boundaries of discrete events are often expressed by

nonlinear equations that have no analytical solutions, in which case we must

employ interval techniques to compute time intervals of discrete changes.

The contributions of this research are described in the following subsec-

tions.

1.2.1 Symbolic Simulation Algorithm Based on Con-

straint Solving

The algorithm is based on constraint solving techniques [32] with symbolic

formula manipulation. Symbolic formula manipulation has the following ad-

vantages.

1. It features error-free computation using analytic solutions.

2. It features symbolic execution of parametric hybrid systems.

3. Symbolic formulas can be regarded as the most general representation

and other computation frameworks can be naturally involved in sym-

bolic formula manipulation.

The input of the algorithm is in the form of programs written in a

constraint-based language HydLa. The symbolic method performs on mod-

els with large uncertainties much better than numerical simulation. The

algorithm can perform case analysis on demand. In particular, it can de-

tect singular points in behavior of models and automatically avoid stuck of

simulation. We discuss the detail of the algorithm in Chapter 4.

1.2.2 Integrating Symbolic Simulation with Interval

Arithmetic

Symbolic simulation has the following drawbacks:

1. Data structures of symbolic formulas are more complex than that of

numerical computation.

2. As computation goes on, the complexity of symbolic formulas such as

the number of terms and the number of digits of coefficients increases

and it leads to the explosive increase of computational costs.

4 1 Introduction

Because of the drawbacks, the fully symbolic method itself is not applica-

ble for many of parametric hybrid systems. Our experience with parametric

hybrid systems showed that, even for rather simple hybrid systems with lin-

ear ODEs that can be analytically solved, symbolic simulation often gets

stuck because it is not able to solve parametric equations representing the

time of the next discrete event. We developed a method that integrates the

symbolic method with interval arithmetic to overcome such drawbacks. The

method has two key ideas. The first idea is to over-approximate symbolic

formulas with affine arithmetic and use approximated values instead of orig-

inal symbolic formulas. Affine arithmetic is an extended version of interval

arithmetic and can preserve the first-order dependencies between quantities

using symbolic parameters. It can reduce the computational costs caused by

complex formulas. The second idea is solving zero-crossings of functions that

describe the conditions of discrete events using the interval Newton method

and the mean value theorem. This method can solve parametric algebraic

equations that cannot be solved analytically, preserving the linear depen-

dencies of parameters. The combination of these techniques turns out to

work even when affine arithmetic alone does not work in computing discrete

changes. We discuss the detail of the proposed method in Section 4.2.

1.2.3 Implementation of A Symbolic Simulator

We implemented above methods in our tool named HyLaGI. HyLaGI is writ-

ten in C++ and Mathematica [37] and uses KV library [19] for interval and

affine arithmetic. HyLaGI can compute all possible trajectories of parametric

hybrid systems, which are expressed by a sequence of symbolic representa-

tions of states. It also features bounded model checking as a natural extension

of symbolic simulation. It is publicly available on our website with a web

frontend. We discuss the implementation in Chapter 5 and its performance

in Chapter 6.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we show our notational

convention and describe the definitions of constraints, interval arithmetic

and affine arithmetic. In Chapter 3, we introduce our modeling formalism

of hybrid systems named HydLa, which is used as the input language of our

1.3 Outline 5

simulation algorithm. In Chapter 4, we describe our symbolic simulation

algorithm first. The symbolic algorithm has been published in [26]. We

also describe how we integrate interval arithmetic with the symbolic simu-

lation algorithm. The method of integration has been published in [25]. In

Chapter 5, we introduce our implementation named HyLaGI. This chapter

is based on the publications [20][22][24][26]. In Chapter 6, we evaluate our

implementation through several example models. This chapter is partially

based on the publications [26][25]. In Chapter 7, we mention related work

and describe the position of our work. In Chapter 8, we review the summary

of the thesis and describe future work.

6 1 Introduction

Chapter 2

Preliminaries

In this chapter, we introduce basic notations and concepts that are used in

the thesis.

2.1 Notations

Basic notations used in this thesis are listed in Table 2.1.

2.2 Constraints

In this thesis, we use the term constraints as logical formulas about real-

valued variables. We allow “=”, “<”,“>”,“≤”,“≥”, and “̸=” as relational

operators in constraints. A constraint that contains only one relational op-

erator is called an atomic constraint. Each constraint consists of atomic con-

straints, their disjunctions and conjunctions. An assignment is a tuple that

represents values of variables. For a constraint C, assignments(C) means a

set of assignments that satisfies C. Note that we distinguish a constraint

and the set of its possible assignments. A constraint is called consistent or

satisfiable iff there is at least one assignment of variables that satisfies the

constraint and otherwise called inconsistent. These conditions are denoted

by consistent(C) and inconsistent(C). A constraint C1 is called entailed by

a constraint C2 iff C2 ⇒ C1 is valid.

Example 1. Let X = {x, y} a set of variables. 0 < x ∧ x < 1 ∧ y = 2 is

a constraint that consists of three atomic constraints {0 < x, x < 1, y = 2}.
0 < x∧ x < 1∧ y = 2 is consistent and ⟨1, 2⟩ is one of possible assignments,

7

8 2 Preliminaries

Table 2.1: Basic notations

Notation Description

n ∈ N Natural numbers

r ∈ R Real numbers

f ∈ F Floating-point numbers

(a, b) An open real interval {x ∈ R | a < x < b}
[a, b] A closed real interval {x ∈ R | a ≤ x ≤ b}
(a, b] A left-open real interval {x ∈ R | a < x ≤ b}
[a, b) A right-open real interval {x ∈ R | a ≤ x < b}
i ∈ I Closed real intervals

I Upper bound of an interval I

I Lower bound of an interval I

mid(I) Midpoint of I (= I+I
2
)

rad(I) Radius of I (= I−I
2
)

{x1, .., xn} Set

⟨x1, .., xn⟩ Tuple

x⃗ Column vector

x⃗T Row vector

x |= C An assignment x satisfies constraint C

which means x = 1∧ y = 2. assignments(0 < x∧x < 1∧ y = 2) is equivalent

to {⟨i, 2⟩ | 0 < i < 1}. x < 0 ∧ 1 < x is inconsistent because there are no

possible assignments. A constraint 0 < x ∧ x < 1 ∧ y = 2 is entailed by a

constraint (x = 1
4
∨ x = 3

4
) ∧ y = 2.

2.3 Interval Arithmetic

Interval Arithmetic (IA) [28] is an arithmetic to guarantee the range of the

possible results of computation. We denote the universal set of intervals by I
in the thesis. Operations in IA are defined on closed intervals of real numbers.

In IA, both the range of computational errors and uncertain quantities can

be expressed by intervals.

2.3 Interval Arithmetic 9

Example 2. Let A and B be real intervals. The basic four operations in IA

are defined as follows:

A+B = [A+B,A+B]

A−B = [A−B,A−B]

A×B =

[min(A×B,A×B,A×B,A×B),max(A×B,A×B,A×B,A×B)]

A / B = A× [1/B, 1/B] if 0 /∈ B

In computation on actual computers, we use floating-point numbers com-

plying with the IEEE 754 standard [17] as endpoints of intervals. We have to

carefully handle rounding directions in computation of floating-point num-

bers to conservatively approximate the result intervals. For example, in the

four operations in Example 2, we have to round down the results for lower

bounds and round up the results for upper bounds.

If primitive operations in IA are provided, we can construct an inclu-

sion function F (X) of an arbitrary function f(x) that can be expressed by

combination of the primitive operations such that

F (X) ⊇ {f(x) : x ∈ X}.

However, ordinary IA has some disadvantages such as the wrapping ef-

fect and the dependency problem, which lead to increase of the widths of

computed intervals. The wrapping effect is an effect that arises from the

representation of uncertain values in IA, that is, axis-aligned boxes.

Example 3. Consider a two-dimensional box B0 := ([−1, 1], [−1, 1])T and

rotated boxes defined by

Bn+1 :=

(
1√
2

− 1√
2

1√
2

1√
2

)
Bn.

If we compute B1 by IA, it results in

B1 = (
1√
2
× [−1, 1]− 1√

2
× [−1, 1],

1√
2
× [−1, 1] +

1√
2
× [−1, 1])T

= ([−
√
2,
√
2], [−

√
2,
√
2])T .

10 2 Preliminaries

Figure 2.1: Example of wrapping effect

The rotation is graphically shown in Fig. 2.1. The area of B1 is twice

as large as B0. B1 wraps rotated B0 by an axis-aligned box, that is why it

is called the “wrapping effect”. If we continue to compute the series of the

boxes, the area of Bn increases exponentially.

The dependency problem is a problem that is caused by ignoring the

dependencies between uncertain quantities.

Example 4. An extreme case of the dependency problem arises in estimation

of f1(x) = x−x in IA. Consider an input interval I1 = [−2, 2]. The resultant

estimation of the inclusion function F1(X) is F1(I1) = [−2, 2] − [−2, 2] =

[−4, 4], while the ideal value of f1(x) exactly equals zero for any inputs.

In the above example, we can improve the answer by evaluating x−x into

2.4 Affine Arithmetic 11

0 in advance. However, such a policy cannot be taken in general cases. The

dependency problem takes an effect in any functions that include multiple

occurrences of the same variables.

There have been many proposals that address these problems [14][1][28].

Affine arithmetic (AA) [8], one of those methods, is an extended version of

IA focusing on the first-order dependencies of intervals.

2.4 Affine Arithmetic

Affine arithmetic (AA) [8] is a method to enclose the results of numerical

computation. AA handles the dependency problem of interval arithmetic by

preserving the first-order dependencies between quantities. In AA, a quantity

X is represented with the form (called an affine form)

X = x0 + x1ϵ1 + · · ·+ xnϵn.

Here, the ϵi’s are symbolic parameters called noise symbols representing un-

certain values within [−1, 1]; x0 is called the central value; and the xi’s (i > 0)

are called the partial deviations. An ϵi occurring in two or more quantities

represents the dependencies between them. Each quantity of AA can be

transformed into an interval [x0 −
∑n

i=1 xi, x0 +
∑n

i=1 xi].

Figure 2.2 shows a two-dimensional area expressed by affine forms, which

is denoted by the blue shape. The dashed line shows a corresponding interval

box. In general, a tuple of affine forms can express a zonotope, that is, a

convex polytope that is symmetric with respect to the central point. In

other words, each pair of opposite edges of a zonotope is parallel.

Example 5. Consider two affine forms

X = x0 + x1ϵ1 + · · ·+ xnϵn

Y = y0 + y1ϵ1 + · · ·+ ynϵn.

Affine operations such as addition, subtraction and constant multiplication

are defined as follows.

X ± Y = (x0 ± y0) + (x1 ± y1)ϵ1 + · · ·+ (xn ± yn)ϵn

aX = ax0 + ax1ϵ1 + · · ·+ axnϵn.

12 2 Preliminaries

Figure 2.2: Comparison of interval box and affine form

For each operation, new noise symbols are introduced to handle rounding

errors of floating-point arithmetic and approximation errors for non-affine

operations. In AA, using more noise symbols may produce more accurate

results but with higher computational costs. To control the trade-off between

accuracy and cost, an algorithm to reduce noise symbols has been proposed

[18]. The reduction algorithm removes a given number of noise symbols

whose influences to quantities are the smallest. Our proposed method uses

the reduction algorithm at each discrete change (see Chapter 4).

Chapter 3

HydLa: A Constraint-based

formalism of Hybrid Systems

In this chapter, we introduce our formalism of hybrid systems named HydLa,

which can be taken as an input by the proposed simulation algorithm (Chap-

ter 4). Several modeling formalisms for hybrid systems have been proposed

[3]. Hybrid automata [15] are the most famous, which express discrete

changes by edges and continuous evolutions by nodes. Hybrid automata

enable flexible modeling using invariants, flows, resets and guards. However,

users have to enumerate all possible states of models as nodes. Acumen [39]

and KeYmaera [30] employ different modeling methods based on imperative

programming languages.

HydLa [34] is a constraint-based language for hybrid systems. HydLa em-

ploys a constraint-based formalism in modeling. HydLa directly uses mathe-

matical notations as much as possible aiming at easy understanding by non-

programmers such as mathematicians, physicists and so on. A constraint-

based formalism is declarative but yet provides the language with control

structures including synchronization and conditionals. Moreover, it allows

us to handle uncertainties in a smooth way; that is, a constraint-based lan-

guage naturally lends itself to symbolic execution of programs with symbolic

parameters. There is another modeling language of hybrid systems based on

constraints, named Hybrid CC[4][13]. The main difference between Hybrid

CC and HydLa is that HydLa also features constraint hierarchies [2]. A con-

straint hierarchy in HydLa consists of a partially ordered set of constraints

derived from priorities among them. This feature enables HydLa program-

mers to describe exceptional behaviors and default behaviors of models sim-

13

14 3 HydLa: A Constraint-based formalism of Hybrid Systems

ply and naturally.

3.1 Syntax

Figure 3.1 shows the abstract syntax of HydLa. A HydLa program consists of

definitions and declarations of constraints. In HydLa, all variables are func-

tions w.r.t. time implicitly. A hydla program declares constraints that have

to be satisfied by variables. Each constraint definition describes properties

that hold at time 0.

In a definition DF, we can define a named constraint (cname) or a named

constraint hierarchies (dname) with arguments (X⃗). The names cname and

dname are denoted by capitalized strings. Constraints allow conjunctions

of constraints and implications. The antecedents of implications are called

guards and we can use disjunctions and conjunctions in a guard. “□” is a

temporal operator which means that the constraint always holds from the

time point at which the constraint is enabled. Each variable is denoted

by a string starting with lower case (vname). The notation vname′ means

the derivative of vname, and vname− means the left-hand limit of vname.

As a syntactic sugar, we can use chains of relational expressions such as

0 < x < y < 1, which means 0 < x ∧ x < y ∧ y < 1. Table 3.1 shows the

correspondence between the abstract syntax and the concrete one.

In a declaration DC, we declare constraints with priorities between them.

The operator “≪” describes a weak composition of constraints. For example,

A ≪ B means that the constraint A is weaker than B. If we declare a con-

straint without “≪”, it means that there is no priority about the constraint.

The operator “≪” has a higher precedence than “,”. The unit of constraints

that is prioritized is called a module or a constraint module. We describe

detailed semantics of priorities in Section 3.2.1.

Example 6. Figure 3.2 shows a HydLa program of a bouncing ball model. In

this model, y represents the distance between the ball and the ground. INIT

describes the initial position and the initial velocity of the ball. FALL describes

the constant acceleration of the ball by the gravity. BOUNCE describes bouncing

of the ball on the ground. The coefficient of restitution is 4/5. The bottom

line is the declaration of the constraint hierarchy of this model.

3.1 Syntax 15

� �
(hydla program) P ::= (DF | DC)*

(definition) DF ::= dname(X⃗){DC} | cname(X⃗) ⇔ C

(constraint) C ::= A | C ∧ C | G ⇒C | □C | cname(E⃗)

(guard) G ::= A | G ∧G | G ∨G

(atomic constraint) A ::= E RO E

(relational operator) RO ::= = | ≠ | < | ≤ | > | ≥
(expression) E ::= E AO E | P | constant

| unary function(E)

(arithmetic operator) AO ::= + | − | × | ÷ | ˆ
(previous) P ::= D | D−

(derivative) D ::= vname | vname′

(declaration) DC ::= M | DC, DC | DC ≪ DC

| dname(E⃗)

(module) M ::= C� �
Figure 3.1: Syntax of HydLa

16 3 HydLa: A Constraint-based formalism of Hybrid Systems

Table 3.1: Correspondence between abstract and concrete syntax

Abstract Concrete

≪ <<

⇔ <=>

≤ <=

≥ >=

̸= !=

∧ /\ or &

∨ \/ or |

□ []

� �
INIT <=> y = 10 /\ y’ = 0.

FALL <=> [](y’’ = -10).

BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’-).

INIT, FALL << BOUNCE.� �
Figure 3.2: HydLa program of bouncing ball

3.2 Semantics

In this section, we describe the semantics of HydLa. The declarative meaning

of a HydLa program is a set of hybrid trajectories that satisfy the specification

given in the program [35]. The definition of a hybrid trajectory is as follows.

Definition 1. A hybrid trajectory is a finite sequence

x̄ = ⟨x⃗d1, ⟨x⃗c1(τ), τ1⟩, x⃗d2, ⟨x⃗c2(τ), τ2⟩, . . . , x⃗dn, ⟨x⃗cn(τ), τn⟩⟩, wherein each x⃗di

(1 ≤ i ≤ n) is a tuple that represents the values of variables at each time

point and x⃗ci(τ) (1 ≤ i ≤ n) is a tuple of functions that represents the

values of variables w.r.t. time for each time interval (τi−1, τi). Each τi means

the end point of a time interval for each continuous change. For every τi,

τi−1 < τi (1 ≤ i ≤ n) holds wherein τ0 = 0.

A trajectory x̄ can take an argument of time and its definition is as follows.

3.2 Semantics 17

Figure 3.3: Trajectory of bouncing ball

Definition 2.

x̄(t) =

{
x⃗di (t = τi−1)

x⃗ci(t) (τi−1 < t < τi)

Example 7. Figure 3.3 shows a trajectory of a bouncing ball model for three

bounces. The trajectory is expressed as a hybrid trajectory ȳbb = ⟨10, ⟨10 −
5t2,

√
2⟩, 0, ⟨−(5t2 − 18

√
2t + 26), 13/5

√
2⟩, 0, ⟨(−1/25) × (125t2 − 810

√
2 +

2522), 97/25
√
2⟩⟩. All of the following conditions hold for ȳbb; {ȳbb(0) = 10,

ȳbb(1) = 5, ȳbb(
√
2) = 0}.

The semantics is given to basic HydLa, which can be obtained from orig-

inal HydLa by transforming constraint hierarchies in HydLa programs into a

partially ordered set of constraint module sets. Hence we first describe how

we obtain a basic HydLa program from an original HydLa program.

3.2.1 Solving Constraint Hierarchy

A basic HydLa program is obtained from a HydLa program by translating the

specification of priorities between individual constraint modules in Fig. 3.1

18 3 HydLa: A Constraint-based formalism of Hybrid Systems

Figure 3.4: Example of constraint hierarchy

into a partially ordered set of the subsets of modules that observe the priority

specification, where the partial order is given by subset inclusion. Each

subset MS is called a candidate module set and it must satisfy the following

conditions.

∀M1,M2((M1 ≪ M2 ∧M1 ∈ MS) ⇒ M2 ∈ MS) (3.1)

∀M(¬∃(R ≪ M) ⇒ R ∈ MS) (3.2)

The intuitive meaning of Condition 3.1 is that if a module M1 is contained in

MS then all modules with higher priority than M1 are also contained in MS.

The intuitive meaning of Condition 3.2 is that if a module R has no modules

with higher priority than R, R is necessarily contained in MS.

A basic HydLa program is a minimum partially ordered set that contains

all candidate module sets that satisfy Conditions 3.1 and 3.2.

Example 8. Consider a declaration of the following constraint hierarchy.

A DEF ≪ A EX,B DEF ≪ B EX1 ≪ B EX2.

In this hierarchy, A EX and B EX2 are contained in all candidate module

sets because of Condition 3.2. B DEF can be adopted only if B EX1 is in the

module set. As a result, we obtain the partially ordered set in Fig. 3.4.

3.2.2 Semantics of Basic HydLa

In this section, we define the semantics of basic HydLa by defining the relation

between a trajectory and a basic HydLa program.

3.2 Semantics 19

We regard constraints in a HydLa program as functions w.r.t. time, that

is, C(0) = C,C(t) = {} (t > 0). We identify a set of constraints with a

conjunction of them so that C1, C2 is equivalent to C1 ∪ C2. For C(t), we

introduce □-closure C∗(t) such that

• ∀t(C(t) ⊆ C∗(t))

• ∀t(□a ∈ C∗(t) ⇒ ∀t′ ≥ t(a ⊆ C∗(t′)))

• C∗(t) is the minimum set that satisfies above two conditions w.r.t.

every t

As we can see, the intuitive meaning of C∗(t) is a set of constraints that are

valid at each time point. For example, let C = {x = 10, x′ = 0,□(x′′ =

−10)}, then C∗(0) = {x = 10, x′ = 0, x′′ = −10,□(x′′ = −10)}, C∗(t) =

{x′′ = −10}.
Figure 3.5 shows the semantics of basic HydLa, which is in the form of

relation between a basic HydLa program P and a pair of a trajectory x̄ and

the following function Q(M)(t). Q(M)(t) is a set of expanded constraints

for each module M at each t. A constraint is expanded in Q(M)(t) iff the

constraint has no guard or the guard of the constraint is entailed (described

at lines s3). Q(M)(t) is necessary to handle guarded constraints whose con-

sequents involve “□” operators because the validness of such consequents are

dependent on which guards are entailed in the past.

Example 9. Consider Q1(M1)(t) = {□(y− = 0 ⇒ □(y′ = 0))} (0 <

t < t1). If the guard y− = 0 is entailed at t1, the constraint □(y′ = 0)

is newly expanded, and Q1(M1)(t1) = {□(y− = 0 ⇒ □(y′ = 0)),□(y′ =

0)}, Q1(M1)(t) ⊇ {□(y− = 0 ⇒ □(y′ = 0)),□(y′ = 0)} (t > t1) holds.

Condition (i) in Fig. 3.5 requires that Q(M) is a □-closure of Q(M) itself.

Condition (ii) requires that Q(M) is a □-closure for each M . The line (s0)

in Condition (iii) describes that a selected candidate module set can change

at each t. The line (s1) requires that the trajectory x̄(t) satisfies the selected

modules. The lines (s2) requires that there is no “better” trajectory x̄′(t)

that is equivalent to x̄(t) before t and satisfies a module set with higher

priority than x̄(t) at t. Here, if there is no consistent candidate module set

with higher priority than a consistent candidate module set MS, MS is called

a maximal consistent module set.

20 3 HydLa: A Constraint-based formalism of Hybrid Systems

� �
⟨x̄(t), Q⟩ |= P ⇔ (i) ∧ (ii) ∧ (iii) ∧ (iv) wherein

(i) ∀M ∈ P (Q(M) = Q(M)∗)

(ii) ∀M ∈ P (M∗ ⊆ Q(M))

(iii) ∀t∃E ∈ P ((s0)

(x̄(t) |= {Q(M)(t) | M ∈ E}) (s1)

∧ ¬∃x̄′∃E ′ ∈ P ((s2)

∀t′ < t(x̄′(t′) = x̄(t′)) ∧ E ≺ E ′ (s2)

∧ x̄′(t) |= {Q(M)(t) | M ∈ E ′}) (s2)

∧ ∀d∀e∀M ∈ E((x̄(t) ⇒ d) ∧ ((d ⇒ e) ∈ Q(M)(t)) (s3)

⇒ e ⊆ Q(m)(t))) (s3)

(iv) Q(M)(t) is the minimum set that satisfies(i)− (iii)� �
Figure 3.5: The definition of ⟨x̄(t), Q⟩ |= P

3.3 Example Program

Figure 3.6 shows an overview of an example model cited from [7], and Fig. 3.7

shows a HydLa program corresponding to the model. There are two water

tanks. The water of the first tank flows into the second tank through a pipe.

The variables x1 and x2 represent the water level of each tank, while v1 and

v2 represent the state of the valve in each tank, where vi = 1 (0) means that

the valve is open (closed), respectively.

The constraint INIT describes the initial state of the system. In this

model, the initial water level of the first tank is uncertain but satisfies 1.9 ≤
x1 ≤ 1.9001. The constraints X1 and X2 are about the continuous behavior of

each water level. The variable x1’ denotes the time derivative dx1/dt. The

constraints V1 CONST and V2 CONST state that v1 and v2 are constant, which

is the default behavior. V1 OFF2ON, V1 ON2OFF, V1V2 OFF2ON and V2 ON2OFF

are constraints for opening and closing of valves. The post-fix minus sign in

x1- denotes the left hand limit limtl↑t x1(tl). The last three lines declare the

priorities of all these constraints by introducing partial order using <<. They

say that the states of the valves are constant except when the water level

reaches the thresholds. Constraints other than Vi CONST are always enabled

because they have no modules with higher priorities.

3.4 List Notation 21

Figure 3.6: Model overview of two water tanks

� �
INIT <=> 1.9 <= x1 <= 1.9001 /\ x2 = 1 /\ v1 = 0 /\ v2 = 1.

X1 <=> []((v1 = 0 => x1’ = -x1 - 2) /\ (v1 = 1 => x1’ = -x1 + 3)).

X2 <=> []((v2 = 0 => x2’ = x1) /\ (v2 = 1 => x2’ = x1 - x2 - 5)).

V1_CONST <=> [](v1’ = 0).

V2_CONST <=> [](v2’ = 0).

V1_OFF2ON <=> [](v1- = 0 /\ x1- = -1 => v1 = 1).

V1_ON2OFF <=> [](v1- = 1 /\ v2- = 1 /\ x1- = 1 => v1 = 0).

V1V2_OFF2ON <=> [](v2- = 0 /\ x2- = 1 => v2 = 1 /\ v1 = 0).

V2_ON2OFF <=> [](v2- = 1 /\ x2- = 0 => v2 = 0).

INIT, X1, X2,

(V1_CONST, V2_CONST)

<< (V1_OFF2ON, V1_ON2OFF, V1V2_OFF2ON, V2_ON2OFF).� �
Figure 3.7: HydLa program of two water tanks

3.4 List Notation

In modeling of hybrid systems, we often come across necessity to introduce

multiple similar objects. We provide HydLa with a list notation to easily

describe models with multiple objects. The syntax with the list notation is

shown in Fig. 3.8. We introduce two types of lists here.

The first type is a list of priority definitions (priority list, PL). A priority

22 3 HydLa: A Constraint-based formalism of Hybrid Systems

list can be denoted by an extensional notation of the form {MP1,MP2, . . . ,MPn}
or an intensional notation of the form {MP | LC1,LC2, . . . ,LCn}. For ex-

ample, {INIT(i) | i in {1,2,3,4}} is equivalent to {INIT(1),INIT(2),

INIT(3),INIT(4)}. If a HydLa program includes declarations of priority

lists, the elements of the lists are expanded, that is, a declaration of {A,B,C}
is equivalent to A,B,C.

The second type is a list of arithmetic expressions (expression list, EL).

We can denote an expression list in an extensional or intensional notation

as well as a priority list. In addition, we can use range expressions in the

form of {RE ..RE}. RE is an arithmetic expression without variables or an

arithmetic expression with a variable whose name terminates with a number

such as x0 and y1.

Example 10. An expression list {1*2+1..5} is equivalent to {3,4,5}. An

expression list {j | i in {1,2}, j in {i+1..4}} is equivalent to {2,3,4,3,

4}. An expression list {x1..x3} is equivalent to {x1, x2, x3}.

We can access the n-th element of a list L by L[n]. The index allows an

arbitrary expression that results in an integer. The size of a list L is denoted

by |L|, which can be used as a constant value in a HydLa program. Figure 3.9

shows an example program with the list notation. The program expresses

one-dimensional billiard with 10 balls. Note that a HydLa program with the

list notation can be statically transformed into a HydLa program without

the list notation. In our implementation (Chapter 5), the list notation is

preprocessed and expanded in advance of simulation.

3.4 List Notation 23

� �
(hydla program) P ::= (DF | DC)*

(definition) DF ::= MPname(X⃗){MP} | cname(X⃗) ⇔ C

| ELname := EL | PLname := PL

(constraint) C ::= A | C ∧ C | cname(E⃗)

(list condition) LC ::= MPname in PL | Iterator in EL

| E ̸= E

(priority list) PL ::= {MP (,MP)*} | {MP | LC (,LC)*}
| PLname

(module priority) MP ::= M | MPname(E⃗) | MP,MP

| MP ≪ MP

(guard) G ::= A | G ∧G | G ∨G

(atomic constraint) A ::= E RO E

(relational operator) RO ::= = | ≠ | < | ≤ | > | ≥
(expression) E ::= E AO E | P | constant | EL[E]

(expression list) EL ::= {E (, E)*} | {E | LC (,LC)*}
| ELname | {RE ..RE}

(arithmetic operator) AO ::= + | − | × | ÷ | ˆ
(previous) P ::= D | D−

(derivative) D ::= vname | vname′

(declaration) DC ::= M | DC, DC | DC ≪ DC

| dname(E⃗) | PL | PL[E]

(module) M ::= C� �
Figure 3.8: Syntax of HydLa with list notation

24 3 HydLa: A Constraint-based formalism of Hybrid Systems

� �
INIT(b, b0, vb0) <=> b = b0 /\ b’ = vb0.

COL(b1, b2) <=> [](b1- = b2- => b1’ = b2’- /\ b2’ = b1’-).

CONST(b) <=> [](b’’ = 0).

X := {x0..x9}.

INITS := { INIT(X[i], 2*i-2, 0) | i in {2..|X|} }.

COL_HIERARCHY := { (CONST(X[i]), CONST(X[j])) << COL(X[i], X[j])

| i in {1..|X|-1}, j in {i+1..|X|} }.

INIT(X[1], 0, 1), INITS, COL_HIERARCHY.� �
Figure 3.9: A model of one-dimensional billiard with list notation

Chapter 4

Simulation Algorithm of

Hybrid Systems

In this chapter, we introduce a simulation algorithm of hybrid systems. This

simulation algorithms takes a basic HydLa program as input and computes

trajectories of the HydLa program symbolically. First, we describe an al-

gorithm that does not adopt interval arithmetic, that is, a fully symbolic

algorithm. This algorithm performs symbolic execution of HydLa programs

in which uncertainties of input models are handled as symbolic parameters.

It is based on consistency checking of conjunctions of constraints and op-

timization techniques. The output of the algorithm is a set of all possible

trajectories of the given program. The resultant set may consist of qualita-

tively different trajectories caused by the branching of the model’s behavior.

Such information is useful in performing accurate case analysis of HydLa

models.

After that, we describe an algorithm that integrates interval arithmetic

with the fully symbolic algorithm. This version computes an over-approximation

of a set of possible trajectories by computing the enclosures of symbolic for-

mulas.

4.1 Symbolic Simulation

Figure 4.1 shows the algorithm of the fully symbolic simulation. This algo-

rithm takes a basic HydLa program as input and computes a set of trajecto-

ries as output. The resultant set of trajectories are computed implicitly from

25

26 4 Simulation Algorithm of Hybrid Systems

the sets of constraints that are enabled at each phase of the simulation. In

this algorithm, we use a function named GetElement to express nondetermin-

istic points of the procedure. GetElement nondeterministically chooses one

element from a given set with which we continue simulation. To compute all

possible trajectories, we trace all possibilities about each call to GetElement.

The algorithm alternates two phases: Point Phase (PP) for handling discrete

changes and Interval Phase (IP) for handling continuous evolutions. In this

algorithm, we compute a constraint store S on each phase. A constraint store

is a conjunction of constraints that has to be satisfied. E denotes a set of

expanded consequents with “□” operators such as the consequent □(y = 0)

of a constraint x = 0 ⇒ □(y = 0). Elements of E are added when the guards

are entailed for the first time in simulation.

In each phase, we compute a maximal consistent set (MCS) of constraints

in accordance with the declarative semantics of HydLa and put the set of

constraints into S and conditions on symbolic parameters into P (lines 10

and 16). MCS is a higher-order function that takes a consistency-checking

function (see Section 4.1.2 and Section 4.1.3) for the corresponding phase.

If S is false as a result of MCS in lines 12 and 19, we can conclude that

given HydLa program has no further valid trajectory because there are no

consistent module sets. Subst in line 9 is to reflect the current time into the

current constraint store S.

At the end of a Point Phase, we introduce parameters corresponding to

uncertain values of variables at that time point by AddParameters. In an

Interval Phase, we compute an MCS again, this time obtaining a set A+

of enabled guards and a set A− of disabled guards as well (line 16). Then

we solve differential equations analytically in S (line 17) and compute the

time of the next discrete change, called events (line 22). Subst reflects the

solutions of ODEs in S into g and ¬g. In general, there may exist multiple

candidates of the time of events due to uncertainties of parameter values.

For example, consider the case where the trajectory of x(t) is described by

formulas x(t) = −(t− 1)2 + x(0), −1.5 ≤ x(0) ≤ 1.5, and events occur when

x(t) = 1 ∨ x(t) = −10. In this case, two candidates of the time of events

exist. The first candidate is t = 1 −
√

x(0)− 1 with 1 ≤ x(0) ≤ 1.5 and

the second candidate is t = 1 −
√

x(0)− 9 with −1.5 ≤ x(0) < 1. Such

multiple candidates appear only if the condition of parameters include a

kind of corner cases (e.g., a ball touches a roof but does not collide with the

roof). FindMinTime computes the earliest time when the given constraint is

4.1 Symbolic Simulation 27

� �
Input: HydLa: basic HydLa program,

MaxT : maximum simulation time
1: MS := TopologicalSort(HydLa) // list of candidate sets of constraints
2: V := GetVariables(HydLa)
3: T := 0 // current time
4: S := true // current constraint store
5: P := true // constraints on symbolic parameters
6: E := ∅ // expanded consequents
7: while T< MaxT do
8: // Point Phase (PP)
9: S := Subst(S, T)
10: (S,P, E, ,) := MCS (S,MS, E,P, T,CheckConsistencyPP)
11: if S = false then
12: break
13: end if
14: (S,P) := AddParameters(S,P, V)
15: // Interval Phase (IP)
16: (S,P, E,A−, A+) := MCS (S,MS, E,P, T,CheckConsistencyIP)
17: S := SolveDifferentialEquation(S)
18: if S = false then
19: break
20: end if
21: (MinT,P) := GetElement(CompareMinTime(

(
⋃

(g⇒c)∈A−
FindMinTime(Subst(g, S), P))

∪ (
⋃

(g⇒c)∈A+
FindMinTime(Subst(¬g, S), P))

∪ {(MaxT−T , true)}))
22: T := MinT+ T
23: end while� �

Figure 4.1: Algorithm of the symbolic simulation

satisfied using constraint optimization techniques. FindMinTime returns a

set of pairs of candidate time and the condition of symbolic parameters where

the candidate time is the earliest time. The specification of FindMinTime

can be described as follows.

FindMinTime(C,P) = {(tm, Pnew) | tm > 0 ∧ (Pnew ⇒ P)

∧ ∀p ∈ assignments(Pnew)(consistent(C ∧ t = tm ∧ Vp = p))

∧ ¬∃to(0 < to < tm

∧ ∃p ∈ assignments(Pnew)(consistent(C ∧ t = to ∧ Vp = p)))}

28 4 Simulation Algorithm of Hybrid Systems

wherein Vp is a tuple of symbolic parameters.

CompareMinTime takes a set of results of FindMinTime as input and

chooses the earliest time under each condition of parameters. The specifica-

tion of CompareMinTime can be described as follows.

CompareMinTime(S) = {(tm, P) | ∃(tm, P1) ∈ S((P ⇒ P1)

∧ ¬∃(t2, P2) ∈ S(t2 < tm ∧ consistent(P ∧ P2)))}

If we have multiple candidates as a result of CompareMinTime, GetElement

chooses one element from those candidates and simulation continues.

4.1.1 Calculation of Maximal Consistent Set

Figure 4.2 shows the algorithm of MCS. This function computes the maximal

consistent set of each phase. We check the consistency of elements inMS from

the largest one by CalculateClosure. The return value includes additional

information about the maximal consistent set such as a set of entailed guards

and so on.

4.1.2 Consistency Checking in Point Phase

Figure 4.3 shows the algorithm of consistency checking in PP. First we com-

pute the set V of variables that appear in the constraint store. Next we check

if there is any possible assignment to the variables that satisfies the constraint

store S and the constraint P on the symbolic parameters at the same time

(line 2). For this purpose, we solve logical formulas with an existential quan-

tifier by quantifier elimination. The resultant constraint Ptmp corresponds

to conditions of symbolic parameters in which the constraint store is satisfi-

able. If such a condition does not exist (in the case where Ptmp = false) this

function returns false and the original constraints on symbolic parameters P.

If such a condition exists, we check if Ptmp is equivalent to P . If they are

equivalent, the constraint store is consistent in all cases, therefore we return

true and the original constraint on symbolic parameters P. If they are not

equivalent, the consistency of the constraint store depends on the condition

of symbolic parameters, therefore the result branches into two cases (line 8).

4.1 Symbolic Simulation 29

� �
Input: S: constraint store, MS : list of candidate constraint sets,

E: set of expanded always consequents,
P : constraint on symbolic parameters,
T : current time, CheckConsistency : function for consistency checking

Output: constraint store, constraint on symbolic parameters, set of expanded
always, maximal consistent set, set of not entailed guards, set of entailed
guards

1: for M ∈ MS do
2: if T > 0 then
3: M := EliminateNotAlways(M)
4: end if
5: (Stmp, Etmp,P, A−, A+) :=
6: CalculateClosure(S,M,P, E,CheckConsistency)
7: if Stmp ̸= false then
8: return (Stmp,P, Etmp,M,A−, A+)
9: end if
10: end for
11: return (false,P, E, ∅, ∅, ∅)� �

Figure 4.2: Algorithm of MCS

4.1.3 Consistency Checking in Interval Phase

Figure 4.4 shows the algorithm of CheckConsistencyIP. This function is sim-

ilar to CheckConsistencyPP except two differences. The first difference is

that it solves ODEs in S symbolically and obtain a constraint store St w.r.t.

time. The second difference is that it checks satisfiability not on the time

point but in the right neighborhood of the time point (line 3). Inf means

the infimum of a given set.

4.1.4 Calculation of Closure of Constraints

Figure 4.5 shows the algorithm of CalculateClosure. This function computes

closures of the given constraint store. Such closures can be obtained by

repeating

• consistency checking (line 4),

• checking the entailment of guards (lines 11–17), and

• addition of the consequents of guards that are entailed (lines 19–20)

30 4 Simulation Algorithm of Hybrid Systems

� �
Input: S: constraint store, P: constraint on symbolic parameters
Output: consistency of S, new constraint on symbolic parameters
1: V := GetVariables(S)
2: Ptmp := ∃V (S ∧ P)
3: if Ptmp = false then
4: return (false,P)
5: else if Ptmp = P then
6: return (true,P)
7: else
8: return GetElement({(true,Ptmp), (false,P ∧ ¬Ptmp)})
9: end if� �

Figure 4.3: Algorithm of CheckConsistencyPP

� �
Input: S: constraint store, P: constraint on symbolic parameters
Output: satisfiability of S, new constraint on symbolic parameters
1: St := SolveDifferentialEquation(S)
2: V := GetVariables(St)
3: Ptmp := ∃V (Inf {t | ∃t(St ∧ t > 0)} = 0 ∧ P)
4: if Ptmp = false then
5: return (false,P)
6: else if Ptmp = P then
7: return (true,P)
8: else
9: return GetElement({(true,Ptmp), (false,P ∧ ¬Ptmp)})
10: end if� �

Figure 4.4: Algorithm of CheckConsistencyIP

until the constraint store reaches a fixed point (line 23, ¬Expanded). If

there is a guard whose entailment cannot be determined, we put the guarded

constraint into BranchedAsk temporarily (line 15). If the entailment remains

undetermined until the loop terminates, we analyze two cases (lines 24–39).

In the first case, the guard of BranchedAsk is assumed to be entailed (lines

26–27), and in the second case, the guard of BranchedAsk is assumed to

be not entailed (lines 28–29). If both cases are consistent, the simulation

branches into two cases (lines 30–31).

4.1 Symbolic Simulation 31

� �
Input: Sprev: constraints on variables in the previous phase, M : module set

whose consistency is to be checked, P : constraint on symbolic parame-
ters, E: set of expanded consequents, CheckConsistency(S): function for
consistency checking

Output: new constraint store, new set of expanded consequents, new con-
straint on symbolic parameters, set of not entailed guards, set of entailed
guards

1: (A+, A−) := CollectAsk(M,E);
2: repeat
3: S :=CollectTell(M,A+, Sprev);
4: (TF,P) :=CheckConsistency(S,P)
5: if TF = false then
6: return (false, ∅,P, ∅, ∅)
7: end if
8: Expanded := false
9: BranchedAsk := ∅
10: for (g ⇒ c) ∈ A− do
11: (TF,P) :=CheckConsistency(S ∧ g,P)
12: if TF ̸= false then
13: (TF,P) :=CheckConsistency(S ∧ ¬g,P)
14: if TF ̸= false then
15: BranchedAsk := (g ⇒ c)
16: continue
17: end if
18: Expanded := true
19: (A−, A+, E) :=
20: ExpandAsk(A−, A+, E, (g ⇒ c))
21: end if
22: end for
23: until ¬Expanded
24: if BranchedAsk ̸= ∅ then
25: g := GetGuard(BranchedAsk)
26: (Str, Etr,Ptr, A−tr, A+tr) :=
27: CalculateClosure(S ∧ g,M,P, E, CheckConsistency)
28: (Sfa, Efa,Pfa, A−fa, A+fa) :=
29: CalculateClosure(S ∧ ¬g,M,P, E, CheckConsistency)
30: if Str ̸= false ∧ Sfa ̸= false then
31: return GetElement({

(Str, Etr,Ptr, A−tr, A+tr), (Sfa, Efa,Pfa, A−fa, A+fa)})
32: else if Str ̸= false then
33: return (Str, Etr,Ptr, A−tr, A+tr)
34: else if Sfa ̸= false then
35: return (Sfa, Efa,Pfa, A−fa, A+fa)
36: else
37: return (false, ∅,P, ∅, ∅)
38: end if
39: end if
40: return (S,E,P, A−, A+)� �

Figure 4.5: Algorithm of CalculateClosure

32 4 Simulation Algorithm of Hybrid Systems

� �
INIT <=> 9 <= y /\ y <= 11 /\ y’ = 10.
FALL <=> [](y’’ = -10).
BOUNCE <=> [](y- = 15 => y’ = -4/5 * y’-).

INIT, (FALL << BOUNCE).� �
Figure 4.6: HydLa program of throwing up a ball

4.1.5 Example of Symbolic Simulation

As an example of the symbolic simulation algorithm shown in Fig. 4.1, we

follow the execution of the program shown in Fig. 4.6 with MaxT (> 1). MS,

Mall and V are {{INIT, FALL, BOUNCE}, {INIT, BOUNCE}}, {INIT, FALL, BOUNCE}
and {y, y’, y’’}, respectively.

The procedure enters the first PP. Subst substitutes the current time T

(= 0) into the constraint store S. However, S is empty hence it has no

effect. In this PP, the maximal consistent set is {INIT, FALL, BOUNCE} and

we obtain 9 ≤ y ≤ 11 ∧ y’ = 10 ∧ y’’ = −10 as the constraint store. Here

the value of y has uncertainty, therefore we introduce a symbolic parameter

py that corresponds to the value of y at the initial time. We add a constraint

9 ≤ py ≤ 11 into P and modify S to y = py ∧ y’ = 10 ∧ y’’ = −10.

Next, the procedure enters IP. The maximal consistent set in this phase

is {INIT, FALL, BOUNCE}, which is the same as the previous one. Note that

INIT and BOUNCE have no effect because INIT is not on the initial time

and the guard of BOUNCE is not entailed, respectively. The corresponding

constraint store is computed as y(0) = py ∧ y’(0) = 10 ∧ y’’(t) = −10.

SolveDifferentialEquation solves this constraint store and obtains y(t) =

py + 10t − 5t2 ∧ y’(t) = 10 − 10t ∧ y’’(t) = −10. In the computation

of FindMinTime with S and P , there are two candidates of the time of the

collision depending on the condition of the parameter. The first candidate is

1−
√

py/5− 2 where 10 ≤ py ≤ 11 and the second candidate is ∞ (the ball

does not reach the roof) where 9 ≤ py < 10. CompareMinTime compares

these two candidates with MaxT − T (= MaxT). If py ≥ 10 holds, then

1 −
√

py/5− 2 is put into MinT because MaxT − T is greater than 1 −√
py/5− 2, else MaxT is put into MinT. In this section, we follow the case

where py ≥ 10 holds. T equals 1−
√
py/5− 2 and it does not reach MaxT,

therefore the simulation goes into the next PP.

4.2 Symbolic Simulation with Interval Arithmetic 33

The next PP corresponds to the contact of the ball and the roof. In

the computation of MCS, the condition of py determines whether FALL and

BOUNCE contradict or not. If py is exactly equal to 10, the ball only touches

the roof and the velocity does not change discretely. On the other hand, if

py > 10 holds, FALL and BOUNCE contradict and FALL is removed from the

constraint store because of its weak priority. Here, we follow the case where

py > 10. The maximal consistent set is {INIT, BOUNCE} and the resultant

constraint store is y = 15 ∧ y’ = −10
√

py/5− 2.

Afterwards, the simulation enters the next IP. In this example, no further

discrete change occurs, hence this IP is the last phase of the simulation.

The enabled constraints of this IP is the same as those of the preceding IP

except the constraints about the initial value of y. As a result, we obtain the

constraint store y(t) = 15−10
√
py/5− 2t−5t2 ∧ y’(t) = 10

√
py/5− 2−

10t ∧ y’’(t) = −10.

4.2 Symbolic Simulation with Interval Arith-

metic

In this section, we describe the algorithm that integrates interval arithmetic

with the symbolic method we described in the previous section. Figure 4.7

shows the algorithm, which is a modified version of Fig. 4.1. There are three

differences from the original symbolic algorithm.

The first difference is that we compute enclosures of the ranges of symbolic

formulas by Enclose at line 15. This computation is performed by affine

arithmetic and comes with choices regarding how many noise symbols to

preserve in the reduction of noise symbols. We compare the influence of

the choice to the performance in Chapter 6. In this algorithm, all symbolic

parameters (say pi’s) in P are normalized to satisfy pi ∈ [−1, 1], with which

an uncertain quantity whose bounds are x and x can be represented as (x+

x)/2 + (x− x)/2× pi.

Example 11. If an uncertain quantity x = [−5/2, 1/2] appears in the simu-

lation, we introduce a new symbolic parameter pn+1 and express the quantity

by x = 1 + (3/2)pn+1.

By this transformation, we can directly handle such symbolic parameters

as noise symbols in affine arithmetic because the range of them are the same.

34 4 Simulation Algorithm of Hybrid Systems

� �
Input: HydLa: basic HydLa program,

MaxT : maximum simulation time
1: MS := TopologicalSort(HydLa) // list of candidate sets of constraints
2: V := GetVariables(HydLa)
3: T := 0 // current time
4: S := true // current set of constraints
5: P := true // constraints on symbolic parameters
6: Gp := ∅ // guards that caused the previous event
7: E := ∅ // expanded always consequents
8: while T< MaxT do
9: // Point Phase (PP)
10: S := Subst(S, T)
11: (S,P, E, ,) := MCS (S@Gp,MS, E,P, T,CheckConsistencyPP)
12: if S = false then
13: break
14: end if
15: (S,P) :=Enclose(AddParameters(S,P, V))
16: // Interval Phase (IP)
17: (S,P, E,A−, A+) := MCS (S@Gp,MS, E,P, T,CheckConsistencyIP)
18: S := SolveDifferentialEquation(S)
19: if S = false then
20: break
21: end if
22: (MinT,P , Gp) := GetElement(CompareMinTime(

(
⋃

(g⇒c)∈A−
FindMinTimeInterval(Subst(g, S), P,Gp))

∪ (
⋃

(g⇒c)∈A+
FindMinTimeInterval(Subst(¬g, S), P,Gp))

∪ {(MaxT−T , true)}))
23: T := MinT+ T
24: end while� �
Figure 4.7: Algorithm of the symbolic simulation with interval arithmetic

The second difference is that we pay attention to guards that cause the

discrete event, which are denoted by Gp. We pay attention to Gp at the calls

to MCS and FindMinTimeInterval because the interval solutions are not ex-

act ones and näıve handling of such non-exact solutions leads to redundant

case branching in the symbolic simulation (while the original algorithm in

Fig. 4.1 assumes that we exploits exact analytic solutions). By the notation

“S@Gp”, we denote a constraint store S with an assumption about Gp (lines

11 and 17), which means that we can use Gp as a necessarily satisfied con-

straint in the consistency checking of S. We describe how Gp is handled in

4.2 Symbolic Simulation with Interval Arithmetic 35

� �
Input: G : the guard represented as a constraint on t using the solution of

ODEs,
P : parameter conditions,
Gp: guards that caused the previous event

Output: tmin: minimum time at which the consistency of the guard changes,
glist: atomic guards whose consistency changes at tmin

1: glist := GetAtomicBoundaryConditions(G)
2: tlist := ∅; Mapg := ∅
3: for gb ∈ glist do
4: (sols, P) := ZeroCrossings(gb, P,Gp)
5: for sol ∈ sols do
6: tlist.add(sol, gb)
7: end for
8: Mapg.insert(gb,ConsistentAtInitialTime(gb, Gp))
9: end for
10: while tlist ̸= ∅ do
11: (tmin, glist) := PopMinTime(tlist, P)
12: (Mapg, satisfied) := CheckAndUpdateGuards(Mapg, glist, G)
13: if satisfied = true then
14: break
15: end if
16: end while� �

Figure 4.8: Algorithm of FindMinTimeInterval

FindMinTimeInterval later (Section 4.2.1).

The third difference is that we compute the time of discrete changes using

the interval Newton method and the mean value theorem in FindMinTimeIn-

terval. The specification of FindMinTimeInterval can be described as follows.

FindMinTimeInterval(C,P,Gp) = {(tm, Pnew) | 0 /∈ ϕ(tm, Pnew) ∧ (Pnew ⇒ P)

∧ ∃p ∈ assignments(P)(consistent(C ∧ t = tm ∧ Vp = p))

∧ ¬(∃to∃p ∈ assignments(P)(to < tm ∧ consistent(C ∧ t = to ∧ Vp = p)))}

wherein Vp is a tuple of symbolic parameters and ϕ(t, P) represents a set of

possible values of t under P . We describe the procedure of FindMinTimeIn-

terval in the next section. Note that FindMinTimeInterval does not handle

case branching caused by symbolic parameters, while original FindMinTime

is designed to handle such branching. This is because the interval Newton

method used in FindMinTimeInterval cannot handle such branching.

36 4 Simulation Algorithm of Hybrid Systems

4.2.1 Computation of Event Time with Interval Arith-

metic

The function FindMinTimeInterval computes the time of discrete events with

interval arithmetic. In a HydLa program, a discrete change is triggered when

the consistency of any guard in the program changes. A guard in a HydLa

program is described in the form of a system of equations and inequations.

Because we assume that the ODEs have solutions in closed form, a guard

can be regarded as a constraint w.r.t time, which is denoted by G(t). Thus,

the goal of FindMinTimeInterval is to compute the minimum (earliest) time

at which the consistency of the given constraint changes (from consistent to

inconsistent or vice versa).

Figure 4.8 shows the algorithm of FindMinTimeInterval. First, we com-

pute atomic boundary conditions from the given G(t) and substitute it into

glist by GetAtomicBoundaryConditions. Atomic boundary conditions can be

obtained by transposing the right-hand side terms to the left-hand side.

Example 12. The result of GetAtomicBoundaryConditions(t > 0 ∧ t2 =

1 ∧ t ≤ 1) is {t > 0, t2 − 1 = 0, t− 1 ≤ 0}.

Now, the time when the consistency of G(t) changes is one of the time

points when the elements in glist change their consistency, that is, the zero-

crossings of the left-hand sides of the conditions. We compute those zero-

crossings of the left-hand side by ZeroCrossings. ZeroCrossings computes

zero-crossings of g symbolically whenever possible. Otherwise, it computes

zero-crossings by the method shown in Section 4.2.2 and returns the solu-

tions sols and a condition P that includes the conditions on new parameters

if any. The zero-crossings are pushed into tlist with g. We also create Mapg,

a mapping from each guard to the consistency of the guard at the initial time

of the current phase (line 8). From line 9 to line 16, we check the consis-

tency of the whole guard at each time interval starting from each element

in tlist. PopMinTime removes the pair whose time is the minimum from tlist
and returns the minimum time tmin and atomic boundary conditions glist
that change their consistency at tmin. CheckAndUpdateGuards returns the

consistency of the whole guard in the time interval starting from tmin and an

updated map Mapg, that is, a mapping for the current time interval.

Figure 4.9 shows the algorithm of CheckAndUpdateGuards. From line

3 to line 9, we update the consistency of each atomic condition exactly on

4.2 Symbolic Simulation with Interval Arithmetic 37

tmin. If the relational operator relop(g) includes equality (i.e., it is equality

or non-strict inequality) it is consistent and otherwise it is inconsistent. At

line 10, we check the consistency of the whole guard G. Lines 13 to 24 are

a similar process about the open time interval starting from tmin. Note that

in this case g has already passed the boundary therefore the update process

is different from the previous one. If G is satisfied at line 10 or line 24, the

start point of the current time interval can be regarded as the time of the

event about G.

4.2.2 Computation of Zero-crossings

When ZeroCrossings cannot compute zero-crossings symbolically, it com-

putes the solutions using interval techniques. This procedure consists of two

steps.

First, we solve the given equation gb with the interval Newton method

[28]. In this method, we narrow the initial interval X0 step by step by

applying

X(k+1) = X(k) ∩N(X(k))

with the Newton operator

N(X) = m(X)− f(m(X))/f ′(X),

where m(X) is the midpoint of X. The result of the interval Newton method

is the fixed point of the operator N(X). It has been proved in [28] that if X0

includes the exact solution, the width of X(k) converges quadratically. The

procedure branches if X0 includes multiple solutions of gb, and computes a

family of intervals such that each interval is guaranteed [36], thanks to the

nice property of the interval Newton method, to include exactly one solution.

One thing to note is that, if gb belongs to Gp, gb holds at the start time of

the current Interval Phase, and the interval Newton method would persist to

an interval including the start time. Since the event at that time point has

been already handled in the previous Interval Phase, such a branch should

be discarded. This is why ZeroCrossings takes Gp as input.

Second, we compute zero-crossings that preserve the first-order terms of

parameters using the result of the interval Newton method. Note that in

the interval Newton method, the parameters in gb are replaced by intervals

and the resultant zero-crossings discard the dependency between parame-

38 4 Simulation Algorithm of Hybrid Systems

� �
Input: Mapg: mapping from each guard to its consistency in the previous

time interval,
glist: list of atomic guards whose consistency changes at the current

time point,
G: entire guard

Output: Mapg: mapping from each guard to its consistency in the current
time interval,

satisfied : Consistency of G in the next time interval
1: Mapprev := Mapg
2: satisfied := false
3: for g ∈ glist do
4: if relop(g) ∈ {‘=’, ‘≤’, ‘≥’} then
5: Mapg.replace(g, true)
6: else
7: Mapg.replace(g, false)
8: end if
9: end for
10: if G.satisfiedBy(Mapg) then
11: satisfied := true
12: end if
13: for g ∈ glist do
14: if relop(g) = ‘=’ then
15: Mapg.replace.(g, false)
16: else if relop(g) = ‘ ̸=’ then
17: Mapg.replace.(g, true)
18: else
19: Mapg.replace.(g,¬Mapprev.getValue(g))
20: end if
21: end for
22: if G.satisfiedBy(Mapg) then
23: satisfied := true
24: end if� �

Figure 4.9: Algorithm of CheckAndUpdateGuards

4.2 Symbolic Simulation with Interval Arithmetic 39

ters, which is why we recompute solutions here. In this step, we compute

a symbolic solution that preserves first-order dependency of parameters on

the basis of the mean value theorem. This second step has the following

specification:

Input: f(t, p⃗) : R× [−1, 1]n → R,
T : time interval computed by the interval Newton method

Output: Tresult(p⃗) : [−1, 1]n → I that encloses the solution t(p⃗) : [−1, 1]n →
R of the equation f(t, p⃗) = 0.

For P⃗ ∈ In, t ∈ T and p⃗ ∈ P⃗ , the multivariate mean value theorem gives

f(t, p⃗) ∈ f(Tm, P⃗m) + (
∂f(T, P⃗)

∂t
,
∂f(T, P⃗)

∂p1
, . . . ,

∂f(T, P⃗)

∂pn
)

· (t− Tm, p1 − P⃗m1, . . . , pn − P⃗mn)

(4.1)

wherein Tm denotes the midpoint of T and P⃗m denotes the vector whose

elements are midpoints of the corresponding elements of P⃗ . The following is

a proof of this fact:

Proof. By the mean value theorem, for a continuous and differentiable func-

tion h : Rn → R and a closed interval [a, b] ∈ In, there exists c ∈ [a, b] that

satisfies

h(b) = h(a) +∇h(c) · (b− a).

Here, we consider an interval I that satisfies [a, b] ⊆ I. Such I satisfies

h(c) ∈ h([a, b]) ⊆ h(I). This gives the condition

h(b) ∈ h(a) +∇h(I) · (b− a).

By replacing h, b, a and I with f , (t, p⃗), (Tm, P⃗m) and (T, P⃗), respectively,

we obtain Condition 4.1.

Because the range of each parameter is normalized to [−1, 1], which means

P⃗m is equal to 0⃗, Condition 4.1 can be simplified into

f(t, p⃗) ∈f(Tm, 0⃗) + (
∂f(T, P⃗)

∂t
,
∂f(T, P⃗)

∂p1
, . . . ,

∂f(T, P⃗)

∂pn
)

· (t− Tm, p1, . . . , pn).

(4.2)

40 4 Simulation Algorithm of Hybrid Systems

We define fmean as the right-hand side of Condition 4.2 and solve the equation

fmean = 0 for t:

t = −(f∂p1 , . . . , f∂pn)

f∂t
· p⃗+ Tm − f(Tm, 0⃗)

f∂t
(4.3)

where f∂t and the f∂pi ’s are new intervals denoting ∂f(T, P⃗)/∂t and the

∂f(T, P⃗)/∂pi’s, respectively.

If we handle those intervals as symbolic parameters, the costs of compu-

tation would grow quickly. To avoid such growth, we introduce only one new

interval at each detection of discrete changes. For all p⃗ ∈ P⃗ , the following

property holds:

(f∂p1 , . . . , f∂pn)

f∂t
· p⃗ ∈mid(

f∂p1 , . . . , f∂pn
f∂t

) · p⃗

+ [−1, 1]×
n∑

i=1

rad(
f∂pi
f∂t

).

(4.4)

Properties (4.3) and (4.4) give the following symbolic solution of the original

problem f(t, p⃗) = 0:

Tresult(p⃗) = mid(
f∂p1 , . . . , f∂pn

f∂t
) · p⃗

+ Tm + [−1, 1]×
n∑

i=1

rad(
f∂pi
f∂t

)− f(Tm, 0⃗)

f∂t

(4.5)

which encloses the solution for t parameterized with respect to p⃗. Here,

[−1, 1] ×
∑n

i=1 rad(f∂pi/f∂t) − f(Tm, 0⃗)/f∂t is reduced into a single interval

by IA. Tresult(p⃗) in (4.5) after this parameter reduction is the final output of

the procedure, which is in an affine form.

Example 13. Consider computing the zero-crossing of the input below:

gb := 2− exp(t+ py/1000) + px/1000 = 0,

P := −1 ≤ px ≤ 1 ∧ −1 ≤ py ≤ 1,

Gp := ∅.

In this example, the length of significands is limited to five for simplicity,

while the actual implementation is based on the IEEE754 double-precision

4.2 Symbolic Simulation with Interval Arithmetic 41

floating-point format. First, by the interval Newton method we obtain an

interval [0.69163, 0.69466]. Second, we compute Tresult(p⃗) as follows:

Tresult((px, py)) = mid(
f∂px
f∂t

)px +mid(
f∂py
f∂t

)py + Tm

+ [−1, 1]× (rad(
f∂px
f∂t

) + rad(
f∂py
f∂t

))− f(Tm, 0⃗)

f∂t
= 5.0000× 10−4 × px − 9.9999× 10−4 × py

+0.69314 + 1.0321× 10−5 × [−1, 1].

42 4 Simulation Algorithm of Hybrid Systems

Chapter 5

HyLaGI: The Implementation

We have implemented the simulation algorithm described in Chapter 4. The

implemented simulator is named HyLaGI. We implemented HyLaGI in C++

and used Mathematica as its backend constraint solver. The overview of

HyLaGI is shown in Fig. 5.1.

Mathematica is used for the checking consistency of conjunctions of con-

straints, solving ODEs, solving optimization problems about the time of

events and transforming both arithmetic expressions and logical formulas.

The class of ODEs that are symbolically solvable with Mathematica is listed

in Table 5.1. The use of a general-purpose backend constraint solver is admit-

tedly not advantageous for performance, as shown in Chapter 6, but provided

a flexible platform for the combination of various symbolic and interval tech-

niques. The soundness of the current implementation also depends on the

soundness of the backend solver that we use as a trusted black box. Further

decomposition of the computation process is desired to reduce the granular-

ity of the trusted black box, which is our future work. We use KV library [19]

for interval arithmetic and affine arithmetic (including reduction of dummy

variables).

The output of HyLaGI is a set of trajectories that satisfy the specifica-

tion of the given HydLa program. HyLaGI outputs results in the form of

human readable text and plot files in JSON. An example of result text is

shown in Fig. 5.2, where some parts are omitted for lack of space. This

results from the program in Fig. 4.6. The first section with parameter

condition(global) shows the whole range of the symbolic parameter, that

is, 9 < p[y, 0, 1] < 11. Each symbolic parameter is denoted in the form

of p[variable name, derivative count, phase id]; e.g., p[y, 0, 1] denotes

43

44 5 HyLaGI: The Implementation

Figure 5.1: Overview of the implementation

a symbolic parameter for the “0”th derivative of y (the variable itself) at

the “1”st phase. The following lines show the trajectory of the first case.

The trajectory of each case goes through Point Phases and Interval Phases

alternately. The line starting with unadpoted modules shows the set of con-

straint modules that are not adopted in each phase. The lines starting with

positive and negative show the set of entailed guards and non-entailed

guards respectively. The last section of each case shows the local parameter

condition for the case and the reason why simulation terminated (listed in

Table 5.2).

Plot files can be used by the web frontend (See Section 5.1) and its format

is called Hydat. The structure of Hydat is shown in Fig. 5.4. Output tra-

jectories are expressed using symbolic parameters that represent uncertain

values of variables at each time point. For the example program of Fig. 3.7,

a symbolic parameter for the initial value of x1 is introduced first. Intervals

in interval arithmetic and noise symbols in affine arithmetic are also handled

uniformly as symbolic parameters.

45

� �
------ Result of Simulation ------
---------parameter condition(global)---------
p[y, 0, 1] : (9, 11)
---------Case 1---------
---------PP 1---------
unadopted modules: {}
positive :
negative :
t : 0
y : p[y, 0, 1]
y’ : 10
y’’ : -10
---------IP 2---------
unadopted modules: {}
positive :
negative :
t : 0->Infinity
y : t*(t+(-2))*(-5)+p[y, 0, 1]
y’ : (t+(-1))*(-10)
y’’ : -10
---------parameter condition(Case1)---------
p[y, 0, 1] : (9, 10)
time reached limit
(** Case 2 is omitted... **)
---------Case 3---------
(** PP 1 is omitted... **)
---------IP 3---------
unadopted modules: {}
positive :
negative :
t : 0->1+(-1)*(-2+p[y, 0, 1]*1/5)^(1/2)
y : t*(t+(-2))*(-5)+p[y, 0, 1]
y’ : (t+(-1))*(-10)
y’’ : -10
---------PP 5---------
unadopted modules: {FALL}
unsat mod : {BOUNCE, FALL}
unsat cons : {y’’=-10, y’=-(4/5)*y’-}
positive : y->=15=>y’=-(4/5)*y’-
negative :
t : 1+(-1)*(-2+p[y, 0, 1]*1/5)^(1/2)
y : 15
y’ : 5^(-1/2)*(-8)*(-10+p[y, 0, 1])^(1/2)
(** Following phases are omitted... **)
---------parameter condition(Case3)---------
p[y, 0, 1] : (10, 11)
time reached limit� �

Figure 5.2: Output text by HyLaGI

46 5 HyLaGI: The Implementation

Table 5.1: ODEs handled by the backend solver (cited from [38])

Name General Form

Separable y′(x) = f(x)g(y)

Homogeneous y′(x) = f(x
y(x)

)

Linear first-order ODE y′(x) + P (x)y(x) = Q(x)

Bernoulli y′(x) + P (x)y(x) = Q(x)y(x)n

Ricatti y′(x) = f(x) + g(x)y(x) + h(x)y(x)2

Exact first-order ODE Mdx+Ndy = 0 with ∂M
∂y

= ∂N
∂x

Clairaut y(x) = xy′(x) + f(y′(x))

Linear with constant co-
efficients

y(n)(x)+an−1y
(n−1)(x)+ · · ·+a0y(x) = P (x)

with constant a1

Hypergeometric x(1 − x)y′′(x) + (c − (a + b + 1)x)y′(x) −
aby(x) = 0

Legendre (1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0

Bessel x2y′′(x) + xy′(x) + (x2 − n2)y(x) = 0

Mathieu y′′(x) + (a− 2qcos(2x))y(x) = 0

Abel y′(x) = f(x) + g(x)y(x) + h(x)y(x)2 +
k(x)y(x)3

Chini y′(x) = f(x) + g(x)y(x) + h(x)y(x)n

5.1 Web Frontend

We also implemented a web frontend of HyLaGI, named webHydLa. Web-

HydLa aims at easy access by users and graphical supports for programming

and simulation of HydLa models. It is written in JavaScript and Python.

Users can access webHydla at http://webhydla.ueda.info.waseda.ac.jp/ by

their web browsers. WebHydLa has several functionalities below.

• A text editor with syntax highlighting and auto completion for HydLa

• Three-dimensional plot of trajectories, which has an advantage that we

can use the z-axis as an axis for symbolic parameters

• Animation of trajectories that facilitates the understanding of the model

behavior

5.2 Bounded Model Checking 47

Figure 5.3: Screen shot of webhydla

• Modification of parameter conditions

Figure 5.3 shows a screen shot of webHydLa visualizing a bouncing ball

model with uncertainty in its initial position.

5.2 Bounded Model Checking

Since HyLaGI can compute enclosures of all possible trajectories, we can use

it on the purpose of bounded model checking of models. Users can specify

the condition to be checked by the ASSERT statement in input programs. If

HyLaGI is given a program with an ASSERT statement, it checks whether

the condition is satisfied throughout the simulation. When the condition is

violated, HyLaGI says “Assertion failed!” and shows values of parameters

that violate the condition if necessary.

5.3 Implicit Continuity

The original semantics of HydLa [35] requires that if a constraint C in a given

HydLa program refers to the derivative of a variable, the variable should be

implicitly continuous. Such continuities have a higher priority than C itself

and lower priority than any other constraint whose priority is higher than C.

48 5 HyLaGI: The Implementation

� �
{

"variables": List<String(Name of Variable)>,
"parameters": Map<String(Name of Parameter), Range>,
"first_phases": List<Phase>

}: HyDat

{
"id": Integer,
"type": String("PP" or "IP"),
"time" : Time
"variable_map": Map<String(Name of Variable), Range>,
"parameter_map": Map<String(Name of Parameter), Range>,
"parameter_maps": List<Map<String(Name of Parameter),

Range> >,
"simulation_state": optional String,
"children": List<Phase>

}: Phase

{
"time_point": String(Symbolic Formula),
or
"start_time": String(Symbolic Formula),
"end_time": optional String(Symbolic Formula)

} : Time

{
"unique_value": String(Symbolic Formula),
or
"lower_bounds": List<Bound>,
"upper_bounds": List<Bound>

}: Range

{
"closed": Bool,
"value": String(Symbolic Formula)

}: Bound� �
Figure 5.4: Structure of Hydat

5.3 Implicit Continuity 49

Table 5.2: Terminating messages and their meanings

Message Meaning

time reached limit Specified time limit is exceeded.

number of phases

reached limit

Specified phase limit is exceeded.

execution stuck Execution cannot be continued due to ab-
sence of consistent candidate module sets.

assertion failed The condition in ASSERT statement is vio-
lated.

time out Execution time exceeds specified limit (dif-
ferent from time reached limit)

some values of

variables are not

unique in IP

Some values of variables are not unique in
the Interval Phase and simulation fails.

following phases

were not simulated

The simulation for this case has not been
continued. This is mainly caused by asser-
tion failure in another case.

simulation

interrupted

The simulation is interrupted by users.

unknown error

occurred

Some error that cannot be handled by the
simulator occurred.

However, if we implement this specification directly, the number of can-

didate module sets increases explosively. Hence in this research we adopt

another specification.

In this implementation, the values of variables are considered to be con-

tinuous if either of the conditions below holds.

• The constraint store includes a constraint that refers to the derivative.

• In CheckEntailment, the consequent of the guard refers to the deriva-

tive.

50 5 HyLaGI: The Implementation

5.4 Guards Referring to the Left-hand Limits

of the Initial Time

Constraints in HydLa models constrain the variables from time 0, and they

do not go back in time. Therefore, the left-hand limits of variables at time

0 are essentially undefined. We have considered three policies on how we

handle guards that refer to such left-hand limits.

1. Consider them to be false — It reflects the intuitive meaning of the

program as far as we experimented.

2. Consider them to be true — Many example programs behave badly.

For example, in Fig. 4.6 INIT and BOUNCE conflict at the initial time

and there are no solution trajectories.

3. Regard entailment of guards referring to left-hand limits as completely

undefined— This is the most exhaustive choice. The simulation branches

into 2n cases (n represents the number of guards that contain backward

reference).

In HyLaGI, we adopted the first policy taking the computational cost into

account.

5.5 Scalability of HyLaGI

One of the concerns with a symbolic technique is its scalability. A näıve

implementation of HydLa would lead to the calculation of all constraints at

each phase, but HyLaGI only computes constraints related to each discrete

change. This improvement is based on the following three ideas.

The first idea is to analyze the dependencies between constraints. The

dependencies can be represented by a bipartite relation graph consisting of

variable nodes and constraint nodes. Edges in the graph correspond to the ref-

erences to variables from constraints. The dependencies between constraints

changes dynamically in the simulation of HyLaGI because (i) a guarded con-

straint may be switched on and off, (ii) constraint modules not chosen in the

current module set have no effect, and (iii) the left-hand limit of a variable

in a Point Phase is regarded constant and has no relation with the variable

5.5 Scalability of HyLaGI 51

itself. HyLaGI manages the effectiveness of nodes and edges of a depen-

dency graph dynamically and calculates minimal sets of related constraints.

We give detailed description about the relation graph in Section 5.5.1 and

Section 5.5.2.

The second idea is to exploit the continuity of the values of variables and

its derivatives. Variables whose values jump must be referred to in constraints

that triggered discrete changes, and HyLaGI keeps other variables evolving

continuously without recalculation.

The third idea is to compute candidate subsets of constraint modules

dynamically on demand. In HydLa, the number of candidate subsets can

increase exponentially with respect to the number of objects in the model.

For example, it is 2n for the program of Fig. 3.9 with n balls. However, the

number of subsets to be checked for its maximality is usually small. HyLaGI

calculates such subsets on demand by using the information of inconsistent

subsets obtained in the process of consistency checking. When a subset is

known to be inconsistent, at least one module must be removed from the

subset to make it consistent, and HyLaGI removes a low-priority module M

and those below M in the constraint hierarchy.

These improvements reduced the time complexity of the calculation of

each discrete change. For example, for the program of Fig. 3.9, it is reduced

from exponential (without the third idea) or O(n3) (with the third idea) to

O(n).

5.5.1 Construction of Relation Graph

In HyLaGI, a relation graph is constructed for a HydLa program. A rela-

tion graph G = (C, V,Ep, E) is a bipartite graph consisting of constraint

nodes and variable nodes. C is a set of constraint nodes and defined as

C := {(c,m) | m ∈ Modules(HP), c ∈ AtomicConstraints(m)}. Modules(HP)

means a set of all modules in given HydLa program. AtomicConstraints(m)

means a set of all atomic constraints without guards. In the construction of

relation graphs, we ignore guards and consider them in the invalidation of

constraint nodes (Section 5.5.2).

V is a set of variable nodes that corresponds to all variables and those

derivatives. E and Ep are disjoint sets of edges between constraints and

variables. Ep is a set of edges that means the constraint only refers to left-

hand limits of variables (called “prev-edges”). Ep is defined as Ep := {(c, v) |

52 5 HyLaGI: The Implementation

c ∈ C, v ∈ V, referPrev(v, c)}. E is a set of edges that means the constraint

refers to variables themselves. E is defined as E := {(c, v) | c ∈ C, v ∈
V, refer(c, v)}. Note that constraints about time derivatives imply continuity

of variables, e.g., constraint x′ = 0 refers to both x and x′.

Figure 5.5 shows the relation graph of Fig. 3.9 with three balls. In Fig. 5.5,

rectangular nodes correspond to constraint nodes and elliptic nodes corre-

spond to variable nodes. For edges, dotted lines correspond to Ep and solid

lines correspond to E.

5.5.2 Simulation with Relation Graph

If two constraint nodes on a relation graph are not connected, they share no

variables. Such constraints cannot conflict with each other, so we can check

consistency of them independently. In other words, we check consistency

of constraints for each connected component. If a connected component is

judged to be inconsistent, we obtain a set of corresponding modules from

constraint nodes. This is why constraint nodes contain information about

modules. Obtained module sets are exploited in dynamic computation of

candidate module sets in Section 5.5. In addition, when we check consistency

of a guard, we only have to check consistency of constraints related to the

guard. Such localization significantly reduces the computational costs for

models with multiple objects.

However, a statically constructed relation graph itself is not sufficiently

localized. For example, all nodes in Fig. 5.5 are connected. As a matter

of fact, statically unconnected components do not appear in realistic mod-

els because it means that they are completely independent. To solve this

problem, we invalidate graph components such as constraint nodes and prev-

edges dynamically as simulation goes on so that we can obtain unconnected

components.

First, we can invalidate constraint nodes if any of three conditions below

holds.

1. The module that the constraint node belongs to is not adopted in the

current candidate module set.

(For example, the constraint CONST in Fig. 3.9 is not adopted on colli-

sion of balls.)

2. The guard of the atomic constraint corresponding to the constraint

5.5 Scalability of HyLaGI 53

x1’=x2’- (COL(x1,x2))

x1

x1’

x2’

x2’=x1’- (COL(x1,x2))

x2

x1’=x3’- (COL(x1,x3))

x3’

x3’=x1’- (COL(x1,x3))

x3

x2’=x3’- (COL(x2,x3))

x3’=x2’- (COL(x2,x3))

x1’’=0 (CONST(x1)) x1’’

x2’’=0 (CONST(x2))
x2’’

x3’’=0 (CONST(x3)) x3’’

x1=0 (INIT(x1,0,1))

x1’=1 (INIT(x1,0,1))

x2=2*1 (INIT(x2,2*1,0))

x2’=0 (INIT(x2,2*1,0))

x3=2*2 (INIT(x3,2*2,0))

x3’=0 (INIT(x3,2*2,0))

x1’=-x1’- (WALL(x1))

x2’=-x2’- (WALL(x2))

x3’=-x3’- (WALL(x3))

Figure 5.5: Relation graph for one-dimensional billiard

54 5 HyLaGI: The Implementation

x1’=x2’- (COL(x1,x2))

x1

x1’

x2’=x1’- (COL(x1,x2))

x2

x2’

x1’’=0 (CONST(x1))

x1’’

x2’’=0 (CONST(x2))

x2’’

x3’’=0 (CONST(x3))

x3

x3’

x3’’

Figure 5.6: Relation graph for one-dimensional billiard on collision of the
first ball and the second ball

node is not entailed.

(For example, the guards of COL and WALL in Fig. 3.9 are not entailed

during continuous change.)

3. The constraint node does not have an “□” operator and the current

time is not equal to 0.

(The constraint INIT is an example of this.)

Prev-edges are invalidated in Point Phases and validated in Interval Phases.

This is because left-hand limits of variables in Point Phases are determined

from preceding Interval Phases and regarded as constant values.

Example 14. Figure 5.6 shows the relation graph on a Point Phase. The

first ball (x1) and the second ball (x2) collide, and the corresponding con-

straint nodes are independent. In this Point Phase, {COL(x1,x2), CONST(x1)}
and {COL(x1,x2), CONST(x2)} are inconsistent. We can easily see the de-

pendencies between those constraints on the relation graph.

Figure 5.7 shows the relation graph on Interval Phases. In Interval Phases,

constraints of COL have no effect because the guards are not entailed, therefore

constraints of CONST are the only valid constraints in the Interval Phases.

5.5 Scalability of HyLaGI 55

x1’’=0 (CONST(x1))

x1

x1’

x1’’

x2’’=0 (CONST(x2))

x2

x2’

x2’’

x3’’=0 (CONST(x3))

x3

x3’

x3’’

Figure 5.7: Relation graph for one-dimensional billiard on Interval Phases

56 5 HyLaGI: The Implementation

Chapter 6

Experimental Results

In this chapter, we show experimental results of simulation by our implemen-

tation described in Chapter 5. First, we show the results of simulation with

the fully symbolic method described in Section 4.1. After that, we show the

results of simulation by the symbolic and interval method described in Sec-

tion 4.2. Note that though plots of trajectories in this chapter show finitely

many trajectories, the simulation results themselves represent infinitely many

trajectories in the form of expressions with symbolic parameters.

6.1 Fully Symbolic Simulation

6.1.1 Bouncing Particle with a Hole

This example is a two-dimensional model where a ball bounces on the ground

with a rectangular hole. Figure 6.2 shows a corresponding HydLa program.

The overview of the model is described below.

• A ball is thrown from the point x = 0, y = 10.

• The initial horizontal velocity (x′) is positive value and less than 20.

• The initial vertical velocity equals zero.

• The air resistance is ignored and the vertical acceleration y′′ by the

gravity is −10.

• The ground with a rectangular hole is at the height of y = 0.

57

58 6 Experimental Results

Figure 6.1: Trajectories of the bouncing particle with a hole

• The depth of the hole is 7, the width is 3, and the left edge is located

on x = 7.

• The coefficient of restitution between the ball and the wall in the ground

is 1, and the coefficient between the ball and the ground is 4/5.

The objective of the simulation is to compute the condition of the initial ve-

locity where the ball reaches the target point beyond the hole. In Figure 6.2,

INIT represents the initial state of the model. FALL and BOUNCE describe the

vertical motion of the ball, while XCONST and XBOUNCE describe the horizontal

one. The condition in ASSERT states that the ball never reaches the target

point. By this ASSERT statement, we can compute the desired condition.

We simulated this program limiting the simulation time to 20 and the

number of discrete changes to 6. The simulation branched into 50 different

cases. As a result, we obtained the following conditions under which the ball

reached the target point.

1. 1250/(405
√
2 +

√
317 + 9

√
1387) ≤ x’0 ≤ 1250/(405

√
2 −

√
317 +

9
√
1387)

2. 125
√
2/97 ≤ x’0 ≤ 35/(13

√
2)

6.1 Fully Symbolic Simulation 59

� �
INIT <=> y = 10 /\ y’ = 0 /\ x = 0 /\ 0 < x’ <= 20.
FALL <=> [](y’’ = -10).
XCONST <=> [](x’’ = 0).
XBOUNCE <=> []((x- = 7 \/ x- = 10) /\ y- < 0 => x’ = -x’-).
BOUNCE <=> [](y- = -7 \/ (x- <= 7 \/ x- >= 10) /\ y- = 0

=> y’ = -(4/5) * y’-).
ASSERT(!(y >= 0 /\ x >= 10)).

INIT, FALL << BOUNCE, XCONST << XBOUNCE.� �
Figure 6.2: HydLa program of the bouncing ball with a hole

3. 35/(13
√
2) < x’0 ≤ (1125

√
2 + 225

√
67 + 25

√
197)/(928 + 81

√
134)

4. −40
√
197/(928 + 81

√
134) + 360(5

√
2 +

√
67)/(928 + 81

√
134) ≤ x’0

< 25
√
2/13

5. 25
√
2/13 ≤ x’0 ≤ 7/

√
2

6. (117
√
85 + 13

√
485)/256 < x’0 < 10

√
5/17

7. 10
√

5/17 ≤ x’0 ≤ 10
√

5/17

8. 10
√

5/17 < x’0 ≤ (9
√
85 +

√
485)/16

9. 5
√
2 ≤ x’0 ≤ 20

By approximating these formulas into numerical values and adding the order

of bouncing, we obtain the following nine cases.

1. [1.36027, 1.40428] (floor, floor, bottom)

2. [1.82244, 1.90375] (floor, floor)

3. (1.90375, 2.02803] (floor, bottom)

4. [2.64300, 2.71964) (floor, right, bottom, left)

5. [2.71964, 4.94975] (floor)

6. (5.33196, 5.42326) (bottom, right, left)

7. [5.42326, 5.42326] (bottom+right, left)

60 6 Experimental Results

� �
INIT <=> h = 10 /\ h’ = 0 /\ timer = 0.
PARAMS <=> 2 <= exT <= 4 /\ 1 <= volume <= 3

/\ [](exT’ = 0 /\ volume’ = 0).
TIME <=> [](timer’ = 1).
RESET <=> [](timer- >= volume + exT => timer = 0).
RISE <=> [](timer- < volume => h’’ = 1).
FALL <=> [](timer- >= volume => h’’ = -2).
ASSERT(h>=0).

INIT, PARAMS, RISE, FALL, TIME<<RESET.� �
Figure 6.3: HydLa program of hot-air balloon

8. (5.42326, 6.56241] (right, bottom, left)

9. [7.07107, 20] ()

6.1.2 Hot-air Balloon

Figure 6.3 shows a HydLa program of a hot-air balloon. The hot-air balloon

has multiple fuel tanks and it exchanges those tanks while flying. Each fuel

tank can be used for volume seconds and exchanging takes exT seconds.

INIT describes the initial state. PARAMS describes the behavior of symbolic

parameters. TIME and RESET describe the behavior of timer. RISE and FALL

describe the continuous behavior of the balloon. The balloon rises when the

fuel of tanks are burning (timer- < volume) and it falls while exchanging

(timer- >= volume). ASSERT(h >= 0) says that the balloon never collides

with the ground, which is the safety property of this model. Note that both

volume and exT have uncertainties. Figure 6.4 and Fig. 6.5 show the sample

trajectories of the program, where volume is fixed to three and exT is fixed

to two, respectively.

For this model, we performed bounded model checking up to 30 seconds.

As a result, we obtained six different cases shown in Fig. 6.6. This figure

shows a two-dimensional parameter space for volume and exT. Each divided

subspace corresponds to each case, which differs by the number of phases

and whether ASSERT is violated or not. “PPn” means that n Point Phases

have been computed.

6.1 Fully Symbolic Simulation 61

Figure 6.4: Trajectory of balloon
(volume = 3)

Figure 6.5: Trajectory of balloon
(exT = 2)

Figure 6.6: Classifying cases in parameter space

62 6 Experimental Results

Figure 6.7: Electric circuit (cited from [33])

6.1.3 Electric Circuit

This example model expresses behavior of an electric circuit shown in Fig. 6.7.

The circuit has a switch and the switch determines the continuous behavior

of the circuit. We focus on the voltage of the capacitor vC and the current

of the inductor iL. When the switch is directing s1, the behavior of vC and

iL is described by the following ODEs.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

dt
iL = −RL

L
iL +

1

L
vS

d

dt
vC = − 1

C

1

RC +R0

vC

(on s1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

dt
iL = − 1

L
(RL +

RCR0

RC +R0

)iL − 1

L

R0

RC +R0

vC +
1

L
vS

d

dt
vC = − 1

C

R0

RC +R0

iL − 1

C

1

RC +R0

vC

(on s2)

Figure 6.8 shows a corresponding HydLa program with L = 1, RL =

1, vS = 5, RC = 1, R0 = 1 and C = 1. The initial value of il equals zero and

the initial value of vc has a range from zero to five. In this program, we use

a variable timer to cause switching at every one second. INIT describes the

initial state of the model. TIMER describes the behavior of timer. SWITCH

describes discrete switching. STATE1 and STATE2 describe the continuous be-

havior of the circuit. The guard s = 0 describes that the switch is connected

to s1 and the guard s = 1 describes that it is connected to s2.

Figure 6.9 and Fig. 6.10 show plots of the simulation result. In these

6.1 Fully Symbolic Simulation 63

� �
INIT <=> 0 <= vc <= 5 /\ il = 0 /\ s = 0 /\ timer=0.
TIMER <=> [](s’ = 0 /\ timer’ = 1).
SWITCH <=> [](timer- = 1 => timer = 0 /\ s = 1 - s-).
STATE1 <=> [](s = 0 => il’ = -il + 5 /\ vc’ = -1/2 * vc).
STATE2 <=> [](s = 1 =>

il’ = -3/2 * il - 1/2 * vc + 5
/\ vc’ = 1/2 * il - 1/2 * vc).

INIT, TIMER << SWITCH, STATE1, STATE2.� �
Figure 6.8: HydLa program of electric circuit

plots, we incremented the initial value of vc from 0 to 5 by 0.5. In these

figures, we can see that the influence of vc decreases as time goes on and

converges into a fixed behavior.

Figure 6.9: Behavior of vc

6.1.4 Curling Stone

Figure 6.11 shows a HydLa program of a curling stone. There is one curling

stone and collision does not happen in this model. The objective of the

control is to stop the stone within the target range, which is 9 < x < 11. This

model is one-dimensional; the initial position x(0) is 0, and the initial velocity

64 6 Experimental Results

Figure 6.10: Behavior of iL

� �
INIT <=> x = 0 /\ x’ = 1

/\ [](threshold’ = 0) /\ [](fric’ = 0)
/\ 0 < threshold < 1 /\ fric = -1/40.

// /\ threshold = 3/4 /\ -1/20 < fric < -1/100.
FRICTION <=> []((x’ > 0 => x’’ = -1/10)

/\ (x’ <= 0 => x’’ = 0)).
SWEEPING <=> [](x < 9 /\ 0 < x’ < threshold

=> x’’ = fric).

ASSERT(x’ != 0 \/ 9 <= x <= 11).
INIT, FRICTION << SWEEPING.� �

Figure 6.11: HydLa program of curling stone

6.2 Simulation with Interval Arithmetic 65

x′(0) is 1. By default, the stone moves with acceleration x′′(t) = −1/10.

There are sweepers and they can reduce the friction with the ground. The

sweepers start sweeping if the velocity of the stone is less than the predefined

threshold and the stone has not reached the target area yet. In this model,

the threshold or the acceleration while sweeping has an uncertainty. The

program of Fig. 6.11 introduces an uncertainty into the threshold, while we

can introduce an uncertainty into the acceleration by replacing the third

line with the fourth line, which is commented out. The objective of the

simulation is to compute the condition to stop the stone within the target

range. In Fig. 6.11, INIT describes the initial state of the model, FRICTION

describes the default friction of the ball, and SWEEPING describes the start of

sweeping and the friction during sweeping. Both threshold and fric are

uncertain parameters, where threshold means a parameter for the threshold

velocity, and fric means the acceleration of the stone during sweeping. The

ASSERT statement describes the negation of the control objective.

The simulation result of this program is shown in Fig. 6.12 and Fig. 6.13.

The simulation time is limited to 40. If the threshold velocity is uncertain,

we have to set the range of threshold to 2/
√
15 ≤ threshold ≤ 2/

√
5 to

stop the stone within the target area. The range is numerically approximated

to 0.516 ≤ threshold ≤ 0.894. If this condition is satisfied, the stone stops

at x = 8 + 15threshold2/4. If threshold < 2/
√
15, the stone stops at

the point x = 5 + 15threshold2 and does not reach the target area. If

2/
√
5 < threshold, sweeping starts too early and the stone passes through

the target area and stops at x = 8 + 15threshold2/4.

On the other hand, if fric has uncertainty, we have to set the range of

fric to −9/218 ≤ fric ≤ −13/1090 to stop the stone within the target area.

The range is numerically approximated to −0.041 ≤ fric ≤ −0.0119266. If

the condition is satisfied, the stone stops at x = 189/16 + 545fric/8. If

fric < −9/218, the stone stops at x = (70− 9/fric)/32fric and does not

reach the target area. If −13/1090 < fric, the stone passes through the

target and stops at x = 189/16 + 545fric/8.

6.2 Simulation with Interval Arithmetic

In this section, we show the results of the simulation with interval arith-

metic. We compare different choices in the implementation of Enclose and

FindMinTime in Section 4.2. We used three example models for comparison.

66 6 Experimental Results

Figure 6.12: The trajectory of the stone with uncertain threshold

6.2.1 Two Water Tanks

This model is described in Chapter 3. The program is shown in Fig. 3.7.

One of the result trajectories is shown in Fig. 6.14, where the horizontal

axis represents time and the vertical axis represents each water level. We

simulated this model with two choices below.

1. Use the result of the interval Newton method directly, skipping the sec-

ond step in FindMinTime, and compute enclosure with interval arith-

metic instead of affine arithmetic in Enclose (denoted by Newton&IA).

2. Use the interval Newton method and the mean value theorem in Find-

MinTime, and compute enclosure with affine arithmetic in Enclose as

proposed in Section 4.2 (denoted by Mean&AA). In the simulation, we

preserved six symbolic parameters at the reduction performed at the

end of each Point Phase.

Figure 6.15 shows the sum of the width of the interval at each phase

and Fig. 6.16 shows the execution time. The horizontal axes represent the

number of steps, where a step is a pair of a Point Phase and the following

Interval Phase.

In Fig. 6.15, the initial width of the interval is 0.0001, which is the initial

width of x1. In this program, the ideal behavior of water levels converges

despite the uncertainty of the initial value. With Newton&IA, the width of

6.2 Simulation with Interval Arithmetic 67

Figure 6.13: The trajectory of the stone with uncertain friction

intervals does not converge because of the dependency problem, and simu-

lation fails after 61 steps. On the other hand, Mean&AA successfully handles

the dependencies of quantities, reducing the width of the intervals into less

than 10−7.

As shown in Fig. 6.16, Newton&IA has less computational costs than

Mean&AA. Both methods have constant time complexity with respect to the

number of steps, which is an advantage of using the Enclose function. If we

did not use Enclose, the execution time would grow linearly for this program

because the size of symbolic expressions would keep growing.

Figure 6.14: Trajectory of two water tanks (solid line: x1, dashed Line: x2)

68 6 Experimental Results

Figure 6.15: Width of interval for two water tanks

Figure 6.16: Execution time for two water tanks

6.2.2 Bouncing Ball on A Sine Curve

The second model is a variant of a bouncing ball model, which bounces on

the floor whose shape is a sine curve in two-dimensional space. Figure 6.17

shows the input program. In this program, x and y denote the position of the

ball, e denotes the coefficient of restitution, and cont, s and c are auxiliary

variables to describe bouncing. Figure 6.18 shows one of the trajectories of

this model.

Figure 6.19 shows the sum of the widths of the intervals for all variables

at each phase and Fig. 6.20 shows execution time. This model has no uncer-

tainty in its initial state, therefore the widths of the intervals increases solely

6.2 Simulation with Interval Arithmetic 69

� �
INIT <=> x = 0 /\ x’ = 0 /\ y = 10 /\ y’ = 0

/\ e = 1 /\ [](e’ = 0).

FALL <=> [](cont = 1 => y’’ = -10).

CONSTX <=> [](cont = 1 => x’’ = 0).

SC <=> [](s = cos(x-)/(1 + cos(x-)^2)^(1/2)

/\ c = 1 /(1 + cos(x-)^2)^(1/2)).

BOUNCE <=> [](y- = sin(x-) => cont = 0

/\ x’ = ((-e) * s-^2 + c-^2) * x’- + ((e+1) * s- * c-) * y’-

/\ y’ = ((e+1) * s- * c-) * x’- + (s-^2 + (-e) * c-^2) * y’-).

INIT, SC, FALL, CONSTX,

[](cont = 1) << BOUNCE.� �
Figure 6.17: HydLa program of bouncing ball on a sine curve

by computational errors. The meanings of Newton&IA and Mean&AA are the

same as in Section 6.2.1. In this experiment, we also changed the number of

preserved symbolic parameters to 5, 9, and 13, which is denoted by d5, d9

and d13. Note that 5 is the minimum number of the noise symbols because

affine arithmetic handles 5 affine quantities for x, x’, y, y’ and t.

As can be seen from Fig. 6.19, the widths of the intervals in all methods

increases exponentially. However, we can reduce the speed of the increase by

introducing more noise symbols. If the widths increase and reach the am-

plitude of the sine curve, the computation of FindMinTime fails and further

simulation cannot be performed.

In Fig. 6.20, as with the previous example, Newton&IA has less computa-

tional costs than Mean&AA. However, an important point is that the execution

time of each simulation seems to have some upper bound. Remember that

the fully symbolic method suffers from the exponential growths of compu-

tational costs. This is because we handle growing symbolic expressions of

trajectories. By numerical approximation, we succeeded in reducing such

growth.

6.2.3 Bouncing Ball on A Parabola

This model is another variant of a bouncing ball, which bounces on a parabola-

shaped floor described by y = x2. Figure 6.21 shows the input program and

Fig. 6.22 shows the trajectory. The ball starts to fall with x(0) = 2, y(0) = 8

70 6 Experimental Results

Figure 6.18: Trajectory of bouncing ball (solid line: floor, dashed Line: Ball)

Figure 6.19: Width of interval for bouncing ball

6.2 Simulation with Interval Arithmetic 71

Figure 6.20: Execution time for bouncing ball

� �
INIT <=> x = 2 & y = 8 & x’ = 0 & y’ = 0.

FALL <=> [](cont = 1 => x’’ = 0 & y’’ = -9).

BOUNCE <=> [](y- = (x-)^2 => cont = 0

/\ x’ = x’- - (4*(2*x- * x’- - (y’-))*x-)/(4*(x-)^2 + 1)

/\ y’ = y’- + (2*(2*x- * x’- - (y’-)))/(4*(x-)^2 + 1)).

INIT, FALL, [](cont = 1) << BOUNCE.� �
Figure 6.21: HydLa program of bouncing ball on a parabola

and repeats bouncing on the floor.

Figure 6.23 and Fig. 6.24 show the performance of the simulation. The

simulation timeout is set to three minutes. In this experiment, we changed

the number of preserved symbolic parameters to 5, 6, 7, 8 and 9. Figure 6.24

also includes the execution time of the fully symbolic method for comparison

(denoted by Symbolic). The fully symbolic one outperforms the methods

with interval and affine arithmetic. For this model, the influence of the

number of symbolic parameters seems to be larger than the influence of the

complexity of the symbolic expressions.

Next, we evaluate the performance of the parametric version of Fig. 6.21.

We parametrize the initial horizontal velocity by replacing the first line with

72 6 Experimental Results

Figure 6.22: Trajectory of a bouncing ball on a parabola

INIT <=> x = 2 /\ y = 8 /\ 0 <= x’ <= 0.00001 /\ y’ = 0. Figure 6.25

and Fig. 6.26 show the performance for the parametric version. The sym-

bolic method no longer performed well; it timed out at the third step. All

the integrating methods can simulate until the widths of the intervals reach

unacceptable ranges.

6.3 Summary of Experiments

In this chapter, we showed the results of the fully symbolic method and the

version integrated with interval arithmetic. By the fully symbolic method,

we succeeded in performing case analysis and bounded model checking of

parametric hybrid systems with large uncertainties and more than 10 multiple

different cases. In the plots of trajectories, we can see how the parameters

influence the behaviors of models.

In the integrated version, we succeeded in handling models that could not

be handled by symbolic formula manipulation itself. We also succeeded in

6.3 Summary of Experiments 73

Figure 6.23: Width of interval for bouncing ball on a parabola

suppressing the increase of computational costs caused by complex symbolic

formulas of the perturbed bouncing ball model. The accuracy of the pro-

posed method are better than näıve interval arithmetic. This improvement

is achieved by the preservation of linear terms of symbolic parameters. There

is a trade-off between the accuracy and the execution time depending on the

number of preserved symbolic parameters.

74 6 Experimental Results

Figure 6.24: Execution time for bouncing ball on a parabola

Figure 6.25: Width of interval for parametric bouncing ball on a parabola

6.3 Summary of Experiments 75

Figure 6.26: Execution time for parametric bouncing ball on a parabola

76 6 Experimental Results

Chapter 7

Related Work

There are several tools for computing the behavior of hybrid systems rigor-

ously.

Flow* [5][6] is a tool for computing reachable sets of hybrid automata [15].

Flow* encloses the solutions of nonlinear ODEs with flow pipe construction

based on the Taylor model. For the computation of discrete changes, Flow*

uses domain contraction, which is based on a branch and prune algorithm

for initial values and time. Flow* can compute the enclosure of trajectories

of the example of two tanks in Chapter 6 efficiently, and the width of the

computed enclosure converges, but it cannot handle the bouncing ball model

on a sine curve because it does not support non-polynomial inequalities as

guards and invariants.

Acumen [39] is a hybrid system simulator and takes an original imperative

language as its input. In addition to rich graphical features such as drawing

three-dimensional objects, it supports rigorous simulation, which can com-

pute an enclosure beyond a Zeno time point [9]. In our experiment, it could

handle the example of two water tanks, but the computed enclosure did not

converge and the simulation stopped after 12 times of switching of valves.

The tool named dReach [21] is a bounded model checker of hybrid sys-

tems based on a satisfiability modulo theory (SMT) solver with ODEs named

dReal. It unrolls execution of hybrid automata to bounded length and re-

duces the problem into SMT formulas. dReach is based on interval constraint

propagation and can check the satisfiability of given properties. dReach can

compute an enclosure of trajectories in a form of a witness of the satisfiability,

but the result is not parametric.

Goldsztejn and Ishii developed a simulation method based on interval

77

78 7 Related Work

arithmetic [12]. This method adopts parallelotopes as enclosing shapes of

states and succeeded in reducing the wrapping effect.

KeYmaera [30] and KeYmaera X [11] are theorem provers of differen-

tial dynamical logic and are related to our tool as tools employing symbolic

computation. They adopt a theorem proving approach, which is powerful

but is inherently interactive, while HyLaGI is a simulator of models that

computes trajectories automatically. KeYmaera has simulation capability

of hybrid programs to assist users to understand models; however, it is not

the main purpose of KeYmaera, and the simulation feature does not allow

uncertainties in the models. KeYmaera and KeYmaera X are also different

from HyLaGI in that they are fully based on symbolic computation.

Ñañez et al. developed a symbolic simulator for hybrid systems based

on Matlab [29]. This simulator can simulate systems that are sensitive to

perturbation rigorously, but it does not aim at parametric systems.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this research, we have developed a symbolic simulator of parametric hy-

brid systems that is based on constraint solving techniques. This simulator

integrates symbolic and interval techniques internally and can deal with the

drawbacks of each technique. The results of the simulation explicitly pre-

serve information about symbolic parameters. It can be used on the purpose

of parameter analyses of hybrid systems. We revisit the contributions of this

thesis as follows.

• Symbolic simulation algorithm of parametric hybrid systems

(Section 4.1): This algorithm adopts symbolic formula manipula-

tion as its basic operation. An input model is given in the form of

a HydLa program that is based on a constraint-based formalism. All

values of variables are represented by symbolic formulas with param-

eters throughout the simulation. The result of computation expresses

all possible trajectories of parametric hybrid systems and involves no

errors caused by floating-point arithmetic. If the behavior of an input

model may branch depending on the condition of symbolic parameters,

this algorithm automatically detects such branching and performs case

analysis about parameters. In the experiment, we showed that the

method can simulate models with large uncertainties and 50 qualita-

tively different cases.

• Extension of symbolic simulation by integrating with interval

arithmetic (Section 4.2): This extension enables simulation of mod-

79

80 8 Conclusion and Future Work

els that cannot be handled analytically. We can also use this method to

reduce computational costs of symbolic formula manipulation. In this

method, we use affine arithmetic to over-approximate complex sym-

bolic formulas into affine forms, which are simpler but still preserve

linear terms of parameters. We use the interval Newton method and

the mean value theorem to compute parametric zero-crossings of non-

linear equations. These zero-crossings can be exploited to compute

boundaries of systems of inequations. In the experiment, we showed

that the method improves the accuracy of the results compared to näıve

interval arithmetic. There is a trade-off between the accuracy and the

execution time of the simulation. This trade-off can be tuned by the

number of symbolic parameters that we preserve in simulations.

• Implementation of proposed methods (Chapter 5): We imple-

mented the proposed method with C++ and Mathematica. The im-

plementation is able to compute trajectories with symbolic parameters.

It also features bounded model checking as a natural extension of the

symbolic simulation. The implementation is publicly available through

a web frontend or a command line interface. The web frontend supports

three-dimensional plots of resultant parametric trajectories.

8.2 Future Work

In future work, the method in this thesis should be extended to handle models

with large uncertainties, which is important for design problems that demand

wide ranges of parameters. For such models, the current FindMinTimeIn-

terval does not work well because it assumes that the uncertainties are small

enough and the solution does not branch depending on the values of param-

eters. If the range of a parameter is wide and includes a corner case, the

interval Newton method fails because both of f(m(X)) and f ′(X) in the

Newton operator N(X) include zero. To deal with this problem, we need to

consider the division of parameter space into three subspaces, the first being

the space where the solution of f(X) = 0 definitely exists, the second where

definitely no solution exists, and the third where the existence of solution is

unclear (including the corner case). Such subdivision enables us to continue

simulation for the first and the second spaces and output the third space as

a corner case. Doing this intelligently is among our research agendas.

8.2 Future Work 81

It is also an important extension to handle models with nonlinear ODEs

that cannot be solved analytically. We are now investigating a method to

enclose a nonlinear ODE with a parametric linear ODE that can already be

handled in our simulation framework. Performance comparison with related

tools is another important issue.

82 8 Conclusion and Future Work

References

[1] Berz, M. and Makino, K. : Higher order multivariate automatic dif-

ferentiation and validated computation of remainder bounds, WSEAS

Transactions on Mathematics, 1998, Vol. 3, Issue 1, pp. 37–44.

[2] Borning, A., Freeman-Benson, B. and Wilson, M. : Constraint Hierar-

chies, Lisp and Symbolic Computation, Vol. 5, No. 3, 1992, pp. 223–270.

[3] Carloni, L., Passerone, R., Pinto, A. and Sangiovanni-Vincentelli, A.

L. : Languages and Tools for Hybrid Systems Design, Foundations and

Trends in Design Automation, Vol. 1, No. 1, 2006, pp. 1–204.

[4] Carlson, B. and Gupta, V. : Hybrid CC with Interval Constraints, in

Proc. ACM International Conference on Hybrid Systems: Computation

and Control, LNCS 1386, Springer, 1998, pp. 80–94.

[5] Chen, X., Abraham, E. and Sankaranarayanan, S. : Flow*: An Analyzer

for Non-Linear Hybrid Systems, in Proc. International Conference on

Computer Aided Verification, 2013, pp. 258–263.

[6] Chen, X. : Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models, PhD thesis, RWTH Aachen University, 2015.

[7] Chen, X., Schupp, S., Makhlouf, I. B., Abraham, E., Frehse, G. and

Kowalewski, S. : A Benchmark Suite for Hybrid Systems Reachability

Analysis, in Proc. 7th NASA Formal Methods Symposium, Springer,

2015, pp. 408–414.

[8] de Figueiredo, L. H. and Stolfi, J. : Affine Arithmetic: Concepts and

Applications, Numerical Algorithms, Vol. 37, Issue 1-4, 2004, pp. 147–

158.

83

84 REFERENCES

[9] Duracz, A., Bartha, F. A. and Taha, W. : Accurate rigorous simulation

should be possible for good designs, in Proc. International Workshop

on Symbolic and Numerical Methods for Reachability Analysis, 2016,

pp. 1–10.

[10] Frehse, G., Guernic, C. L., Donzé, A., Cotton, S., Ray, R., Lebeltel,

Olivier., Ripado, R., Girard, A., Dang, T. and Maler, O. : SpaceEx:

Scalable Verification of Hybrid Systems, in Proc. International Con-

ference on Computer Aided Verification, LNCS 6806, Springer, 2011,

pp. 379–395.

[11] Fulton, N., Mitsch, S., Quesel, J.D., Völp, M. and Platzer, A. : KeY-

maera X: An axiomatic tactical theorem prover for hybrid systems, in

Proc. International Conference on Automated Deduction, LNCS 9195,

Springer, 2015, pp. 527–538.

[12] Goldsztejn, A. and Ishii, D. : A Parallelotope Method for Hybrid System

Simulation, Reliable Computing, Springer, Vol. 23, 2016, pp. 163–185.

[13] Gupta, V., Jagadeesan, R., Saraswat, V. and Bobrow, D.G. : Program-

ming in Hybrid Constraint Languages, in Hybrid Systems II, LNCS 999,

Springer, 1995, pp. 226–251.

[14] Hansen, E. : A generalized interval arithmetic, in Nickel K. (eds) Interval

Mathematics, LNCS 29, Springer, 1975, pp. 7–18.

[15] Henzinger, T. : The Theory of Hybrid Automata, in Proc. Annual Sym-

posium on Logic in Computer Science, IEEE Computer Society Press,

1996, pp. 278–292.

[16] Hickey, T. J. and Wittenberg, D. K. : Rigorous Modeling of Hybrid

Systems Using Interval Arithmetic Constraints, in Proc. ACM Interna-

tional Conference on Hybrid Systems: Computation and Control, LNCS

2993, Springer, 2004, pp. 402–416.

[17] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008,

2008.

[18] Kashiwagi, M. : An algorithm to reduce the number of dummy vari-

ables in affine arithmetic, in Proc. 15th GAMM-IMACS International

REFERENCES 85

Symposium on Scientific Computing, Computer Arithmetic and Verified

Numerical Computations, 2012.

[19] Kashiwagi, M. : kv library, http://verifiedby.me/kv/ (in Japanese).

[20] Kobayashi, T., Kono, F., Matsumoto, S. and Ueda, K. : Optimization of

HydLa Implementation Using Difference Information of Constraints be-

tween Phases and Relation between Variables and Constraints, in Proc.

28th Annual Conference of the Japanese Society for Artificial Intelli-

gence, 2014, 4C1-2. (in Japanese)

[21] Kong, S., Gao, S., Chen, W. and Clarke, E. : dReach: δ-reachability

analysis for hybrid systems, in Proc. International Conference of Tools

and Algorithms for the Construction and Analysis of Systems, LNCS

9035, Springer, 2015, pp. 200–205.

[22] Kono, F., Koboyashi, T., Matsumoto, S. and Ueda, K. : Extensions for

Large-Scale Simulation of Hybrid Systems Symbolic Simulator Hyrose,

in Proc. 31st Symposium of Japan Society for Software Science and

Technology, 2014, general session 7-3. (in Japanese)

[23] Lunze, J. : Handbook of Hybrid Systems Control : Theory, Tools, Ap-

plications, Cambridge University Press, 2009.

[24] Matsumoto, S., Kono, F., Kobayashi, T. and Ueda, K. : HyLaGI: Sym-

bolic Implementation of a Hybrid Constraint Language HydLa, Elec-

tronic Notes in Theoretical Computer Science, 2015, Vol. 317, pp. 109–

115.

[25] Matsumoto, S. and Ueda, K. : Symbolic Simulation of Parametrized Hy-

brid Systems with Affine Arithmetic, in Proc. 23rd International Sym-

posium on Temporal Representation and Reasoning, 2016, pp. 4–11.

[26] Matsumoto, S. and Ueda, K. : Hyrose: A Symbolic Simulator of the

Hybrid Constraint Language HydLa, Computer Software, Japan Society

for Software Science and Technology, 2013, Vol. 30, No. 4, pp. 18–35.

(in Japanese)

[27] Mimram, S., Bouissou, O. and Chapoutot, A. : HySon: Set-based Simu-

lation of Hybrid Systems, in Proc. IEEE 23rd International Symposium

on Rapid System Prototyping, 2012, pp. 79–85.

86 REFERENCES

[28] Moore R. E., Kearfott R. B. and Cloud M. J. : Introduction to Interval

Analysis, Society for Industrial and Applied Mathematics, 2009.

[29] Ñañez, P., Risso, N. and Sanfelice, R. G. : A Symbolic Simulator for

Hybrid Equations, in Proc. 2014 Summer Simulation Multiconference,

2014, No. 18.

[30] Plätzer, A. and Quesel, J. D. : KeYmaera : A Hybrid Theorem Prover

for Hybrid Systems, in Proc. International Joint Conference on Auto-

mated Reasoning, LNCS 5195, Springer, 2008, pp. 171–178.

[31] Ramdani, N., Meslem, N. and Candau, Y. : A Hybrid Bounding Method

for Computing an Over-Approximation for the Reachable Set of Uncer-

tain Nonlinear Systems, IEEE Transactions on Automatic Control, Vol.

54, No. 10, 2009, pp. 2352–2364.

[32] Rossi, F., Beek, P. V., Walsh, T. : Handbook of Constraint Program-

ming, Elsevier Science, 2006.

[33] Tabuada, P. : Verification and Control of Hybrid Systems, Springer,

2009.

[34] Ueda, K., Matsumoto, S., Takeguchi, A., Hosobe, H. and Ishii, D. :

HydLa : A High-Level Language for Hybrid Systems. Second Workshop

on Logics for System Analysis, 2012, pp. 3–17.

[35] Ueda, K., Hosobe, H. and Ishii, D. : Declarative Semantics of the Hybrid

Constraint Language, Computer Software, Japan Society for Software

Science and Technology, Vol. 28, No. 1, 2011, pp. 306–311. (in Japanese)

[36] Wada, T., Matsumoto, S. and Ueda, K. : Simulation with formula ma-

nipulation and interval arithmetic by HydLa implementation, in Proc.

29th Annual Conference of the Japanese Society for Artificial Intelli-

gence, 2015, 1E3-3. (in Japanese)

[37] Wolfram Research, Inc. : Mathematica,

http://www.wolfram.co.jp/products/mathematica/index.html.

[38] Wolfram Research, Inc. : Overview of Ordinary Differential Equations,

http://reference.wolfram.com/language

/tutorial/DSolveIntroductionToODEs.html

REFERENCES 87

[39] Zeng, Y., Rose, C., Brauner, P., Taha, W., Masood, J., Philippsen, R.,

O’Malley, M. and Cartwright, R. : Modeling Basic Aspects of Cyber-

Physical Systems, Part II, in Proc. 11th IEEE International Conference

on Embedded Software and Systems, 2014, pp. 550–557.

	Abstract
	Acknowledgments
	Introduction
	Background
	Research Goals and Contributions
	Symbolic Simulation Algorithm Based on Constraint Solving
	Integrating Symbolic Simulation with Interval Arithmetic
	Implementation of A Symbolic Simulator

	Outline

	Preliminaries
	Notations
	Constraints
	Interval Arithmetic
	Affine Arithmetic

	HydLa: A Constraint-based formalism of Hybrid Systems
	Syntax
	Semantics
	Solving Constraint Hierarchy
	Semantics of Basic HydLa

	Example Program
	List Notation

	Simulation Algorithm of Hybrid Systems
	Symbolic Simulation
	Calculation of Maximal Consistent Set
	Consistency Checking in Point Phase
	Consistency Checking in Interval Phase
	Calculation of Closure of Constraints
	Example of Symbolic Simulation

	Symbolic Simulation with Interval Arithmetic
	Computation of Event Time with Interval Arithmetic
	Computation of Zero-crossings

	HyLaGI: The Implementation
	Web Frontend
	Bounded Model Checking
	Implicit Continuity
	Guards Referring to the Left-hand Limits of the Initial Time
	Scalability of HyLaGI
	Construction of Relation Graph
	Simulation with Relation Graph

	Experimental Results
	Fully Symbolic Simulation
	Bouncing Particle with a Hole
	Hot-air Balloon
	Electric Circuit
	Curling Stone

	Simulation with Interval Arithmetic
	Two Water Tanks
	Bouncing Ball on A Sine Curve
	Bouncing Ball on A Parabola

	Summary of Experiments

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	References

