
Simulation and Verification of Hybrid Systems

Based on

Interval Analysis and Constraint Programming

Daisuke Ishii

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Information and Computer Science,

Graduate School of Science and Engineering,

Waseda University

February 2010 (Version 1.1.2)

Keywords: Hybrid Systems, Constraint Programming, Interval Analysis,
Simulation, Reachability Analysis.

– ii –

Abstract

Hybrid systems are systems consisting of discrete changes and continuous changes
over time. Various systems in which computers reliably interact with their phys-
ical environment are modeled as hybrid systems. Simulation and verification of
hybrid systems are done by integrating the computation of continuous dynamics
and discrete changes, and by handling the uncertainties and computation errors.
However, the computation of hybrid systems is often difficult, and may produce
qualitatively wrong results, especially when the systems are described by non-
linear ordinary differential equations (ODEs) and nonlinear algebraic equations.
This thesis is intended to provide a framework for nonlinear hybrid systems based
on interval analysis and constraint programming.

The detection of discrete changes in hybrid systems plays a significant role in
the simulation and verification. We formulate the problem as a hybrid constraint
system (HCS), which consists of instantaneous constraints, continuous constraints
on trajectories (i.e., continuous functions over time) and guard constraints on
states causing discrete changes. We implement a technique for solving HCSs
by coordinating (i) an interval-based solving technique for nonlinear ODEs, and
(ii) a constraint programming technique that reduces the interval enclosures of
solutions. The technique generates a set of boxes smaller than a specified size
that enclose the theoretical solution. Our technique employs the interval Newton
method to accelerate the reduction of interval enclosures while guaranteeing that
the enclosure contains a solution, and it reliably solves HCSs with nonlinear
constraints.

Next, we present a bounded model checking method for hybrid systems. It
translates a reachability problem of a nonlinear hybrid system into a predicate
logic formula involving arithmetic constraints, and checks the satisfiability of the
formula based on the satisfiability modulo theories (SMT) method. We tightly
integrate (i) an incremental propositional satisfiability (SAT) solver to enumerate
possible sets of constraints and (ii) an interval-based solver for HCSs to solve the
constraints described in the formulas. The HCS solver verifies the occurrence
of a discrete change by computing a set of boxes that enclose continuous states
that may cause a discrete change. We exploit the existence property of a unique
solution in the boxes computed by the HCS solver as (i) a proof of the reachability
of a model, and (ii) a guide in the over-approximation refinement procedure. Our
implementation, called hydlogic, successfully handles several examples including
those with nonlinear constraints.

– iii –

Acknowledgments

I thank my supervisor Prof. Kazunori Ueda for encouraging me to publish this
dissertation. Of course, there has been more than encouragement. His helpful
comments and suggestions have been essential for completing each chapter of
this dissertation. I should also thank Prof. Hiroshi Hosobe for all the support
including many valuable comments on the drafts of this work. The author thank
the thesis committee members, Prof. Yasuo Matsuyama, Prof. Shin’ishi Oishi,
Prof. Toshiharu Sugawara, et al., for their patient support to improve the the-
sis. I would like to appreciate all the members at Ueda Laboratory in Waseda
University for encouraging me. In particular, I should thank the members of the
Udraw and HydLa projects for many profitable hours of discussions. I have been
fortunate having the opportunity to work with people at LINA, Université de
Nantes. I should like to thank Dr. Alexandre Goldsztejn, Dr. Marc Christie, and
Dr. Christophe Jermann who provide the basic materials for this study. Finally,
I am grateful to my parents for their support and encouragement over the years.

– v –

Contents

1 Introduction 1
1.1 Modeling of Hybrid Systems . 1
1.2 Detection of Discrete Changes in Hybrid Systems 2
1.3 Simulation and Verification of Hybrid Systems 2
1.4 Our Goal and Contributions . 3

1.4.1 Interval-based Solving of Hybrid Constraint Systems 3
1.4.2 Encoding Hybrid Systems into Predicate Logic Formulas . . 4
1.4.3 Reliable Simulation and Verification of Nonlinear Hybrid

Systems . 4
1.5 Outline of the Thesis . 5
1.6 Prerequisites . 6

2 Interval Analysis 7
2.1 Intervals . 7

2.1.1 Machine-Representable Intervals 8
2.1.2 Interval Enclosures, Approximations, and Extensions 9
2.1.3 Implementations . 10

2.2 Interval Newton Method . 11
2.3 Interval-based Solving of ODEs 12

3 Real Constraint Systems 17
3.1 Real Constraint Systems . 18
3.2 Interval-based Entailment Checking 19
3.3 Interval-based Consistency Techniques 20

3.3.1 Branch-and-Prune Framework 21
3.3.2 Hull-Consistency-based Revise Algorithm 23
3.3.3 Box-Consistency-based Revise Algorithms 24
3.3.4 Implementation of Branch-and-Prune 24
3.3.5 Examples . 25

4 Hybrid Systems 29

– vii –

4.1 Real-Time Transition Systems and Hybrid Trajectories 31
4.2 Hybrid Automata . 34

4.2.1 Operational Semantics of HA 35
4.2.2 HA with Unsafe Regions . 37
4.2.3 Reachability . 37

4.3 Hybrid Concurrent Constraint Programming 38
4.3.1 The Tiny HCC Language 40
4.3.2 Operational Semantics of Tiny HCC 41
4.3.3 Example of an Execution 43

5 Hybrid Constraint Systems 49
5.1 Continuous Constraint Systems 50
5.2 Hybrid Constraint Systems . 51
5.3 Box-Consistency for HCSs . 55
5.4 Technique for Solving HCSs . 56

5.4.1 Reduction of the Time Domain 56
5.4.2 Reduction of the Continuous State Domain 59
5.4.3 Testing the Unique Existence of a Solution 59
5.4.4 Computing an Enclosure for the Earliest Solution 60

5.5 Implementation . 60
5.6 Examples and Experiments . 61

5.6.1 Interval-based Simulation of Bouncing Particle 62
5.6.2 Examples of Nonlinear HCSs 64
5.6.3 Comparison with Existing Methods 66
5.6.4 Computation of Multiple Solutions 67

6 Bounded Reachability Analysis of Hybrid Systems 69
6.1 Constraint-based Representation of Hybrid Systems 70

6.1.1 Encoding RTTSs . 71
6.1.2 Encoding Method for HA 72
6.1.3 Encoding Method for Tiny HCC Programs 74

6.2 Basic Procedure of Proposed Method 75
6.3 Algorithms for Checking the Satisfiability 76

6.3.1 Incremental Solving . 77
6.3.2 Propagation by Solving HCSs 79
6.3.3 Over-approximation Refinement 79
6.3.4 Example of Reachability Analysis 80

6.4 Implementation . 83
6.5 Experiments . 83

6.5.1 Car Steering Problem . 84

– viii –

6.5.2 Navigation Benchmark . 84
6.5.3 Tunnel Diode Oscillator Circuit 85

7 Related Work 87
7.1 Detection of Discrete Changes . 87
7.2 Modeling Languages for Hybrid Systems 88

7.2.1 Relationship between HA and HCC 88
7.2.2 Constraint-based Languages 88

7.3 Reachability Analysis of Hybrid Systems 88
7.3.1 Over-Approximation-based Simulation 89
7.3.2 SMT-based Bounded Model Checking 90

8 Conclusion and Future Work 91
8.1 Conclusion . 91
8.2 Future Work . 92

8.2.1 Generalization of HCSs . 92
8.2.2 Development of the Modeling Languages 92
8.2.3 Towards More Powerful Tools 92

Bibliography 95

– ix –

List of Figures

2.1 Computation result of falling particle by VNODE-LP. 15
2.2 Computation result of Lorenz equation by VNODE-LP. 16

3.1 BranchAndPrune algorithm. 22
3.2 Branch algorithm. 22
3.3 Prune algorithm. 23
3.4 HC4Revise algorithm. 23
3.5 BC3Revise algorithm. 24
3.6 BC3ReviseL algorithm. 25

4.1 Behavior of bouncing particle. 30
4.2 Hybrid trajectory of bouncing particle. 33
4.3 Model of bouncing particle in HA. 35
4.4 Operational semantics of HA. 36
4.5 Model of car steering problem in HA. 38
4.6 Executions of car steering problem. 39
4.7 Operational semantics of Tiny HCC. 42

5.1 Example of CCSs. 52
5.2 Example of HCSs. 53
5.3 HCSRevise algorithm. 57
5.4 HCSReviseL algorithm. 57
5.5 Model of bouncing particle in HA. 62
5.6 Trajectory of bouncing particle and interval enclosure of trajectory. 64

6.1 Basic procedure of bounded reachability analysis. 76
6.2 IncSolve algorithm. 78
6.3 HcsPropag algorithm. 80
6.4 Process of solving car steering example. 81
6.5 Enumeration of possible execution paths. 82

– xi –

List of Tables

1.1 Computational environment for experiments. 6

2.1 Computation results from Gaol and PROFIL/BIAS. 11
2.2 Computation results by VNODE-LP with Gaol and PROFIL/BIAS. . 15

3.1 Main classes in Elisa. 26
3.2 Computation results by Elisa. 27

5.1 Main classes in the implementation. 61
5.2 Computation results for bouncing particle model. 63
5.3 Comparison of results (1). 66
5.4 Comparison of results (2). 66
5.5 Results of computing all solutions. 68

– xiii –

Chapter 1

Introduction

One of the challenges in building software and hardware components is to design
and analyze components so that computer programs reliably interact with their
physical environment [74]. Such systems are modeled as hybrid systems [73, 54]
which consist of discrete and continuous changes over time. Practical examples
of hybrid systems include embedded controllers for automobiles [2, 4], electric
circuits handling both analog signals and binary switches [38, 41], and models in
molecular systems biology [25].

1.1 Modeling of Hybrid Systems
As described by van der Schaft [73] and Carloni et al. [12], various frameworks
for modeling hybrid systems have been proposed for different purposes such as
simulation, verification, and control.

• Hybrid automata (HA) [45] are developed by extending discrete transition
systems. Methods for abstracting HA into discrete systems and for model
checking about the systems are developed (see [3, 76] for the survey).

• Constraint-based frameworks model hybrid systems based on expressions
in the form of logical formula involving arithmetic equations. The targets
of these frameworks include:

– the models that involve uncertainties (e.g., equations with parameters)
such that the models are described with constraints (generic constraint
programming frameworks have been extended for modeling hybrid sys-
tems [39, 46]);

– the models described by the disjunction of several arithmetic equations
that are an extention of continuous dynamical systems (e.g., event-flow
formulas [73] and differential algebraic equations); and

– an intermediate expression of models used in the frameworks for rea-

– 1 –

Chapter 1 Introduction

soning hybrid systems by applying logical satisfiability checking meth-
ods [4, 27].

1.2 Detection of Discrete Changes in Hybrid Systems
The detection of states that cause discrete changes plays a significant role in
the simulation and verification of hybrid systems. The problem is described by
the conjunction of an ODE (ordinary differential equation) and the condition for
a discrete change (guard constraint). We also consider problems that involve
uncertainties: for example, an initial value is given as an interval.

Many techniques for solving the problem (e.g., Reference [24]) involve numerical
computation. To solve efficiently, we should reduce the number of iterations to
simulate continuous changes, whereas conditions for discrete changes should be
examined precisely. Because the techniques may compute unexpected results due
to computation errors, various workarounds have been investigated. For example,
Park and Barton [64] handled the discontinuity sticking problem, which is the
problem of detecting the same discrete event immediately after a discrete change.

A reliable approach for the computation is interval analysis, which guarantees
that a set of tight intervals or boxes encloses the solution. Uncertain parameters
in problems are described by intervals. Many systems for hybrid systems apply
interval-based techniques to the simulation [46, 61] and verification [67]. How-
ever, existing methods have difficulties in the efficient computation, especially
when problems involve nonlinear constraints. As in the numerical approach, we
should reduce the number of intervals to enclose nonlinear continuous changes,
which easily increases exponentially, and at the same time, states causing discrete
changes should be enclosed by tight intervals.

1.3 Simulation and Verification of Hybrid Systems
Various frameworks have been developed for the simulation and verification of
hybrid systems. Most of the existing tools for simulation are based on numerical
methods. Carloni et al. [12] have pointed out that the simulators such as MAT-
LAB/Simulink/Stateflow [55] and Dymola [21] are not reliable enough, especially
when models involve singular behaviors such as Zeno behaviors and chatterings.

Verification frameworks for hybrid systems are dedicated to the reachability
analysis of hybrid systems. Many tools primarily analyze the safety properties
of various models by translating an analysis of a model into an equivalent prob-
lem (e.g., a discrete transition system [3, 76] or a predicate logic formula [4, 27])
consisting of a finite set of discrete states to apply model checking techniques.

– 2 –

1.4 Our Goal and Contributions

When translations are difficult, some reachability computations (e.g., for models
with affine constraints) may be abstracted by the over-approximation of the con-
straints in models (e.g., with boxes [67] or polyhedra [29]). In such a case, the
properties that are to be verified should be preserved in an over-approximation.
Nevertheless, efficient over-approximation of continuous trajectories described by
nonlinear constraints is still an active research topic.

1.4 Our Goal and Contributions
This thesis proposes frameworks for the simulation and verification of nonlinear
hybrid systems.

1.4.1 Interval-based Solving of Hybrid Constraint Systems

We propose hybrid constraint systems (HCSs) to describe the problem of detecting
discrete changes by constraints. HCSs allow us to combine intervals and equations
of real numbers including ODEs in a clean and natural way [46]. HCSs serve as
a key component in the simulation and verification of hybrid systems. An HCS
consists of

• instantaneous constraints on initial states,
• continuous constraints on trajectories over time, and
• guard constraints that describe the boundaries in the continuous state

space.

To solve an HCS, we translate the original HCS into a box-consistent HCS whose
domain is an interval enclosure of the solution satisfying the certain accuracy.

We develop a technique for solving HCSs by integrating (i) the interval-based
nonlinear ODE solving method by Nedialkov et al. [60, 59] and (ii) the interval-
based constraint programming framework by van Hentenryck, Benhamou,
Granvilliers et al. [80, 6, 36]. The technique generates a set of boxes smaller
than a specified size that enclose the theoretical solution.

The proposed technique employs the interval Newton method for the quadratic
convergence of the reduction of boxes, and for guaranteeing that the boxes contain
a solution. The method uses an interval Newton operator derived from constraints
in HCSs. Experimental results show the efficiency of the method in simulating
nonlinear hybrid systems.

– 3 –

Chapter 1 Introduction

1.4.2 Encoding Hybrid Systems into Predicate Logic Formulas

We develop a bounded model checking (BMC) framework for hybrid systems. In
this framework, we encode a reachability problem of a nonlinear hybrid system
into a predicate logic formula involving arithmetic constraints, and checks the
satisfiability of the formula to verify the original system.

As inputs to the encoding scheme that we propose, we consider models de-
scribed by HA and a constraint-based language called Tiny HCC. The scheme
encodes models into predicate logic formulas involving the constraints of HCSs.
The encoding is based on the semantics of the languages that defines the bounded
executions of models described by the languages. We formalize the semantics by
translating HA and Tiny HCC programs into an abstract machine called real-time
transition systems (RTTSs), and then describing executions of models as hybrid
trajectories.

1.4.3 Reliable Simulation and Verification of Nonlinear Hybrid Systems

Once a model is translated into a predicate logic formula, the satisfiability of the
formula is checked by a satisfiability modulo theories (SMT) method. We tightly
integrate

• an incremental SAT (propositional satisfiability) solver to enumerate the
possible sets of constraints and

• the interval-based solver for HCSs to solve the constraints described in the
formulas.

We adopt the existence property of a unique solution in the boxes computed by
the HCS solver as (i) a proof of the reachability of a model, and (ii) a guide in the
over-approximation refinement procedure. Our implementation called hydlogic
successfully handled several examples including those with nonlinear constraints.

– 4 –

1.5 Outline of the Thesis

1.5 Outline of the Thesis
• Chapter 2 introduces some basics of interval analysis. It provides the def-

initions of real intervals, machine-representable intervals, boxes, interval
extensions, and so on. Then, we introduce the interval Newton method
and interval-based methods for solving initial value problems for ODEs,
which serve as components in the proposed method in Chapter 5.

• Chapter 3 presents some backgrounds of constraint systems whose domain
of variables is real numbers. We provide a simple formalization of real con-
straint systems (RCSs) and corresponding notions such as entailment and
consistency. Subsequently, we describe methods based on interval analy-
sis for checking the entailment and consistency. The consistency check-
ing method is based on the box-consistency notion, which formalizes an
interval-based approximation of solutions.

• Chapter 4 describes hybrid systems. We first introduce two simple struc-
tures RTTSs and hybrid trajectories to illustrate how hybrid systems be-
have. Next, we describe two modeling languages for hybrid systems, HA
and the Tiny HCC language, by translating them into RTTSs.

• Chapter 5 presents new formulations of continuous constraint systems
(CCSs) and hybrid constraint systems (HCSs). We first define CCSs
and HCSs by extending RCSs, and introduce the box-consistency for
HCSs. Next, we describe an interval-based technique for checking the
satisfiability of constraints in an HCS. The technique reliably solves HCSs
with nonlinear constraints by coordinating interval-based solvers for ODEs
and RCSs. We explain how we apply the interval Newton method to solve
HCSs.

• Chapter 6 proposes a method for bounded reachability analysis of non-
linear HA. We describe the SMT-based method that encodes models into
predicate logic formula, and then checks the satisfiability of the formula
using a SAT solver and the HCS solver in Section 5.

• Chapter 7 describes the previous research on hybrid systems especially from
the viewpoints of the detection of discrete changes, modeling frameworks,
and reachability analysis.

• Finally, in Chapter 8, we conclude and indicate topics for further research.

– 5 –

Chapter 1 Introduction

Table 1.1 Computational environment for experiments.

Processor 1.86GHz Intel Core 2 Duo (with a single core activated)
L2 cache 2MB
RAM 2GB
OS Linux 2.6.26
C/C++ compiler gcc 4.3.2

1.6 Prerequisites
This thesis is intended to be self-contained. We assume a basic knowledge of set
theory, logic, and programming languages. We use the following notations in the
description below:

Definition 1 (basic notation) For a set S of distinguishable objects, P(S) de-
notes the powerset of S. For a tuple V = (v1, . . . , vn) of not necessarily distinct
objects, V.i denotes the i-th component vi. For sets S1, . . . , Sn, and a relation
rel ⊆ S1×· · ·×Sn, πi(rel) denotes the i-th projection of rel onto Si. For a functions
φ : S1 → S2, dom(φ) = S1 and img(φ) = S2. We represent the set of bounded
continuous functions {φ | dom(φ) = S1 ∧ img(φ) = S2} by M(S1, S2).

For the experiments described in each chapter, we work in the computational
environment described in Table 1.1.

– 6 –

Chapter 2

Interval Analysis

Interval analysis [57, 58, 62, 51] provides a rigor in computation with real num-
bers. It extends numerical analysis by replacing machine-representable floating-
point numbers with machine-representable intervals. We first introduce the basic
notions such as intervals, boxes, and interval extensions (Section 2.1). We then
introduce the interval Newton methods (Section 2.2) and interval-based methods
for solving ODEs (Section 2.3).

2.1 Intervals
This section defines intervals and introduces basic interval operations. We define
herein closed and open real intervals and the properties of intervals.

Definition 2 (real interval) Let R denote the set of real numbers, and let R∞

denote R ∪ {−∞, +∞}. A closed real interval I with the lower bound I and the
upper bound I is defined as

I = [I, I] = {r ∈ R | I ≤ r ≤ I},

where I and I are real numbers (I ≤ I). IR denotes the set of closed real intervals,
A closed real interval will be called an interval, when no confusion may arise. An
interval I where I = I = r is also denoted by [r]. We call an interval I canonical
if I < I. Given a canonical interval I, an open real interval or an internal of I is
defined as

(I, I) = int(I) = {r ∈ R | I < r < I},

and half-open real intervals [I, I) and (I, I] are defined as {I}∪ (I, I) and (I, I)∪
{I}, respectively. Note that open and half-open real intervals are also called inter-
vals when the distinction is not important. The universal interval (−∞, +∞) is

– 7 –

Chapter 2 Interval Analysis

the set R, and the empty interval ∅ is the empty set (these intervals are elements
of IR).

For non-empty intervals I and I ′,

• w(I) denotes the width I − I,
• m(I) denotes the center (I + I)/2,
• |I| denotes the absolute value max{|I|, |I|}, and
• I] I ′ denotes the hull {r ∈ R | min(I, I ′) ≤ r ≤ max(I, I ′)}.

Example 1 I = [−1.5, 10], [0] = [0, 0], and int(I) = (−1.5, 10) are intervals. I is
canonical. I = −1.5, w(I) = 11.5, m(I) = 4.25, and |I| = 10. We may abbreviate
an interval [3.141, 3.142] as 3.14[1, 2].

Definition 3 (box) An n-dimensional box or interval vector is defined as a tuple
of n intervals B = (I1, . . . , In), where n ∈ N and I1, . . . , In ∈ IR. The empty box
∅ is a box for which a component is the empty interval ∅. IRn denotes the set of
n-dimensional boxes.

For non-empty boxes B and B′ in IRn,

• w(B) denotes the width max{w(B.i)) | i ∈ {1, . . . , n}} (B.i denotes the
i-th component of B), and

• B ∩ B′ denotes the intersection (B.1 ∩ B′.1, . . . , B.n ∩ B′.n).

Example 2 B = ([2, 3], [−1.5, 10], [0], (−∞, +∞)) is an instance of IR4. B.2 =
[−1.5, 10], and w(B) = +∞.

2.1.1 Machine-Representable Intervals

We consider various sets of machine-representable floating-point numbers F ⊂ R
that conform to the IEEE 754 standard [47].

Definition 4 (floating-point number) Let b ∈ {2, 10} be the radix,
emin, emax ∈ Z be the bounds for ranging exponents, and n ∈ N be the
number of digits (precision) in the significand. A system of floating-point
numbers Fb,emin,emax,n consists of the following objects:

• Triples 〈s, e,m〉 representing the number

(−1)s · be · m,

where s ∈ {0, 1}, e ∈ Z (emin ≤ e ≤ emax), and m is a digit string of the
form d1.d2d3 · · · dn (di ∈ {0, . . . , b − 1}).

– 8 –

2.1 Intervals

• Positive and negative infinities +∞ and −∞.
• Not a number symbol NaN.

Let F be a floating-point system. For r ∈ R and r′ ∈ F, we use the following
notations:

Or = max{r′′ ∈ F | r′′ ≤ r},
Mr = min{r′′ ∈ F | r′′ ≥ r},
r′− = max{r′′ ∈ F | r′′ < r′},
r′+ = min{r′′ ∈ F | r′′ > r′}.

Example 3 3.141592 is an instance of F10,−95,96,7. The single-precision system
Fs = F2,−126,127,(23+1) and the double-precision system Fd = F2,−1022,1023,(52+1)

are widely used on computers.

Definition 5 (machine-representable interval) Let F be a system of
floating-point numbers. A machine-representable interval is a real interval I,
where I and I are elements of F. IF denotes the set of machine-representable
intervals based on F. IFn denotes the set of n-dimensional boxes based on F.

We represent a set of intervals by I when the distinction between the floating-point
systems used for bounds is not important.

2.1.2 Interval Enclosures, Approximations, and Extensions

Consider a relation rel ⊆ Rn and a system F of floating-point numbers. A box in
IFn that conservatively approximates rel is called an interval enclosure.

Definition 6 (interval enclosure) A box (I1, . . . , In) ∈ IFn is an interval en-
closure of rel ⊆ Rn when rel ⊆ I1×· · ·×In holds.

We have various systems of enclosures for representing relations in Rn such as
IRn, and IFn. The smallest (with respect to the set inclusion) interval enclosure
in a system of enclosures is called the interval approximation.

Definition 7 (interval approximation) Let F be a system of floating-point
numbers. An interval approximation (or hull) apx IFn(rel) ∈ IFn of a relation
rel ⊆ Rn is defined as

apx IFn(rel) =
∩

B∈BS

B,

– 9 –

Chapter 2 Interval Analysis

where BS = {(I1, . . . , In) ∈ IFn | ∀(r1, . . . , rn)∈rel ((r1 . . . , rn) ∈ I1×· · ·×In)}.

Another interval-based approximations for functions and relations are defined
as interval extensions.

Definition 8 (interval extension) Let IF be a system of floating-point num-
bers. For a function f : Rm → Rn, a function F : IFm → IFn is called an interval
extension of f if and only if

∀I1∈IF · · · ∀Im∈IF ∀r1∈I1 · · · ∀rm∈Im ∀i∈{1, . . . , n}
(f(r1, . . . , rm).i ∈ F (I1, . . . , Im).i).

For a relation rel ⊆ Rn, a relation R ⊆ IFn on intervals is called an interval
extension of rel if and only if

∀I1∈IF · · · ∀In∈IF
(∃r1∈I1 · · · ∃rn∈In ((r1, . . . , rn) ∈ rel) ⇒ (I1, . . . , In) ∈ R).

Example 4 Let I1 and I2 be intervals in IF. The natural interval extension of
four operators is implemented as follows:

I1 + I2 = [O(I1 + I2), M(I1 + I2)],

I1 − I2 = [O(I1 − I2), M(I1 − I2)],

I1 · I2 = [Omin{I1 ·I2, I1 ·I2, I1 ·I2, I1 ·I2}, Mmax{I1 ·I2, I1 ·I2, I1 ·I2, I1 ·I2}],
I1 / I2 = I1 · [O(1/I2), M(1/I2)] if 0 /∈ I2.

The natural interval extension of a function f(x, y) = (x + y)2/2 is formed as
F (X, Y) = (X + Y) · (X + Y)/[2], where operators +, ·, and / are the natural
interval extensions. Note that interval functions F (X, Y) and (X · X + [2] · X ·
Y + Y · Y)/[2] are not equivalent.

2.1.3 Implementations

Implementations of intervals are available for various platforms. For example,
Gaol [33], PROFIL/BIAS [52], and Boost Interval Arithmetic Library [56] are im-
plementations in C/C++, and INTLAB [69] is an implementation built on top
of the MATLAB system.

– 10 –

2.2 Interval Newton Method

Table 2.1 Computation results from Gaol and PROFIL/BIAS.

library problem result cycles
Gaol prism 1.5867066805824[69, 72] 14553

g&p [−56254330, 94177270] 9823
PROFIL/BIAS prism 1.5867066805824[687, 719] 8521

g&p [−56254330, 94177270] 7226

Example 5 Gaol and PROFIL/BIAS provide the object classes of intervals in
IFd, interval extensions of four operators and elementary functions, operators
for accessing the various properties of intervals, and so on. Gaol also provides
relational functions such as acos rel(I2, I1) = apx IFn({r1 ∈ I1 | ∃r2 ∈ I2 (r2 =
cos(r1))}).

We computed interval extensions of the following functions to compare the
performance and the accuracy of the interval extensions.

• The following function represents the index of refraction of a prism taken
from Reference [58]:

f(α, δ) =
sin((α + δ)/2)

sin(α/2)
,

where α ∈ [π/3] is the angle, and δ ∈ [π/4] is the minimum deviation angle.
• A global optimization test function by Goldstein and Price (g&p) taken

from the Gaol package is

f(x, y) = (1 + (x + y)2 · (19 − 14 · x + 3 · x2 − 14 · y + 6 · x · y + 3 · y2))

·(30 + (2 · x − 3 · y)2 · (18 − 32 · x + 12 · x2 + 48 · y − 36 · x · y + 27 · y2)),

for x ∈ [−2, 2] and y ∈ [−2, 2].

The results and the CPU clock cycles of the computation are illustrated in Table
2.1. PROFIL/BIAS computed somewhat efficiently than Gaol. The accuracy of
the results are almost the same.

2.2 Interval Newton Method
The operator provided below gives a basis for interval Newton methods.

Theorem 1 (univariate interval Newton operator) Given an equation
h(t) = 0, where h : R → R is a differentiable function, a solution of the equation

– 11 –

Chapter 2 Interval Analysis

in an interval I is also included in an interval obtained by the following interval
Newton operator

NH,Ḣ(I) = I ∩
(

[m(I)] − H([m(I)])
Ḣ(I)

)
,

where H and Ḣ are interval extensions of h and its derivative.

Proof. See Theorem 8.1 of Reference [58].

The operator NH,Ḣ(I) is defined if and only if 0 /∈ Ḣ(I) holds. The (univari-
ate) interval Newton method iteratively refines an interval enclosure by using
the operator above. Successive applications of NH,Ḣ(I) will converge because
the operator takes an intersection in the operator. The fixpoint is denoted by
N∗

H,Ḣ
(I).

By taking a sufficiently small enclosure I of a solution, an application of
NH,Ḣ(I) will reduce I unless it has reached a fixpoint. An important sub-product
of the interval Newton method is that it guarantees the existence of the unique
solution within an interval.

Theorem 2 (existence of unique solution) If the condition NH,Ḣ(I) ⊆
int(I) holds, a unique solution of the equation h(t) = 0 exists within NH,Ḣ(I).

Proof. See Theorem 8.4 of Reference [58].

2.3 Interval-based Solving of ODEs
This section describes interval-based techniques for solving initial value problems
for ODEs.

Definition 9 (initial value problem for ODE) A continuous trajectory φ is
a vector-valued differentiable function over time R≥0 → Rn (t0 ∈ R≥0). Such
φ is specified by an initial value problem for an ordinary differential equation
(IVP-ODE) formed by the conjunction of equations

φ̇(τ) = f(φ(τ)) ∧ φ(t0) = φ0,

where φ̇(τ) denotes dφ(τ)/dτ , φ0 ∈ Rn and f : Rn → Rn (assuming Lipschitz
continuity).

– 12 –

2.3 Interval-based Solving of ODEs

Given an IVP-ODE, a solution denoted by φt0,φ0 is a continuous trajectory
that satisfies the IVP-ODE.

When considering the interval-based techniques for IVP-ODEs, we parameterize
the initial values for an ODE by specifying the initial time points t0 and initial
values φ0 by a box. The techniques then compute interval extensions of all the
possible solutions.

Definition 10 (interval extension of solutions for IVP-ODE) Given an
ODE and an initial domain (T0, Φ0) ∈ In+1, where T0 ≥ 0, an interval extension
ΦT0,Φ0 of the set of solutions φt0,φ0 for IVP-ODE satisfies the following condition

∀t0∈T0 ∀φ0∈Φ0 ∀t∈T ∀i∈{1, . . . , n} (φt0,φ0(t).i ∈ ΦT0,Φ0(T).i),

where T is a time interval such that T ≥ T0. It is denoted by ΦT0,Φ0 : I → In.

We employ the existing method VNODE proposed by Nedialkov et al. [60,
59] to solve IVP-ODEs based on interval analysis. For an ODE and an initial
domain (T0, Φ0), the solving process of VNODE computes the interval extensions
of solutions for the IVP-ODE ΦT0,Φ0 : I → In. Given a time interval T ∈ I,
VNODE computes a box ΦT0,Φ0(T) that encloses every trajectory over T . As a
by-product of the computation, VNODE computes an enclosure ΦT0,Φ0([T0, T]),
because the computation is done iteratively from the initial value.

In the method proposed in Chapter 5, we also need an interval extension of
the derivative of the solution Φ̇T0,Φ0 : I → In, which encloses the derivative of the
solution. Let T1 ∈ I be a time interval. Then Φ̇T0,Φ0(T1) will be implemented as
the computation of a function F (ΦT0,Φ0(T1)), which is an interval extension of
f(φ(t)) in the ODE. Here, ΦT0,Φ0(T1) is computed by VNODE beforehand.

The computation of VNODE is based on a Taylor series coefficients generated
by automatic differentiation. Each integration step of VNODE consists of the
following procedures (i ∈ {1, . . . ,m}):

1. Compute a time interval Ti and an a priori enclosure ΦTi−1,Φi−1(Ti) of
solutions. This enclosure guarantees the existence of a unique solution
within it.

2. Using ΦTi−1,Φi−1(Ti), compute a tight enclosure Φi = ΦT0,Φ0([Ti]).

Step 1 is applied to obtain a rough enclosure of solutions using a method based
on high-order Taylor series expansion. The method computes Ti based on the
parameters below:

• The maximum order k ∈ N to compute Taylor expansion.

– 13 –

Chapter 2 Interval Analysis

• The minimum step width hmin ∈ R>0.
• The tolerance values atol and rtol in R>0.

The computation in Step 2 is based on the interval Hermite-Obreschkoff method.
In our methods, we utilize a set of a priori enclosures computed in Step 1.

Example 6 We solved the following IVP-ODEs by using the VNODE-LP solver
[59] that implements VNODE. We set Gaol or PROFIL/BIAS as an underlying
interval library in the computation. The parameters were set as k = 20, hmin =
10−11, atol = 10−20, and rtol = 10−20.

• A problem describing a particle falling down by the gravity acceleration
and the air resistance:

φ̇p(τ) = φv(τ),

φ̇v(τ) = −G + K · φv(τ)2,

(φp(0), φv(0)) ∈ [1, 1.1]×[−4.1],

where φp and φv represent the position and velocity of the particle, G =
[9.8] and K = [10−3].

• The Lorenz equation:

φ̇1(τ) = 10 · (φ2(τ) − φ1(τ)),

φ̇2(τ) = φ1(τ) · (28 − φ3(τ)) − φ2(τ),

φ̇3(τ) = φ1(τ) · φ2(τ) − 8/3 · φ3(τ),

(φ1(0), φ2(0), φ3(0)) = (15, 15, 36).

The results are illustrated in Table 2.2, and Figures 2.1 and 2.2. In the third
column of Table 2.2, each row indicates the enclosures of φp(104) and φ1(24),
respectively. Boxes in the figures are the a priori enclosures of solutions.

– 14 –

2.3 Interval-based Solving of ODEs

Table 2.2 Computation results by VNODE-LP with Gaol and PROFIL/BIAS.

library problem result time (ms)
Gaol falling −989295.[828, 928] 70

lorenz 4.2[146, 386] 927
PROFIL/BIAS falling −989295.[828, 928] 75

lorenz 4.2[183, 349] 970

Figure 2.1 Computation result of falling particle by VNODE-LP.

– 15 –

Chapter 2 Interval Analysis

Figure 2.2 Computation result of Lorenz equation by VNODE-LP.

– 16 –

Chapter 3

Real Constraint Systems

In this chapter, we introduce the basics of constraint systems (or constraint sat-
isfaction problems) [20, 68]. Constraint systems formalize a framework for com-
puting with partial information. Elements of data are constraints that hold the
possible values for a set of variables. We consider various properties on con-
straints such as entailment to check whether a constraint can be derived from
another constraint, and satisfiability to check whether there exists a valuation of
variables with which a constraint can be interpreted as true. In this thesis, we
work on constraint systems with numerical domains. In general, these constraint
systems are not machine-representable because they have infinite numbers of val-
ues within the domains. Thus, we approximate the checking of entailment or
consistency for those that can be computed incompletely yet efficiently.

We begin with the definition of generic constraint systems.

Definition 11 (constraint system) A simple constraint system is a structure
〈x,D, C〉, where x = (x1, . . . , xn) is a tuple of n variables, D = D1×· · ·×Dn

is a domain, which is the Cartesian product of n collections of objects, and C
is a (multi-)set of constraints C = {c1, . . . , cp}. A constraint ci (i ∈ {1, . . . , p})
defined on x is a relation ci ⊆ D.

A valuation is a map of the form x 7→ v, where v = (v1, . . . , vn) is an n vector
of objects in D. When v belongs to a constraint c, the valuation x 7→ v satisfies
c, and v |=D c denotes this relationship. A solution is a valuation x 7→ v that
satisfies every constraint in the constraint system, i.e., ∀c∈C (v |=D c). Let c and
c′ be constraints. c entails c′ when c ⊆ c′ holds, and c `c′ denotes this entailment
relation. c /̀ c′ denotes that c `c′ does not hold. |=D c denotes that D ⊆ c holds
for a constraint c.

We use two special constraints, that are not contained in C, the valid constraint
true = D, and the contradiction false = ∅.

– 17 –

Chapter 3 Real Constraint Systems

Remark 1 Constraint systems are defined more generally and differently in [71].
In general, the entailment relation is not only defined by inclusion but is also
defined by a transitive property between two relationships. The constraints c ⊆ D
in the above definition are called tokens, and constraints are defined as closures
of tokens, i.e., {D ⊆ D | c `D}.

In the following, we provide an instance of constraint systems called real con-
straint systems (RCSs) where the domain of variables is the set of real numbers
(Section 3.1). Next, we describe how we can represent the RCSs based on inter-
vals and handle constraints of the RCSs (Section 3.2 and 3.3). Our approach is
to use techniques based on interval analysis for enclosing solutions by intervals
with rounding errors. We describe several algorithms for computing entailment
and consistency in this approach.

3.1 Real Constraint Systems
In this section, we define real constraint systems (RCSs) involving a real vector-
valued variable consisting of n real-valued variables x = (x1, . . . , xn). A real
constraint on x is a subset of the domain Rn of x.

Definition 12 (real constraint system) A real constraint system (RCS) is a
constraint system 〈x,D, C〉 consisting of an n-dimensional vector of variables x =
(x1, . . . , xn), a domain D ⊆ Rn, and a set of real constraints C = {c1, . . . , cp},
where ci ⊆ D.

We describe a real constraint by a real formula in the conjunction form of
nonlinear equations and inequalities.

Definition 13 (real formula) The syntax of real formulas, i.e., the formulas in
nonlinear arithmetic, is defined by the following rules:

F ::= F ∧ F | A | true | false

A ::= T op T

T ::= id | constant | − T | T + T | T · T | 1/T | TT | elem func(T)

In the rules, op ∈ {=, <, >,≤,≥}, id denotes the identifiers for variables, and
elem func ∈ {exp, log, sin, cos, . . .}. Formulas of the form A are called atomic
constraints.

Each formula fml represents a constraint c ⊆ Rn on the variables. When a
variable xi = x.i does not appear in a formula, the corresponding constraint

– 18 –

3.2 Interval-based Entailment Checking

c does not restrict the values of a variable xi, i.e., πi(c) = πi(D). Note that,
to describe examples, we may use formulas in the form of T1 op T2 op T3 ≡
(T1 op T2) ∧ (T2 op T3) and T1 ∈ [T2, T3] ≡ T2 ≤ T1 ≤ T3.

The underlying relation R ⊆ Rn of a constraint fml corresponds to the mathe-
matical interpretation of the formula fml . A solution x 7→ d of fml is determined
by checking whether d ∈ R holds. An interpretation may result in undefined (e.g.,
x = 1/0), in which case the constraint is represented as false.

Example 7 Consider an RCS 〈x,D, C〉, where x is a two-dimensional variable
x = (x1, x2) over the domain D = R2. Let c ∈ C be a constraint described by the
formula (x2 < sin(x1)) ∧ (0 ≤ x1 ≤ 2 · π). The valuation x 7→ (1/2, 1/2) satisfies
c. When C only contains c, it is a solution of the RCS. Clearly the constraint
true = D is entailed by the constraint c, but the constraint x2 < 1 is also entailed
by c, but the constraint x = (1/2, 1/2) is not entailed by c. If we consider another
domain D′ = {(v1, v2) | v2 < 0 ∧ 0 ≤ v1 ≤ π}, then |=D′ c holds.

3.2 Interval-based Entailment Checking
The RCSs discussed in the previous section are generally not representable on
computers because we should handle infinite sets of values and valuations in a
constraint. For example, real numbers are not machine-representable, and rela-
tions described by nonlinear inequalities contain infinite points and are not com-
putable. In this section, we describe methods for computing RCSs by expressing
tokens by their box enclosures.

We begin by recalling interval approximations and extensions of relations.

Remark 2 Consider a real constraint c ∈ C that ranges over Rn. An interval
approximation apx In(c) of c is the smallest box in In satisfying c ⊆ apx In(c). For
a box C = (I1, . . . , In) ∈ In that is an interval extension of c, ∃(v1, . . . , vn) ∈
I1×· · ·×In ((v1, . . . , vn) |=D c) holds.

We can check the entailment on real constraints using the interval approxima-
tions and set operations in some cases.

Lemma 1 For real constraints c and c′ that range over Rn, the following prop-
erties hold:

(apx In(c) ∩ apx In(c′) = ∅) ⇒ ((c /̀ c′) ∧ (c′ /̀ c)), (3.1)

(apx In(c) ∩ apx In(Rn\c′) = ∅) ⇒ (c `c′). (3.2)

– 19 –

Chapter 3 Real Constraint Systems

Proof. (Equation (3.1)) Because apx In(c) and c do not intersect with apx In(c′)
nor c′ from the antecedent, c /̀ c′ and c /̀ c′ hold.

(Equation (3.2)) For rel , rel ′ ⊆ Rn, (rel ⊆ rel ′) ⇔ (rel ∩ (Rn \rel ′) = ∅) ⇐
((apx In(rel) ∩ apx In((Rn\rel ′)) = ∅) holds. Thus, c ⊆ c′ and c `c′ hold.

3.3 Interval-based Consistency Techniques
Consistency enforcing techniques refine a constraint system into an equivalent
one whose domain has the same set of solutions as before, and is consistent. An
ideal consistent system is a solved system.

Remark 3 An RCS 〈x,D, C〉 is solved when, for every constraint c ∈ C, |=D c
holds.

In general, it is difficult to transform an RCS into a solved system without losing
a solution. Moreover, the computation of solved RCSs is untractable in general
because we should enumerate infinite number of valuations to prove the consis-
tency of a domain. Accordingly, we introduce below the locally consistent RCSs
that partially satisfy constraints, i.e., only subsets of the domain satisfy the pro-
jections of constraints.

Local consistencies for RCSs have been proposed based on interval analysis (see
Reference [7] for an introduction). Methods such as Newton [80] and CLP(BNR)
[9] computes hull- and box-consistent RCSs.

Definition 14 (hull- and box-consistencies [5, 8, 6]) Consider an RCS
〈x,D, C〉 with n real variables x = (x1, . . . , xn), a domain D = I1×· · ·×In ⊆ Rn,
and a set of constraints C. We can evaluate the the following consistencies of the
RCS:

• 〈x,D, C〉 is hull-consistent [5] if and only if it satisfies the following condi-
tion:

(I1, . . . , In) = apx In({v ∈ D | ∀c∈C (v |=D c)}). (3.3)

• 〈x,D, C〉 is box-consistent [8] if and only if every Ii satisfies the following
condition (i ∈ {1, . . . , n}):

Ii = apx I({v ∈ Ii |
∀c∈C ((I1, . . . , Ii−1, apx I({v}), Ii+1, . . . , In) ∈ C)}). (3.4)

– 20 –

3.3 Interval-based Consistency Techniques

Hull- and box-consistencies relax the validity check (i.e., |=D c) of constraints.
The right-hand side of Equation 3.3 represents an interval approximation
apx In(D′), where D′ ⊆ D is a domain such that an RCS 〈x,D′, C〉 is solved.

Lemma 2 An interval Ii ∈ I specified in Equation 3.4 satisfies the following
condition for each constraint c ∈ C

((I1, . . . , Ii−1, [Ii, Ii
+), Ii+1, . . . , In) ∈ C)∧

((I1, . . . , Ii−1, (Ii
−

, Ii], Ii+1, . . . , In) ∈ C).

This condition states that, taking the smallest half-open interval at each bound
of Ii, an interval extension C of the constraint holds.

In the following, we overview the basic framework of interval-based consistency
techniques for RCSs.

Definition 15 (interval-based consistency technique) Given a constraint
system 〈x,D, C〉, interval-based consistency techniques compute a constraint
system 〈x,D′, C〉, where D′ ⊆ D is hull- or box-consistent.

3.3.1 Branch-and-Prune Framework

The generic computation in the consistency-based methods is described by the
BranchAndPrune algorithm in Figure 3.1. It is the basic algorithm used in
Newton and Numerica (called SolveConstraints in Reference [81]). Let F be
a system of floating-point numbers, and let 〈x,D, C〉 be an RCS consisting of an
n-dimensional variable x, a domain D = I1×· · ·×In, where (I1, . . . , In) forms
a box in IFn, and a set C of constraints. The inputs to the algorithm are a set
of constraints C, a box B = (I1, . . . , In), and a maximal box width wmax ∈ F>0.
The algorithm repeatedly refines and divides the box B and computes a set BS of
boxes where 〈x, I ′1×· · ·×I ′n, C〉 is box-consistent for each B′ = (I ′1, . . . , I

′
n) ∈ BS .

The width of each box B′ is narrower than wmax. In the algorithm, the two
procedures Prune (line 1) and Branch (line 6) that refine and divide a box are
left open. If the result of a pruning is empty, the algorithm returns empty (line
9). When the result is not empty and it is small enough, the algorithm returns it
as a result (line 4). Otherwise, the algorithm divides the box (line 6), and calls
itself recursively for each box (line 7).

A pseudo-algorithm of Branch is shown in Figure 3.2. It divides an element Ii

of an input box B at the midpoint of the interval, into two intervals Ii,1 and Ii,2

– 21 –

Chapter 3 Real Constraint Systems

Input: set of constraint C, box B, box width wmax

Output: set of consistent boxes {Bi}i∈{1,...,n}
1: B := Prune(C, B)
2: if B 6= ∅ then
3: if w(B) ≤ wmax then
4: return {B}
5: else
6: (B1, B2) := Branch(B)
7: return BranchAndPrune(C, B1) ∪ BranchAndPrune(C, B2)
8: else
9: return ∅

Figure 3.1 BranchAndPrune algorithm.

Input: box B = (I1, . . . , In)
Output: pair of boxes (B1, B2)
1: Ii := Select(B)
2: (Ii,1, Ii,2) := ([Ii, m(Ii)], [m(Ii), Ii])
3: return ((I1, . . . , Ii−1, Ii,1, Ii+1, . . . , In), (I1, . . . , Ii−1, Ii,2, Ii+1, . . . , In))

Figure 3.2 Branch algorithm.

(line 2). To select an element (line 1), we typically use the round-robin method.
At line 3, a pair of boxes containing the divided intervals is returned.

The generic implementation of Prune is illustrated in Figure 3.3. The inputs
to the algorithm are a set of p constraints and a box B. The algorithm returns a
refined box B′ = (I ′1, . . . , I

′
n), where 〈x, I ′1×· · ·×I ′n, C〉 is consistent. The algorithm

continues refining B until the fixpoint is reached. At line 4, the Revise procedure
refines B with respect to an atomic formula. Two instantiations HC4Revise and
BC3Revise of Revise are shown in the last part of this section. Atomic formulas
are managed by the tuple (C, C′) of sets of constraints. Each time a refinement
succeeds, the corresponding constraint is moved from C to C′ (line 10). Because
the monotonicity is not held in this process, a constraint in C′ will be put back
in C after another refinement succeeds (line 7).

In the following, we describe the existing two instantiations of Revise to filter
input boxes by enforcing the consistencies.

– 22 –

3.3 Interval-based Consistency Techniques

Input: set of constraints {c1, . . . , cp}, box B
Output: consistent box B
1: (C, C′) := ({c1, . . . , cp}, ∅)
2: while C 6= ∅ ∧ B 6= ∅ do
3: ci := Select(C)
4: B′ := Revise(ci, B)
5: if B′ 6= B then
6: C′′ := {cj ∈ C′ | ∃xk∈var(cj) (B.k 6= B′.k)}
7: (C, C′) := (C ∪ C′′, C′ \ C′′)
8: B := B′

9: else
10: (C, C′) := (C \ {ci}, C′ ∪ {ci})
11: endwhile
12: return B

Figure 3.3 Prune algorithm.

Input: constraint c(t1, . . . , tq), box B
Output: hull-consistent box B
1: for i ∈ {1, . . . , q} do
2: B := ForwardEval(ti, B)
3: B := BackwardPropag(c(t1, . . . , tq), B)
4: return B

Figure 3.4 HC4Revise algorithm.

3.3.2 Hull-Consistency-based Revise Algorithm

The first instantiation HC4Revise [6] (Figure 3.4) provides a method for com-
puting hull-consistent RCSs. The computation is based on the attribute tree of
the underlying formula of the input constraint. We take the leaf nodes t1, . . . , tq
of the tree, which represent the constants and variables in the formula. Other
nodes in the tree represent the unary or binary operations on real values defined
in Definition 13. At line 2, the algorithm evaluates the possible domain of the for-
mula by traversing the tree from the bottom-up. The algorithm then propagates
the refined domain to the leaves from the top down (line 3).

– 23 –

Chapter 3 Real Constraint Systems

Input: constraint c(x1, . . . , xn), box (I1, . . . , In)
Output: box-consistent box B
1: for i ∈ {1, . . . , n} do
2: C ′ := C(I1, . . . , Ii−1, •, Ii+1, . . . , In)
3: Ii := BC3ReviseL(C ′, Ii)] BC3ReviseU(C ′, Ii)
4: return (I1, . . . , In)

Figure 3.5 BC3Revise algorithm.

3.3.3 Box-Consistency-based Revise Algorithms

The second instantiation of Revise consists of the algorithms called BC3Revise,
BC3ReviseL and BC3ReviseU (Figures 3.5 and 3.6). These algorithms are
a modification of the algorithms described in Reference [6], which generalizes
the variants such as BoxPrune in Newton and Numerica. The output of
BC3Revise is box-consistent boxes. At line 2, the BC3Revise algorithm
computes an interval extension C of the input constraint c, and then computes
the i-th projection of C. The algorithm then applies the sub-filters BC3ReviseL
and BC3ReviseU, which revise the lower and upper interval bounds for every
component (indicated by •) of the input box (line 3).

Figure 3.6 illustrates the BC3ReviseL algorithm. At line 8, the algorithm
checks whether a solution of the (uni-variate) constraint is contained in the input
interval I, and returns the empty interval if the check fails. For example, consider
a constraint of the form of f(x) = 0, where f is a function R → R. This check
can be done by checking whether F (I) 3 0 holds. Next, the algorithm checks
whether the interval I is the smallest canonical interval with respect to the system
of floating-point numbers (line 3) and returns I if the check succeeds. This check
corresponds to the definition of box-consistency.

When both checks are failed, the algorithm optionally applies the NarrowC

operator to reduce the interval I with respect to the constraint C (line 6). For
example, the interval Newton operator is used as the operator [80]. At lines 7–12,
the algorithm splits I in two, and applies itself to each result.

3.3.4 Implementation of Branch-and-Prune

The consistency-based technique just described has been implemented in various
systems such as Numerica [81], ILOG Solver, and RealPaver [35, 34].

Here, we introduce a state-of-the-art implementation called Elisa [36], which
consists of about 25,000 lines of C++ code, is built as a library, and is available as

– 24 –

3.3 Interval-based Consistency Techniques

Input: constraint C, interval I
Output: interval I
1: if I ∈ C then
2: return ∅
3: if I = I+ then
4: return I
5: else
6: I := NarrowC(I)
7: (Il, Iu) := ([I, m(I)], [m(I), I])
8: Il := BC3ReviseL(C, Il)
9: if Il 6= ∅ then

10: return Il

11: else
12: return BC3ReviseL(C, Iu)

Figure 3.6 BC3ReviseL algorithm.

open-source software. The main classes of Elisa are illustrated in Table 3.1. The
upper half of the table shows the constructs for representing data. Elisa supports
real numbers represented as intervals, integers, and floating-point numbers as the
domain of constraints. Each constraint is represented by the derived class of
RealConstraint. The bottom half of the table shows the classes that implement
the algorithms introduced in this section. We can extend the solver by overriding
the appropriate classes.

3.3.5 Examples

We solved two examples, which are taken from the RealPaver package [34],
using the Elisa framework. As the Revise algorithms, we used HC4Revise,
BC3Revise, and BC5Revise implemented in Elisa. BC5Revise (a suc-
cessor of BC4Revise [6]) is an algorithm that combines the HC4Revise
and BC3Revise algorithms. The maximal box width wmax input to
BranchAndPrune was set to 10−12. Other parameters were not changed. The
computational results are illustrated in Table 3.2. Each column represents:

• The number of resulting boxes.
• The number of calls to Branch.
• The number of calls to Revise (calls to HC4Revise and BC3Revise are

shown separately in the lower rows).
• The CPU clock cycles for the computation.

– 25 –

Chapter 3 Real Constraint Systems

Table 3.1 Main classes in Elisa.

object type class
values Interval, IntSet
constaints IntervalConstant, IntConstant, RealConstant
variables RealVariable, IntVariable
constraints RealConstraint
models Model

algorithm class
BranchAndPrune IntervalSolver
Branch NeighborhoodFunction
Prune FixedPointReduction
Revise Reduction
HC4Revise HullReduction
BC3Revise BoxReduction
Select SplitChooser, MoveStrategy

Example 8 The first example is a simple problem to compute the positive sev-
enth root of 12 (shown in Table 3.2 as “abc”). The constraint is described with
a real variable x as

x7 = 12.

The initial domain was set to [0, 108]. We could compute a precise interval by
a single application of HC4Revise, whereas we should apply BC3Revise for
26 times while applying Branch for 12 times. BC5Revise computed in the
same way as HC4Revise because BC5Revise first applied HC4Revise when a
variable occurred only once in constraints.

Example 9 The second and third examples model chemical equilibrium systems
(shown in Table 3.2 as “c1” and “c2”). In the first model, we used a three-
dimensional variable (x1, x2, x3), and described the following constraints

14 · x2
1 + 6 · x1 · x2 + 5 · x1 − 72 · x2

2 − 18 · x2 = 850 · x3 − 2.0 · 10−9,

0.5 · x1 · x2
2 + 0.01 · x1 · x2 + 0.13 · x2

2 + 0.04 · x2 = 4.0 · 104,

0.03 · x1 · x3 + 0.04 · x3 = 850.

The initial domain was set to [−103, 103]3.

– 26 –

3.3 Interval-based Consistency Techniques

Table 3.2 Computation results by Elisa.

HC4Revise BC3Revise
prob. boxes br. revise cycles boxes br. revise cycles

abc 1 0 1 120·103 1 12 26 440·103

c1 2 1 476 3074·103 13 8289 80785 617·106

c2 – – – – – – – –
BC5Revise

abc 1 0 1/0 127·103

c1 2 1 41/101 10.9·106

c2 8 70 10737/27871 1135·106

In the second model, we used a five-dimensional variable (x1, x2, x3, x4, x5),
and the following constraints

x1 · (x2 + 1) = 3 · x5,

x3 · (x2 · (2 · x3 + a7) + 2 · a5 · x3 + a6) = 8 · x5,

x4 · (a9 · x2 + 2 · x4) = 4 · a · x5,

x1 + x2 · (2 · x1 + x3 · (x3 + a7) + a8 + 2 · a10 · x2 + a9 · x4) = a · x5,

x1 + x3 · (a5 · x3 + a6) + x2
4+

x2 · (x1 + a10 · x2 + x3 · (x3 + a7) + a8 + a9 · x4) = 1,

where a = 10, a5 = 0.193, a6 = 0.002597/
√

40, a7 = 0.003448/
√

40, a8 =
0.00001799/40, a9 = 0.0002155/

√
40, a10 = 0.00003846/40. The initial domain

was set to [0, 108]5.
In Table 3.2, we can see that BC5Revise solved both the models most effi-

ciently by applying both HC4Revise and BC3Revise. Computation to solve
the second model using only HC4Revise or BC3Revise was failed because of a
heap overflow.

– 27 –

Chapter 4

Hybrid Systems

Hybrid systems are systems consisting of discrete changes and continuous changes
over time. See References [73, 54] for an introduction. In an execution of a hybrid
system, each phase of continuous changes is governed by a (continuous) dynamics
(or vector fields on manifolds), and the behavior of each phase is formed as a
continuous function over time. A discrete change, which is also referred to as a
(discrete) event, corresponds to a switching between different dynamics.

Example 10 An example of a hybrid system is a particle that bounces off a
sinusoidal ground surface. The position and velocity of the particle in the two-
dimensional space are described by four real functions over time px, py, vx, vy :
R≥0 → R. A possible particle behavior is illustrated in Figure 4.1. The dynamics
of the particle is described by the IVP-ODE

(ṗx(τ), ṗy(τ), v̇x(τ), v̇y(τ)) = (vx(τ), vy(τ), 0,−g + k · v2
y(τ))

∧ (px(t0), py(t0), vx(t0), vy(t0)) = (px,0, py,0, vx,0, vy,0), (4.1)

where g = 9.8 and k = 10−3 are constants representing the acceleration due to
gravity and the air resistance, respectively, t0 ∈ R≥0 is an initial time (e.g., t0 =
0), and (px,0, py,0, vx,0, vy,0) ∈ R4 is an initial state (e.g., (px,0, py,0, vx,0, vy,0) =
(0, 1.1, 4.1,−0.4)). We assume that a contact of the particle with the ground
surface at a given time t is detected by

sin(2 · px(t)) − py(t) = 0. (4.2)

The above formula holds when the particle contacts the surface at time t, and the
velocity of the particle is changed from (vx(t−), vy(t−)) = limτ↑t(vx(τ), vy(τ)) to
(vx(t), vy(t)) by the force of repulsion according to

(vx(t), vy(t)) = (vx(t−), vy(t−)) − (e + 1) · n · dot(n, (vx(t−), vy(t−))), (4.3)

– 29 –

Chapter 4 Hybrid Systems

Figure 4.1 Behavior of bouncing particle.

where e = 0.3 is the coefficient of restitution, dot(·, ·) is the dot product operator,
and n is the normal vector of the surface and is given as n = m/‖m‖, where m
is a real vector (− cos(px(t−)), 1).

There have been various modeling frameworks for hybrid systems that origi-
nate from several research communities including computer science, control, and
biology. Various formalizations of the frameworks have been developed [73, 42].
Relations between different frameworks (e.g., translation [18] and bisimulation
[63, 72]), and notions such as hybrid trajectories are important in the modeling,
simulation, and verification of hybrid systems.

To develop methods for the simulation and verification of hybrid systems, we
should determine the class of arithmetic expressions (e.g., rectangular, affine, or
nonlinear) that can be described within models. For example, many of recent
model checkers restrict equations to linear equations [76, 12]. Users of these
tools have to translate a nonlinear problem into a piecewise linear model by
hand [44]. Many of the verification problems on nonlinear models still remain
unsolved. We should also consider whether expressions in models allow us to
express uncertainties (e.g., interval-valued coefficients). In our experiments with
existing frameworks, we have encountered some difficulties in the simulation of
models involving uncertainties (see Section 4.3). We attribute the difficulties to

– 30 –

4.1 Real-Time Transition Systems and Hybrid Trajectories

the formalization of discrete changes by the framework. Another variation of
classes is identified by whether discrete changes are given externally or occur
internally through interactions between continuous changes and boundaries in
the state space. In this study, we only consider the latter.

We employ two modeling frameworks, hybrid automata (HA), and a hybrid
concurrent constraint programming language called Tiny HCC. We first intro-
duce simple structures called real-time transition systems (RTTSs) and hybrid
trajectories to illustrate the behavior of hybrid systems (Section 4.1). Next, in
Sections 4.2 and 4.3, we describe HA and Tiny HCC. We explain the semantics
of HA and Tiny HCC by translating them into RTTSs. We also explain notions
of execution (i.e., hybrid trajectories) and reachability that correspond to the
models.

4.1 Real-Time Transition Systems and Hybrid Trajectories
Real-time transition systems (RTTSs) are transition systems in which transitions
are labeled by positive real numbers that represent the duration of the transitions.

Definition 16 (real-time transition system [18]) A real-time transition
system (RTTS) is a triple 〈S, T ,S0〉, where S is a state space, T ⊆ S×R≥0×S
is the time transition relation, and S0 ⊆ S is a set of initial states. A transition
(s, t, s′) ∈ T is also denoted by s

t→ s′. The relation satisfies the following
conditions:

• Every transition s
t→ s′ with t > 0 can be split into transitions s

t′→ s′′ and

s′′
t′′→ s′, where t = t′ + t′′ and t′, t′′ > 0.

• For every two transitions s
t→ s′ and s′

t′→ s′′ with t, t′ > 0, there exists a

transition s
t+t′→ s′′.

In an RTTS, we describe a discrete change from a state s ∈ S to s′ ∈ S by s
0→ s′,

and we describe a continuous change from s to s′ with the duration of t ∈ R>0

by s
t→ s′.

Example 11 To model the bouncing particle in Example 10, we can construct
an RTTS 〈S, T ,S0〉, where

• S = R4,
• S0 = [0, 0.1]×[1, 1.1]×[4.1]×[−0.4] (we assume that sin(2 · px,0) − py,0 ≥ 0

holds for every (px,0, py,0, vx,0, vy,0) ∈ S0),

– 31 –

Chapter 4 Hybrid Systems

• a continuous change from a state (px,0, py,0, vx,0, vy,0) ∈ S at time t0 ∈ R≥0

with the duration t ∈ R>0 is specified as a transition in T

((px,0, py,0, vx,0, vy,0), t, lim
τ↑(t0+t)

(px(τ), py(τ), vx(τ), vy(τ))),

where trajectories px, py, vx, vy : [t0, t0+t) → R are described by IVP-ODE
(4.1), and, for every t′′ ∈ (t, t + t′), sin(2 · px(t′′)) − py(t′′) = 0 (Equation
(4.2)) does not hold, and

• a discrete change at time t ∈ R>0 is described as a transition in T

((px(t−), py(t−), vx(t−), vy(t−)), 0, (px(t), py(t), vx(t), vy(t))),

where (px(t−), py(t−), vx(t−), vy(t−)) denotes limτ↑t(px(τ), py(τ), vx(τ),
vy(τ)), sin(2 · px(t−)) − py(t−) = 0 holds, px(t) = px(t−), py(t) = py(t−),
and vx(t) and vy(t) are computed from vx(t−) and vy(t−) by Equation
(4.3).

Executions or behaviors of RTTSs are described as hybrid trajectories, which
are continuous-state-valued functions over a hybrid time set.

Definition 17 (hybrid trajectory) A k-step hybrid trajectory (k ∈ N) is a
triple 〈S,T ,Φ〉 consisting of:

• A state space S.
• A hybrid time set T that is a (possibly infinite) indexed family of left-closed,

right-open time intervals {Ii}i∈{1,...,k}, where
– w(Ii) > 0,
– I0 ≥ 0, and
– Ii = Ii+1.

• A family Φ of functions {φi}i∈{1,...,k}, where φi : Ii → S.

An execution of an RTTS is formalized as a hybrid trajectory.

Definition 18 (execution of RTTS) A k-step execution of an RTTS
〈S, T ,S0〉 is a hybrid trajectory 〈S ′,T , Φ〉 that satisfies the following:

• S = S ′.
• T is formed as below:

1. Consider a sequence of transitions in T

s0 t1→ s1
−

0→ s1 t2→ · · · tk

→ sk
−

0→ sk,

where s0 ∈ S0, s1, . . . , sk ∈ S, s1
−, . . . , sk

− ∈ S, and t1, . . . , tk ∈ R>0.

– 32 –

4.1 Real-Time Transition Systems and Hybrid Trajectories

Figure 4.2 Hybrid trajectory of bouncing particle.

2. Construct the set T as

{[0, t1)1, [t1, t1 + t2)2, . . . , [
k−1∑
i=1

ti,
k∑

i=1

ti)k}.

• For i ∈ {1, . . . , k}, φi ∈ Φ is defined as the function Ii → S, where φi(t) = s
such that (si−1, t − Ii, s) ∈ T .

Example 12 We sketch an execution of the RTTS in Example 11 by assuming
the initial state of the particle is (px,0, px,0, vx,0, vy,0) = (0, 1.1, 4.1,−0.4)
at time t0 = 0. The hybrid trajectory of the particle is illustrated in
Figures 4.1 and 4.2. The continuous trajectory φ1 of the particle over
the time interval I1 is determined by IVP-ODE (4.1). The particle con-
tacts the ground at time t1 = I1 = I2 = 0.147 · · · because the position
(px(t1−), py(t1−)) = limτ↑t1(px(τ), py(τ)) = (0.603 · · · , 0.934 · · ·) of the particle
satisfies Equation (4.2) to detect a contact. The contact of the particle with the
ground changes the velocity from (vx(t1−), vy(t1−)) to (vx(t1), vy(t1)) subject to
Equation (4.3). After the contact at time t1, the particle again flies in the air
following IVP-ODE (4.1) with the initial state (px(t1−), py(t1−), vx(t1), vy(t1)).

– 33 –

Chapter 4 Hybrid Systems

4.2 Hybrid Automata
Hybrid automata [1, 42] are a mathematical model of hybrid systems. The discrete
aspect of a hybrid system is described by a (finite) automaton, where each state
corresponds to a phase of continuous change and each transition corresponds to a
discrete change. Continuous dynamics is described by an ODE indexed by states
of the automaton.

Definition 19 (hybrid automaton) A hybrid automaton (HA) is a tuple
〈Q, Rn, E ,F , I,G,R, Init〉 that consists of the following components:

• A finite set Q of discrete states.
• A set Rn of continuous states.
• A finite set E ⊆ Q×Q of discrete state transitions.
• A family F = {fq}q∈Q of vector fields fq : Rn → Rn. We assume that fq is

a Lipschitz continuous function.
• A family I = {Invq(x)}q∈Q of invariants, where x is a variable over Rn,

and Invq ⊆ Rn.
• A family G = {grde(x) = 0}e∈E of guard constraints, where x is a variable

over Rn, and grde is a function Rn → R.
• A family R = {rste}e∈E of reset functions rste : Rn → Rn.
• A set of initial states Init = (q0, X0), where q0 ∈ Q, and X0 ⊆ Rn.

Example 13 Figure 4.3 illustrates an HA 〈Q, R4, E ,F , I,G,R, Init〉 that models
the bouncing particle in Example 10. Each component of the HA is specified as
follows:

Q = {falling}, E = {bounce ≡ (falling, falling)},
F = {ffalling(px, py, vx, vy) = (vx, vy, 0,−g + k · v2

y)},
I = {Inv falling(px, py, vx, vy) ≡ (sin(2 · px) − py ≥ 0)},
G = {grdbounce(px, py, vx, vy) = sin(2 · px) − py = 0},

R = {rstbounce(px, py, vx, vy) = (px, py,

(1 − e · 4 · cos(2 · px)2) · vx + (1 + e) · 2 · cos(2 · px) · vy

1 + 4 · cos(2 · px)2
,

(1 + e) · 2 · cos(2 · px) · vx + (−e + 4 · cos(2 · px)2) · vy

1 + 4 · cos(2 · px)2
)},

Init = (falling, [0, 0.1]×[1, 1.1]×[4.1]×[−0.4]),

– 34 –

4.2 Hybrid Automata

falling

ṗx = vx, ṗy = vy,
v̇x = 0, v̇y = −g + k · v2

y
,

sin(2 · px) − py ≥ 0

(px, py, vx, vy) ∈ [0, 0.1]×[1, 1.1]×[4.1]×[−0.4]

bounce

sin(2 · px) − py = 0,

(px, py, vx, vy) := (px, py,
(1−e·4·cos(2·px)2)·vx+(1+e)·2·cos(2·px)·vy

1+4·cos(2·px)2 ,

(1+e)·2·cos(2·px)·vx+(−e+4·cos(2·px)2)·vy

1+4·cos(2·px)2)

Figure 4.3 Model of bouncing particle in HA.

where g = 9.8 and k = 10−3 as in Example 10. In Figure 4.3, the discrete state
falling and the discrete state transition bounce are illustrated as the node and
edge of the graph, respectively.

4.2.1 Operational Semantics of HA

We describe the operational semantics of HAs by presenting a translation scheme
from HA into RTTSs. The formal semantics of HA is also found in Reference
[42].

Definition 20 (translation from HA into RTTS) An HA 〈Q, Rn, E ,F , I,
G,R, Init〉 is translated into an RTTS 〈S, T ,S0〉 as follows. We represent a state
in S by a pair 〈q, v〉, where q ∈ Q is a discrete state and v ∈ Rn is a continuous
state at an instant of the execution. An initial state in 〈q0, v0〉 ∈ S0 satisfies
(q0, X0) = Init and v0 ∈ X0. Transitions in T are defined by the rules in Figure
4.4.

• Rule (4.4) describes a continuous evolution from a state 〈q, v〉 to another
state 〈q, φ(t)〉 with the duration t ∈ R>0. In the first premise, we obtain
a continuous trajectory φ that satisfies an IVP-ODE given by a discrete
state q in the HA. The fourth premise checks the invariant condition of q
over the internal of the duration (0, t).

• Rule (4.5) describes that any state 〈q, v〉 can stay within the discrete state
q when the invariant condition of q holds.

• Rule (4.6) represents discrete changes corresponding to (q, q′) ∈ E . The
guard constraint grd (q,q′)(v) = 0 should hold before a continuous state v

jumps to another state rst (q,q′)(v), where rst (q,q′) is the reset function. The
third premise checks the invariant condition in the destination.

– 35 –

Chapter 4 Hybrid Systems

φ |= (ẏ(τ) = fq(y(τ)) ∧ y(0) = v),
t ∈ R>0, dom(φ) = [0, t], ∀t′∈(0, t) (φ(t′) ∈ Invq)

〈q, v〉 t→ 〈q, φ(t)〉
(4.4)

v ∈ Invq

〈q, v〉 0→ 〈q, v〉
(4.5)

(q, q′) ∈ E , grd (q,q′)(v) = 0, rst (q,q′)(v) ∈ Invq′

〈q, v〉 0→ 〈q′, rst (q,q′)(v)〉
(4.6)

Figure 4.4 Operational semantics of HA.

Note that Rule (4.5) describes states that do not cause a discrete change with
respect to Rule (4.6) even if the premises hold.

Once an HA is translated into the associated RTTS, the executions of HA are
easily described by hybrid trajectories.

Lemma 3 (execution of HA) A k-step execution of an HA forms a hybrid
trajectory 〈Q×Rn, T , Φ〉 that satisfies the following conditions (i ∈ {1, . . . , k}):

• 〈q0, v0〉 is implied by (q0, X ′) = Init and v0 ∈ X ′.
• (qi, qi+1) ∈ E .
• grd (qi,qi+1)(φi(Ii)) = 0.
• φi+1(Ii+1) = rst (qi,qi+1)(φi(Ii)).
• φi is a solution of ODE: ẏ(τ) = fqi(y(τ)).
• For all t ∈ Ii, φi(t) ∈ Invqi holds.

Proof. Straightforward from Definition 20.

Example 14 Figures 4.1 and 4.2 illustrate an execution of the bouncing particle
in Example 13.

An execution of an HA is sketched by a trace.

Definition 21 (trace of HA) Consider a k-step execution of an HA of the form

〈q0, x0〉 t1→ 〈q0, x1
−〉

0→ 〈q1, x1〉 t2→ · · · tk

→ 〈qk−1, xk
−〉

0→ 〈qk, xk〉,

– 36 –

4.2 Hybrid Automata

where q0, qi ∈ Q, x0, xi, xi
− ∈ Rn, and ti ∈ R>0 (i ∈ {1, . . . , k}). A k-step trace

of an HA with respect to the above execution is an indexed family {qi}i∈{0,...,k}
of discrete states in Q.

4.2.2 HA with Unsafe Regions

We extend the HA to indicate that some discrete states in Q are unsafe. Next,
we consider a reachability problem to decide whether the executions of a hybrid
system may reach (or will never reach) the states.

Definition 22 (HA with unsafe regions) We extend HA following Definition
19 to HA with unsafe regions 〈Q, Rn, E ,F , Init , I,G,R,US 〉, where US ⊆ Q is a
finite set of unsafe states to falsify the safety property of the model.

Example 15 Consider a controller that steers a car along a straight road near a
canal [15]. Figure 4.5 shows the controller modeled as an HA. The model consists
of 7 discrete states corresponding to each node, three-dimensional continuous
states (p, γ, c) ∈ R3, and 10 discrete state transitions corresponding to each edge.
Let p, γ, and c represent the horizontal position of the car, the heading angle, and
the internal timer, respectively. A discrete state labeled go ahead has a vector
field (−r · sin(γ), 0, 0) and an invariant constraint (p, γ, c) ∈ [−1, 1]×(−∞, +∞)
× (−∞, +∞). The set of initial states is (go ahead, [−1, 1]× [−π/4, π/4]× [0]).
A transition e from go ahead to left border has a guard constraint grde(x) =
p+1 = 0 and a reset function rste(x) = (p, γ, 0) (x is a variable over R3). An edge
entering go ahead represents the initial constraint. In an execution, reaching the
state labeled in canal signals the unsafety of the model. We have a redundant
loop on the in canal node to conform to the method described in Chapter 6.
Figure 4.6 illustrates possible executions of the model.

4.2.3 Reachability

We consider a reachability problem that decides whether the execution of a hybrid
system may reach (or never reach) a state that is marked unsafe.

Definition 23 (reachability and unsafety) For a hybrid system, a state q ∈
Q is reachable within k steps if and only if there exists a k-step execution, where
∃i ∈ {0, . . . , k} (qi = q). A hybrid system is unsafe (respectively safe) within
k steps if and only if there exists (respectively does not exist) a state us ∈ US
reachable within k steps.

– 37 –

Chapter 4 Hybrid Systems

go ahead

ṗ = −r · sin(γ),
γ̇ = 0,
ċ = 0,

−1 ≤ p ≤ 1

p ∈ [−1, 1],
γ ∈ [−π/4, π/4],

c = 0

left border

ṗ = −r · sin(γ),
γ̇ = −ω,
ċ = 1,

−1.5 ≤ p ≤ −1

right border,
ṗ = −r · sin(γ),

γ̇ = ω,
ċ = 1,
1 ≤ p

correct left

ṗ = −r · sin(γ),
γ̇ = ω,
ċ = −2,

−1 ≤ p ≤ 1,
c ≥ 0

correct right

ṗ = −r · sin(γ),
γ̇ = −ω,
ċ = −2,

−1 ≤ p ≤ 1,
c ≥ 0

straight ahead

ṗ = −r · sin(γ),
γ̇ = 0,
ċ = 0

in canal

ṗ = 0,
γ̇ = 0,
ċ = 0

p = −1,
c := 0

p = 1,
c := 0

p = −1 p = 1

c = 0 c = 0

p = 1,
c := 0

p = −1,
c := 0

p = −1.5

Figure 4.5 Model of car steering problem in HA.

4.3 Hybrid Concurrent Constraint Programming
Gupta et al. [40, 39] proposed a programming framework for hybrid systems called
hybrid concurrent constraint programming (HCC). HCC languages describe hy-
brid systems in a declarative style using constraints (i.e., partial information).
Computation in HCC is performed by (concurrent) processes that communicate
with each other in terms of constraints intermediated by a constraint store. Com-
putation proceeds by accumulating constraints into the store, and by checking
whether constraints are entailed by the constraints in the store. A description
in HCC can be regarded as a logic formula involving arithmetic constraints on
continuous states that evolve over time. Since HCC is designed as a simple com-
putational model with generic constraint systems, it would be a basis for various
high-level features. For example, constructs for describing default constraints are
proposed [40] to model complex systems.

In this thesis, we consider the Tiny HCC language, a small subset of the full
HCC constructs, to develop a basis of a reliable implementation of constraint-
based languages. In this section, we present the syntax of Tiny HCC in Section

– 38 –

4.3 Hybrid Concurrent Constraint Programming

Figure 4.6 Executions of car steering problem.

4.3.1, describe the operational semantics of the language in Section 4.3.2, and
illustrate an execution of a Tiny HCC program in Section 4.3.3.

Example 16 Below is a model of the saw tooth wave described in Tiny HCC.

1: (x, l) ∈ [0, 1]×[0.9, 1],
2: hence {
3: l̇ = 0,cont(l),
4: if x < l then ẋ = 1,
5: if x− = l then x = 0
6: }

The variables x and l represent the saw tooth function, and the upper limit of
the value of x, respectively. At line 1, we state the initial domain of the variables,
which bounds the value of the variables at time t = 0. The hence P construct

– 39 –

Chapter 4 Hybrid Systems

activates the inner sub-program P over the time line for every t > 0. At line 3,
we describe constraints to force the value of l unchanged over time (i.e., enforcing
the derivative of l to 0), and to keep the value of l unchanged even when the value
of x causes a discrete change. These constraints are added in the constraint store
at every instant in an execution. Constructs of the form if C then P at lines
4–5 check whether the constraint C is entailed by the constraint store, and when
C is entailed, interpret the sub-process P .

4.3.1 The Tiny HCC Language

The following is the syntax of Tiny HCC:

(process) P ::= C | if C then P | P,P | hence P | ε

(constraint) C ::= A | cont(V)

(expression) A ::= an arithmetic formula (Definition 13) involving V

(variable) V ::= id | ˙id | id−

A Tiny HCC process P represents one of the following processes:

• A process of the form C, called a tell process, adds the constraint C to a
constraint store. A constraint store is a conjunction of all the constraints
given by the tell processes. All variables in an expression A range over
real-valued functions over time R≥0 → R. A variable is represented by
an identifier id such as x (i.e., an abbreviation for x(τ)). For a temporal
description, we express the derivative dx(τ)/dτ by ẋ, and the left-hand
limit limt↑τ x(t) of x(τ) by x−. The constraint C held by the tell process
is one of the following kinds:

– instantaneous constraints of the form A not involving variables of the
form ˙id ;

– continuous constraints of the form A involving only pure identifiers
and ˙id as variables; or

– constraints of the form cont(V) for propagating the value of x−(t) into
the variable x(t) in an execution (this constraint was introduced in the
existing implementation of HCC [13]).

• An ask process, if C then P , contains a constraint C, called a guard
constraint, of the form A involving only pure identifiers, or only id− as
variables (an instance is denoted hereafter by cg). When the entailment
relation between the constraint store and the guard constraint cg held by
an ask process is changed, a discrete change is triggered. In this study, we
consider the ask processes if cg then P formed as follows:

– 40 –

4.3 Hybrid Concurrent Constraint Programming

– cg contains only variables of the form id−, and P contains only instan-
taneous constraints; or

– cg contains only variables described by pure identifiers, and P contains
only tell processes that maintain continuous constraints.

• A process of the form P1,P2 is the parallel composition of sub-processes
P1 and P2.

• A hence process hence P activates a process P along the time line for all
t > t0, where t0 is the time at which the hence process is interpreted.

• We express an empty process by ε.

We consider Tiny HCC as a language scheme, thus constraint stores are pa-
rameterized in the language, and we do not specify a class of expressions that
describe constraints.

4.3.2 Operational Semantics of Tiny HCC

We formalize the operational semantics of Tiny HCC by means of translation into
RTTS as in Section 4.2.1. Gupta and others described the formal denotational
and operational semantics of (default) HCC [39]. The main difficulty in the
formalization of HCC is in describing the evolution of a constraint store that
manages the uncertain values of variables along with the time line. Our semantics
formalizes a hybrid trajectory that satisfies the constraint store for every instant
over time. The evolution of the constraint store is observed as the whole set of
such trajectories.

The operational semantics is described by associating the Tiny HCC programs
with RTTSs.

Definition 24 (translation from Tiny HCC into RTTS) A program P in
Tiny HCC is translated into an RTTS 〈S, T ,S0〉 as follows. We express the tuple
of all pure identifiers of variables appearing in a program by x = (x1, . . . , xn), and
the tuple of variables of the form id− corresponding to x by x− = (x1−, . . . , xn−).
We use the following tuples to express states in S of the RTTS and states inter-
nally used in transitions:

• Pairs 〈P, v〉 consisting of a Tiny HCC program P and a value v in the
continuous state space Rn. S is a set of these pairs.

• Quadruples 〈P, c, H,m〉 consisting of a Tiny HCC program P , a constraint
store c, a Tiny HCC program H to be interpreted in the next phase, and
a flag for switching between two modes {c,d}.

Before defining the transition relation T , we define a transition relation
〈P, c,H, m〉 ; 〈P ′, c′,H ′,m〉 by Rules (4.7)–(4.12) in Figure 4.7 corresponding

– 41 –

Chapter 4 Hybrid Systems

〈c, c′,H,m〉 ; 〈ε, c′ ∧ c, H, m〉 (4.7)

c `cg

〈(if cg then P), c,H, m〉 ; 〈P, c, H, m〉
(4.8)

〈P1, c,H, m〉 ; 〈P ′
1, c

′,H ′, m〉
〈(P1,P2), c,H, m〉 ; 〈(P ′

1,P2), c′,H ′,m〉
(4.9)

〈(hence P), c,H, c〉 ; 〈P, c, (H,hence P), c〉 (4.10)

〈(hence P), c,H,d〉 ; 〈ε, c, (H,hence P),d〉 (4.11)

〈cont(xi), c,H, m〉 ; 〈cont(xi), c ∧ cont(xi),H,m〉 (4.12)

〈H, (x=v), ε, c〉 ∗
; 〈P, c,H ′, c〉, φ |= c, t ∈ R>0,

∀t′∈(0, t) (〈P, (x=φ(t′) ∧ x−=φ(t′)), ε,d〉 ∗
; 〈P, c′, ε,d〉)

〈H, v〉 t→ 〈(P,H ′), φ(t)〉
(4.13)

〈P, (x−=v−), ε,d〉 ∗
; 〈P ′, c,H,d〉, v |= c

〈P, v−〉
0→ 〈H, v〉

(4.14)

Figure 4.7 Operational semantics of Tiny HCC.

to each construct of Tiny HCC. When these transition rules are examined in
the premises of Rules 4.13 and 4.14, the transitions are applied until no further
transitions can take place.

• Rule (4.7) describes the tell process that conjuncts an atomic constraint c
with the store c′.

• Rule (4.8) describes the ask processes. The guard constraint cg should
be entailed by the store c to take place the transition. Accordingly, the
process P is taken out.

• Rule (4.9) represents the parallel composition of processes P1 and P2. We
also consider the reduction of P2 in the same way.

• Rules (4.10) and (4.11) describe the hence P process that expands the
process P over the time line. It takes out P to apply the reduction in a

– 42 –

4.3 Hybrid Concurrent Constraint Programming

continuous change phase, and just disappears in a discrete change phase.
In each phase, the process is copied into the third element to continue the
process in the next phase.

• Rule (4.12) describes the tell process of the constraint cont(xi), where xi

is an element of x. The process is interpreted as in Rule (4.7), except for
that it remains after the transition.

Now, we define the transitions in T by Rules (4.13) and (4.14) in Figure 4.7.

• Rule (4.13) describes continuous changes expressed as the transition
〈H, v〉 t→ 〈(P,H ′), φ(t)〉. In the first premise, the program H is in-
terpreted with the store x = v. In the interpretation a hence process
hence P ′ is reduced to the sub-processes P ′, and all ask processes in H
remain in P . We then have a store c that can be regarded as an IVP-ODE,
and we can obtain a trajectory φ satisfying the IVP-ODE (the second
premise). In the fourth premise, we check that the set of ask processes
in P does not change over the time interval (0, t). Notice that an ask
process disappears when the state (i.e., entailment relation) of the guard
constraint on x or x− changed.

• Rule (4.14) represents two kinds of transitions. First, it determines the
set of initial states S0 of the RTTS. Assume we have 〈P, •〉, where P is
an input program and • is a special value denoting the undefined value.
In the premise, we compute 〈P, true, ε,d〉 ∗

; 〈P ′, c, H,d〉, where P ′ is a
residual process not needed in this case, c stores the constraints added by
the tell processes in P , and H is a composition of hence processes in P . An
initial state in S0 is obtained as 〈H, v〉, where v is a value of x satisfying
the constraint c.

• Second, Rule (4.14) describes the computation of discrete changes. In the
premise, we compute 〈P, (x− = v−), ε,d〉 ∗

; 〈P ′, c, H,d〉, and obtain a
constraint store c and a composed process H of hence processes in P . We
then compute a value v that satisfies the constraint c, and an initial state
〈H, v〉 for the next continuous change.

A difference between the executions of Tiny HCC and HA is that, in an execution
of Tiny HCC, a discrete change occurs at the earliest state satisfying a guard con-
straint, i.e., an instantaneous transition should take place whenever the premises
of Rule (4.14) hold.

4.3.3 Example of an Execution

In this section, we describe an execution of a Tiny HCC program.

– 43 –

Chapter 4 Hybrid Systems

Example 17 Below is a model in Tiny HCC of the bouncing particle described
in the previous examples.

1: (px, py, vx, vy) ∈ [0, 0.1]×[1, 1.1]×[4.1]×[−0.4],
2: hence {
3: cont(px),cont(py),
4: if sin(px) − py > 0 then
5: (ṗx, ṗy, v̇x, v̇y) = (vx, vy, 0,−g + k · v2

y),
6: if sin(px−) − py− = 0 then {
7: m = (− cos(px−), 1),n = m/‖m‖,
8: (vx, vy) = (vx−, vy−) − (e + 1) · n · dot(n, (vx−, vy−))
9: }}

We use the four-dimensional variable (px, py, vx, vy). The first line states the
initial condition. The ask process at lines 4–5 describes the continuous movement
of the particle in the air, and the ask process at lines 6–8 describes bounces of
the particle at the ground.

In the following, we describe the execution of the above Tiny HCC program,
henceforth referred to as Pin . We abbreviate sub-processes in Pin to Pa and Ph

as follows:

• Pa :
1: cont(px),cont(py),
2: if sin(px−) − py− = 0 then {
3: m = (− cos(px−), 1),n = m/‖m‖,
4: (vx, vy) = (vx−, vy−) − (e + 1) · n · dot(n, (vx−, vy−))
5: }

• Ph :
1: hence {
2: Pa,
3: if sin(px) − py > 0 then
4: (ṗx, ṗy, v̇x, v̇y) = (vx, vy, 0,−g + k · v2

y)
5: }

We also abbreviate the following constraint to cc:

cont(px) ∧ cont(py) ∧ (ṗx, ṗy, v̇x, v̇y) = (vx, vy, 0,−g + k · v2
y).

The execution of the program proceeds as follows:

1. We first obtain an initial state at time 0 (i.e., a state s0 ∈ S0 of the
associated RTTS). We apply Rule (4.14) to a state 〈Pin , •〉, where • denotes

– 44 –

4.3 Hybrid Concurrent Constraint Programming

the undefined value, as follows:

〈Pin , true, ε,d〉 ∗
; 〈ε, c0, Ph ,d〉, v0 |= c0

(4.14)

〈Pin , •〉 0→ 〈Ph , v0〉
The first premise is proved by applying the rules ; in Figure 4.7 as many
times as possible. As a result, we obtain a quadruple 〈ε, c0, Ph ,d〉, where

c0 ≡ (px, py, vx, vy) ∈ [0, 0.1]×[1, 1.1]×[4.1]×[−0.4],

and Ph is the hence process in Pin . In the second premise, v0 denotes a
value for the variable (px, py, vx, vy) that satisfies the constraint c0. Assume
that we take the value (0, 1.1, 4.1,−0.4).

2. The resulting state evolves continuously over time t > 0 with respect to
Rule (4.13). Here, we consider the continuous transition δ→, where δ ∈ R>0

is a duration for an evolution (we assume a sufficiently small δ that causes
no discrete change). The transition is formalized as follows:

〈Ph , (x=v0), ε, c〉
∗
; 〈Pa , c0, Ph , c〉,

φ0 |= c0, δ ∈ R>0,

∀t′∈(0, δ)
(〈Pa , (x=φ0(t′) ∧ x−=φ0(t′)), ε,d〉

∗
; 〈Pa , ct′ , ε,d〉)

(4.13)

〈Ph , v0〉
δ→ 〈(Pa,Ph), φ0(δ)〉

The antecedent of δ→ is the tuple obtained in Step 1, and the constraint
store c0 in the premise is set as

c0 ≡ cc ∧ (px, py, vx, vy) = (0, 1.1, 4.1,−0.4).

In the second premise φ0 |= c0, a continuous trajectory φ0 is obtained with
respect to the IVP-ODE stored in c0. In the last premise of Rule (4.13),
we check that the closure of transitions ∗

; does not change the program
Pa for every t′ ∈ (0, δ). For example, at time t′ = 0.1, we have a state
〈Pa , φ0(0.1)〉, where φ0(0.1) = (0.41, 1.01 · · · , 4.1, 1.37 · · ·). As the result
of transitions ∗

;, we have the quadruple 〈Pa , ct′ , ε,d〉, where

ct′ ≡ cont(px) ∧ cont(py) ∧ x− = φ0(0.1),

and we can confirm that the first element is unchanged from the antecedent.

– 45 –

Chapter 4 Hybrid Systems

3. We describe another successive continuous transition δ′

→, after the tran-
sition in Step 2. We again assume a sufficiently small δ′ ∈ R>0. The
transition is formalized as follows:

〈(Pa,Ph), (x=φ0(δ)), ε, c〉
∗
; 〈Pa , cδ, Ph , c〉,

φδ |= cδ, δ′ ∈ R>0,

∀t′∈(0, δ′)
(〈Pa , (x=φδ(t′) ∧ x−=φδ(t′)), ε,d〉

∗
; 〈Pa , ct′ , ε,d〉)

(4.13)

〈(Pa,Ph), φ0(δ)〉
δ′

→ 〈(Pa,Ph), φδ(δ′)〉
The reductions are computed as in Step 2. In the first premise, we compute
the constraint store cδ, where δ is the duration evolved in Step 2. When
δ = 0.1,

cδ ≡ cc ∧ (px, py, vx, vy) = (0.41, 1.01 · · · , 4.1, 1.37 · · ·).

The continuous trajectory φδ is equivalent to φ0 in Step 2 except that the
initial time is shifted for δ = 0.1.

4. Assume the duration δ = 0.147 · · · , and the value φ0(δ) = (0.603 · · · ,
0.934 · · · , 4.1,−1.84 · · ·) of the trajectory φ0 obtained in Step 2. Note
that the constraint sin(φ0(δ).1) − φ0(δ).2 = 0 holds. We can consider the
continuous transition δ→ from the initial state at time 0 as in Step 2. The
time set (0, 0.147 · · ·) examined in the fourth premise of Rule (4.13) is
the maximal set in this phase of continuous transitions because a discrete
change causes within the time set (0, δ′′), where δ′′ > 0.147 · · · .

5. Next, we assume the duration δ′′ > 0.417 · · · , and consider again the con-

tinuous transition δ′′

→ from the initial state at time 0. The fourth premise
in Rule (4.13) is checked by computing Rule (4.14) for t′ ∈ (0, δ′′). For
t′ = 0.147 · · · , the transition is applied as

〈Pa , (x=φ0(t′) ∧ x−=φ0(t′)), ε,d〉
∗
; 〈P ′

a , ct′ , ε,d〉

The process Pa in the antecedent is changed into P ′
a :

1: cont(px),cont(py)

An ask process in Pa disappears by Rule (4.8) because the constraint x− =
φ0(t′) entails the guard constraint sin(px−) − py− = 0. Accordingly, the

transition δ′′

→ from the initial state is not possible.
6. We adopt the instantaneous transition at time t1 = 0.147 · · · as follows:

– 46 –

4.3 Hybrid Concurrent Constraint Programming

〈(Pa,Ph), (x− = φ0(t1)), ε,d〉
∗
; 〈P ′

a , ct1 , Ph ,d〉, vt1 |= ct1
(4.14)

〈(Pa,Ph), φ0(t1)〉
0→ 〈Ph , vt1〉

The resulting constraint store is as follows:

ct1 ≡ cont(px) ∧ cont(py) ∧ (vx, vy) = (0.283 · · · , 3.53 · · ·),

and the value vt1 is evaluated by the premise vt1 |= ct1 as follows:

vt1 = (0.603 · · · , 0.934 · · · , 0.283 · · · , 3.53 · · ·),

where cont(px) and cont(py) assign the value in the previous state (i.e.,
φ0(t1)) to the variables px and py.

7. The resulting state in Step 6 evolves continuously over time t1+δ (δ ∈ R>0)
as in Step 2.

〈Ph , (x=vt1), ε, c〉
∗
; 〈Pa , ct1 , Ph , c〉,

φt1 |= ct1 , δ ∈ R>0,

∀t′∈(0, δ)
(〈Pa , (x=φt1(t′) ∧ x−=φt1(t′)), ε,d〉

∗
; 〈Pa , ct′ , ε,d〉)

(4.13)

〈Ph , vt1〉
δ→ 〈(Pa,Ph), φt1(δ)〉

The constraint store is computed as

ct1 ≡ cc ∧ (px, py, vx, vy) = (0.603 · · · , 0.934 · · · , 0.283 · · · , 3.53 · · ·).

– 47 –

Chapter 5

Hybrid Constraint Systems

Hybrid systems are modeled by constraints whose domain is the space-time con-
tinuum [39, 46], and which are equations of real numbers, functions, and inter-
vals (inequalities). Reliable simulation are done by integrating the computation
of continuous dynamics and discrete changes, and by handling the uncertainties
and computation errors. It is not obvious to reliably compute hybrid systems
described by nonlinear ODEs and nonlinear conditions for discrete changes. This
chapter presents a framework for such nonlinear problems.

• We propose hybrid constraint systems (HCSs) to describe the problem of
detecting discrete changes by constraints (Section 5.2). We later describe
how an HCS serves as a key component in the simulation (Section 5.6.1)
and verification (Section 6) of hybrid systems. HCSs are defined based on
continuous constraint systems (Section 5.1). A constraint in HCSs is either
an instantaneous constraint, a continuous constraint on trajectories, or a
guard constraint on continuous states. HCSs are considered as a class of
algebraic differential equations [64]. We formulate the box-consistency for
HCSs to develop a local consistency technique as in Section 3.3.

• We then develop a consistency technique for solving HCSs on top of an
interval-based method for nonlinear ODEs (Section 2.3) and an interval-
based constraint programming framework (Section 3.3). The technique
generates a set of boxes smaller than a specified size that encloses theoret-
ical solutions.

• The proposed technique employs the interval Newton method to achieve
the quadratic convergence in the reduction of boxes (Section 5.4.1) and
to guarantee that a box contain a solution (Section 5.4.3). The method
uses an interval Newton operator derived from constraints. Experimental
results indicate that the method is efficient for solving HCSs with nonlinear
constraints (Section 5.6).

– 49 –

Chapter 5 Hybrid Constraint Systems

5.1 Continuous Constraint Systems
For continuous constraint systems (CCSs), we describe constraints on continuous
trajectories.

Definition 25 (continuous constraint system) A continuous constraint sys-
tem (CCS) is a constraint system 〈y,M(Dt,D), C〉 consisting of:

• A variable y representing an n-dimensional continuous trajectory.
• A domain M(Dt,D) of the variable that is a whole set of continuous func-

tions over time Dt → D, where Dt ⊆ R≥0 and D ⊆ Rn.
• A set C of constraints c ⊆ M(Dt,D).

A valuation in a CCS is a map of the form y 7→ φ, where φ : Dt → D. A
solution is a valuation satisfying every constraint in C.

In the following, we consider CCSs described in the form of IVP-ODEs. We
handle two kinds of constraints in a CCS corresponding to the initial condition
and ODE in an IVP-ODE. The first is an instantaneous constraint or an initial
constraint and describes the value of a trajectory at a certain time point (e.g.,
an initial condition for a trajectory). The constraints are generalized to describe
a region in the space-time continuum with parameterized values and time (e.g.,
time intervals).

Definition 26 (instantaneous constraint) An instantaneous constraint ci ∈
C of a CCS is described by a formula of the form

∃(τ0, v0)∈c (y(τ0) = v0),

where c is a real constraint ranging over the domain Dt×D.

The second constraint is called a continuous constraint, and describes an ODE,
which is a relation between the values and derivatives of a trajectory over time.

Definition 27 (continuous constraint) A continuous constraint cc ∈ C of a
CCS is described by a formula of the form

∀τ ∈Dt ((y(τ), ẏ(τ)) ∈ c),

where c is a real constraint ranging over the domain D×Rn.

– 50 –

5.2 Hybrid Constraint Systems

In the following, we consider CCSs of the form 〈y,M(Dt,D), Ci ∪ Cc〉, where Ci

is a set of instantaneous constraints and Cc is a set of continuous constraints.
A solution is a valuation that satisfies an IVP-ODE described by Ci and Cc.
The entailment relation between instantaneous constraints or between continuous
constraints are derived from the entailment relation between the real constraints
c used in the description of each constraint.

Example 18 A falling particle is modeled by a CCS 〈y,M(R≥0, R4), {ci, cc}〉,
where

y = (ypx , ypy , yvx , yvy),

ci ≡ ∃(τ0, v0)∈ [0]×[0, 0.1]×[1, 1.1]×[4.1]×[−0.4] (y(τ0) = v0),

cc ≡ ∀τ ∈R≥0 (ẏ(τ) = (yvx(τ), yvy (τ), 0,−g + k · yvy (τ)2)).

The variable y represents a function R≥0 → R4. Given a time t ∈ R≥0,
(ypx(t), ypy (t)) and (yvx(t), yvy (t)) represent the position and velocity of the
particle, respectively. the constants g and k represent the gravity acceleration
and air resistance, respectively. The instantaneous constraint ci specifies the
initial state of the particle at time [0] as the region [0, 0.1]×[1, 1.1]×[4.1]×[−0.4].
The continuous constraint cc describes the movement of the particle by a
constraint on the state y(τ) and derivative ẏ(τ). Figure 5.1 illustrates the set
Φ of solution trajectories of the particle with parameters set to g = 9.8 and
k = 10−3.

5.2 Hybrid Constraint Systems
We have seen that continuous trajectories over time R≥0 → Rn are described
by CCSs. Hybrid constraint systems (HCSs) describe the crossing points of the
trajectories with time-invariant boundaries in the state space Rn. Figure 5.2
illustrates an example of an HCS consisting of the trajectory in the previous
example and a sine-curved surface. An HCS is constructed by extending a CCS
to model a trajectory, which is done by adding to the CCS a guard constraint.

Definition 28 (hybrid constraint system) Consider a CCS 〈y,M(Dt,D), Ci

∪ Cc〉, where y represents an n-dimensional trajectory, Dt ⊆ R≥0, D ⊆ Rn, and
Ci ∪ Cc is a set of instantaneous and continuous constraints.

A hybrid constraint system (HCS) is a tuple 〈x̃,Dt×D, Cg, 〈y,M(Dt,D), Ci∪Cc〉〉,
where the inner tuple is the CCS described above, and the other elements consist
of the following:

– 51 –

Chapter 5 Hybrid Constraint Systems

Figure 5.1 Example of CCSs.

• An (n+1) vector variable x̃ = (t, x1, . . . , xn) ranging over the space-time
R≥0×Rn.

• A domain Dt×D ⊆ R≥0×Rn.
• A set Cg of guard constraints in which a constraint cg ∈ Cg is described by

the following formula

y(t) = (x1, . . . , xn) ∧ (x1, . . . xn) ∈ c,

where c is a real constraint ranging over the domain D.

The domain Dt that corresponds to the variable t is called the time domain.
A valuation of an HCS is a map of the form x̃ 7→ v, where v ∈ Dt×D. A solution

of an HCS is a valuation x̃ 7→ v where the value v satisfies every guard constraint
in Cg with respect to the every solution y 7→ φ of the inner CCS. Accordingly, for
a solution x̃ 7→ v and a guard constraint cg of an HCS, the value v satisfies

∃φ∈Φ (φ(v.1) = (v.2, . . . , v.(n+1)) ∧ (v.2, . . . , v.(n+1)) ∈ c),

where Φ is the set of all solutions of the inner CCS, and c is a real constraint
described in cg.

– 52 –

5.2 Hybrid Constraint Systems

Figure 5.2 Example of HCSs.

Example 19 A particle that bounces off a sinusoidal surface is modeled by an

– 53 –

Chapter 5 Hybrid Constraint Systems

HCS 〈x̃, R≥0×R4, {cg}, 〈y,M(R≥0, R4), {ci, cc}〉〉, where

x̃ = (t, x) = (t, px, py, vx, vy),

y = (ypx , ypy , yvx , yvy),

cg ≡ (y(t) = (px, py, vx, vy) ∧ sin(2 · px) = py),

ci ≡ ∃(τ0, v0)∈ [0]×[0, 0.1]×[1, 1.1]×[4.1]×[−0.4] (y(τ0) = v0),

cc ≡ ∀τ ∈R≥0 (ẏ(τ) = (yvx
(τ), yvy

(τ), 0,−g + k · yvy
(τ)2)).

The variable t represents time, and variables (px, py) and (vx, vy) represent the po-
sition and velocity of the particle, respectively. The CCS 〈y,M(R≥0, R4), {ci, cc}〉
is equivalent to the CCS in Example 18 that models the continuous trajectory
φ : R≥0 → R4 of the particle. In cg, the value of x is associated with the value of
the trajectory φ at time t. Contact of the particle with the surface is detected by
checking whether the condition sin(2·px) = py holds. Figure 5.2 (a) illustrates the
trajectory of the particle with parameters set to g = 9.8 and k = 10−3. Solutions
are illustrated as the regions S1, S2, and S3. For every point v ∈ S1 ∪S2 ∪S3, we
have a solution x̃ 7→ v.

Remark 4 Consider an HCS and a solution y 7→ φ of the inner CCS. Then,
there may be multiple solutions of the HCS with respect to φ. When applying
HCSs to the simulation of hybrid systems, the one in which we are interested is
the earliest solution.

Example 20 In Figure 5.2 (a), the guard constraint has three solutions inside
each of the regions S1, S2 and S3, for each trajectory described by the inner CCS.
The particle bounces at the earliest solution in S1.

In our method for solving HCSs, we consider a restricted class of HCSs called
simple HCSs.

Definition 29 (simple HCS) A simple HCS is an HCS 〈x̃,Dt ×D, {cg}, 〈y,
M(Dt,D), {ci, cc}〉〉, where x̃ consists of (n+1) real variables, Dt ⊆ R≥0, D ⊆ Rn,
and constraints ci, cc, and cg are defined as follows:

ci ≡ ∃(τ0, v0)∈D0 (y(τ0) = v0),

cc ≡ ∀τ ∈Dt (ẏ(τ) = f (y(τ))),

cg ≡ (y(t) = (x1, . . . , xn) ∧ grd(x1, . . . xn) = 0).

D0 = I0×· · ·× In corresponds to a box (I0, . . . , In) ∈ In, where I0 ≥ 0, f is
a Lipschitz continuous function D → Rn, and grd is a differentiable function
D → R.

– 54 –

5.3 Box-Consistency for HCSs

The HCS in Example 19 is a simple HCS. Additionally, we define solved HCSs as
in Section 3.1.

Definition 30 (solved HCS) Let 〈x̃,Dt×D, {cg}, 〈y,M(Dt,D), {ci, cc}〉〉 be a
simple HCS. When, for every v ∈ D, x̃ 7→ v is a solution of the HCS, then the
HCS is solved.

5.3 Box-Consistency for HCSs
Interval-based solving of an HCS means refining a box in In+1 into another box
to ensure that the system is box-consistent, as in the context of RCSs (Section
3.3). We can induce the box-consistency for hybrid constraints from Definition
14 in the previous chapter by modifying the definition so that it conforms to the
HCSs in Definition 29.

Definition 31 (box-consistency for HCS) Let 〈x̃,Dt×D, {cg}, 〈y,M(Dt,D),
{ci, cc}〉〉 be a simple HCS, let grd be the function described in the guard con-
straint cg, and let φ be a continuous trajectory satisfying ci and cc. Consider
interval extensions Grd of grd and Φ of φ. Note that Φ should enclose all the
possible trajectories φ. For a domain Dt×D, the HCS is box-consistent if and
only if every i-th projection of Dt×D = I0×I1×· · ·×In satisfies the following
conditions with respect to the other projections:

I0 = apx I({v0 ∈ I0 | Grd(Φ(apx I(v0 ± [0, hmin]))) 3 0}) (5.1)

for i = 0, where hmin ∈ R>0.

Ii = apx I({vi ∈ Ii | vi ∈ Φ(I0).i

∧ Grd(I1, . . . , Ii−1, apx I(vi), Ii+1, . . . , In) 3 0}) (5.2)

for i ∈ {1, . . . , n}. The parameter hmin is derived from the VNODE method
because it is difficult to compute Φ(apx I(v0)) (see Section 2.3).

Example 21 Consider the HCS in Example 19. For boxes Bi = (Ii,0, . . . , Ii,4)
(i ∈ {1 . . . , 7}) illustrated in Figure 5.2 (b), HCSs 〈x̃, Ii,0 ×· · ·× Ii,4, {cg}, 〈y,
M(Ii.0, Ii,1×· · ·×Ii,4), {ci, cc}〉〉 are box-consistent.

Example 22 For Example 19, a box B = ([0.110, 0.148], [0.491, 0.636],
[0.866, 0.982], [4.10], [−1.85,−1.48]), where B = apxF10,−11,12,3

(B4), is appropriate
for composing the box-consistent HCS.

– 55 –

Chapter 5 Hybrid Constraint Systems

5.4 Technique for Solving HCSs
In this section, a technique for computing box-consistent HCSs is described.
The technique applies the BranchAndPrune algorithm (Section 3.3.1) to
HCSs with instantiations of the sub-algorithms, HCSRevise, HCSReviseL,
and HCSReviseU (these are variants of BC3Revise, BC3ReviseL and
BC3ReviseU in Section 3.3.3). The proposed method computes a set of boxes
that encloses all the solutions in the initial domain. The accuracy of the results
is specified by the positive real-valued parameters wmax and hmin. An input
wmax to BranchAndPrune determines the maximum width of the intervals in
a result. The parameter hmin is used to enforce the box-consistency as described
in Definition 31. Interval extensions of constraints should be satisfied within
hmin from each bound of the time domain.

The Branch (Figure 3.2) and Prune (Figure 3.3) algorithms are used in
BranchAndPrune. Prune reduces the domain of an HCS by enforcing the
box consistency. Prune takes a set {ci, cc, cg} of instantaneous, continuous,
and guard constraints, and a box B as inputs. Prune iteratively reduces each
component of B until the fixpoint is reached.

To reduce the time component B.1, Prune calls the HCSRevise algorithm
(line 4). For other components B.i (i ∈ {2, . . . , n+1}), Prune calls the instanti-
ations for RCSs such as HC4Revise and BC3Revise. Details on the reduction
procedures are supplied in Sections 5.4.1 and 5.4.2.

5.4.1 Reduction of the Time Domain

The HCSRevise and HCSReviseL algorithms for filtering the time domain are
illustrated in Figures 5.3 and 5.4. We can reduce the time domain efficiently
by applying the interval Newton method that solves continuous and guard con-
straints simultaneously. At line 2 in Figure 5.3, the algorithm constructs functions
H and Ḣ for the interval Newton method. The essential idea is that the solving
process of IVP-ODEs described in Section 2.3, denoted hereafter as Φ, is used
to construct an interval Newton operator. Given an interval T ∈ IF, the value
of the interval function Φ(T) is obtained by iterative calculations with respect to
CCS constraints ci and cc. This process Φ is prepared at line 1. Accordingly, the
functions H and Ḣ are functions IF → IF given by

H(I0) = Grd(Φ(I0)), Ḣ(I0) =
n∑

i=1

(
∂Grd(Φ(I0))

∂Xi
· Φ̇(I0).i

)
,

– 56 –

5.4 Technique for Solving HCSs

Input: initial constraint ci, continuous constraint cc,
guard formula grd(x1, . . . , xn) = 0, box B = (I0, I1, . . . , In)

Output: box-consistent box B
1: Φ := establish the process for solving ci ∧ cc

2: (H, Ḣ) := construct operators from Φ and Grd
3: I0 := HCSReviseL(H, Ḣ, I0)] HCSReviseU(H, Ḣ, I0)
4: (I1, . . . , In) := (I1, . . . , In) ∩ Φ(I0)
5: return (I0, I1, . . . , In)

Figure 5.3 HCSRevise algorithm.

Input: interval function H, interval function Ḣ, time interval I0

Output: interval I0

1: if 0 /∈ H(I0) then
2: return ∅
3: if 0 ∈ H([I0, I0 + hmin]) then
4: return I0

5: else
6: I0 := N∗

H,Ḣ
(I0)

7: (I0,l, I0,u) := ([I0, m(I0)], [m(I0), I0])
8: I0,l := HCSReviseL(H, Ḣ, I0,l)
9: if I0,l 6= ∅ then

10: return I0,l

11: else
12: return HCSReviseL(H, Ḣ, I0,u)

Figure 5.4 HCSReviseL algorithm.

where Grd is an interval extension of grd used in cg, Φ is an interval exten-
sion of φ, and ∂Grd(X1, . . . , Xn)/∂Xi and Φ̇ are interval extensions of the
derivatives ∂grd(x1, . . . , xn)/∂xi and dφ(τ)/dτ (i ∈ {1, . . . , n}). To compute
∂Grd(X1, . . . , Xn)/∂Xi, we apply automatic differentiation to the computation
of Grd .

At line 3 of HCSRevise, procedures HCSReviseL (Figure 5.4) and
HCSReviseU reduce the lower and upper edges of the time interval, respec-
tively. The procedure of HCSReviseL is as follows (HCSReviseU is similar
except that it operates on the upper edge instead of the lower edge):

1. First, check the guard constraint for the current time domain I0 (line 1).

– 57 –

Chapter 5 Hybrid Constraint Systems

When the interval H(I0) does not contain 0, the algorithm returns ∅ be-
cause the guard constraint should not hold over I0.

2. Check whether 0 ∈ H([I0, I0+hmin]) is satisfied, where hmin is the minimal
step width for solving ODEs. If so, return the interval I0 (line 3).

3. Calculate the fixpoint of the interval Newton method I ′0 = N∗
H,Ḣ

(I0) (line
6). To obtain N∗

H,Ḣ
(I0), I ′0 = N∗

H,Ḣ
(I0) is repeatedly computed until the

ratio of I ′0 to I0 is under a threshold.
4. Split the refined I0 in two and apply HCSReviseL recursively for each

interval (lines 7–12).

The above procedure reduces the time domain of an HCS by applying the
interval Newton method or by casting out a sub-interval at line 2 of HCSReviseL.
Hence, the computed result encloses the solutions of the HCS. As we are applying
the interval Newton method, we can guarantee the existence of a unique solution
within a contracted box, under a certain condition.

Theorem 3 (existence and uniqueness of a solution (1)) Let 〈x̃, I0×· · ·×
In, {cg}, 〈y,M(I0, I1×· · ·×In), {ci, cc}〉〉 be a simple HCS, and let NH,Ḣ be the
interval Newton operator constructed from the constraints as described above.
When I ′0 = NH,Ḣ(I0), a unique solution of the HCS exists within I ′0× . . .×I ′n,
where (I ′1, . . . , I

′
n) = (I1, . . . , In) ∩ Φ(I ′0), if the following conditions hold:

• A unique continuous trajectory φ over I0 exists with respect to the con-
straints ci and cc.

• The function grd described in cg is differentiable over I1×. . .×In.
• I ′0 ⊆ int(I0).

Proof. From the first and second conditions, a unique function grd ◦φ exists and
is differentiable over I0. Because Grd ◦ Φ, which is composed by HCSRevise
is an interval enclosure of grd ◦ φ, the property of the interval Newton method
proves that a single root of grd ◦φ exists within I0. The third condition is for the
guarantee by the interval Newton method.

Checking the conditions in Theorem 3 is automated as follows. For the first
condition, VNODE validates the existence and uniqueness of a solution in the
computed enclosure. The third condition will be tested in the computation of
HCSReviseL and HCSReviseU.

– 58 –

5.4 Technique for Solving HCSs

5.4.2 Reduction of the Continuous State Domain

Once the HCSReviseL and HCSReviseU algorithms reduce the time domain
I0 of an HCS, VNODE (Section 2.3) can compute an interval enclosure Φ(I0) of
the every possible continuous trajectories φ over I0 (line 4 of Figure 5.3). Since
the solutions of HCSs should be the values satisfying the guard constraint cg, we
can further reduce this enclosure.

We consider an RCS 〈x,D, C〉 consisting of the variable x = (x1, . . . , xn),
the domain D = I1 × . . .× In, where (I1, . . . , In) is the intersection of Φ(I0)
and the HCS’s domain, and the constraint set C = {grd(x1, . . . , xn) = 0},
where grd(x1, . . . , xn) = 0 is specified by the guard constraint cg. Thus, we
can reduce the domain I1× . . .×In by applying the filtering procedure, such as
BC3Revise(grd(x1, . . . , xn) = 0, (I1, . . . , In)), for example.

In the solving process by Prune, we can attach different instantiations of
Revise for each constraint in the system (line 4 of Figure 3.3). We attach (i)
HCSRevise with the corresponding set of constraints in the HCS, and (ii) an
instance for RCSs (e.g., BC3Revise) with the guard constraint grd(x1, . . . , xn) =
0. The output of Prune with the above configuration forms the box-consistent
system.

Lemma 4 (box-consistency of the revised systems) Consider a simple
HCS 〈x̃, I0×· · ·×In, {cg}, 〈y,M(I0, I1×· · ·×In), {ci, cc}〉〉. Assume we compute
(I ′0, . . . , I

′
n) = Prune(ci∧cc∧(grd(x1, . . . , xn) = 0), (I0, . . . , In)), where Prune is

configured as indicated above. Then, the HCS 〈x̃, I ′0×· · ·×I ′n, {cg}, 〈y,M(I0, I1×
· · ·×In), {ci, cc}〉〉 is box-consistent.

Proof. The each bound of I ′0 satisfies the constraints of the HCS because it is
checked by HCSReviseL (at line 3) and HCSReviseU. This is equivalent to
checking of the condition 5.1 in Definition 31. Other conditions 5.2 are satisfied
because I1, . . . , In are reduced by the Revise instantiation for RCSs.

5.4.3 Testing the Unique Existence of a Solution

A continuous trajectory described by an HCS may have multiple solutions (Re-
mark 4). Hence, the number of solutions contained in a set of boxes computed by
BranchAndPrune is unknown. We can obtain a proof of the uniqueness and
existence of a solution within a result reduced by the interval Newton method
(Theorem 3) under a certain condition.

– 59 –

Chapter 5 Hybrid Constraint Systems

Theorem 4 (existence and uniqueness of a solution (2)) Consider a sim-
ple HCS 〈x̃, I0× . . .× In, {cg}, 〈y,M(I0, I1×· · ·×In), {ci, cc}〉〉. Suppose a call
to the procedure Prune(ci ∧ cc ∧ (grd(x1, . . . , xn) = 0), (I0, . . . , In)) returns a
box (I ′0, . . . , I

′
n). In the computation, suppose the procedure HCSReviseL or

HCSReviseU reduces a time interval I ′′0 to NH,Ḣ(I ′′0), and the following condi-
tions hold. Then, a unique solution of the HCS exists in the domain I ′0×· · ·×I ′n.

• A unique continuous trajectory φ over I ′′0 exists with respect to ci and cc.
• The function grd described in cg is differentiable over I ′′1 ×. . .×I ′′n .
• NH,Ḣ(I ′′0) ⊆ int(I ′′0).
• I ′0 ⊆ I ′′0 .

Proof. From the first to third conditions, it is proved that a root of grd◦φ uniquely
exists in I ′′0 from Theorem 3. Since the whole computation by Prune completely
encloses the solution, the unique solution also exists within I ′0×· · ·×I ′n.

Example 23 Recall the boxes in Figure 5.2 (b) described in Example 21. Each
of the boxes B4, B5, B6, and B7 encloses a unique solution. The boxes B1, B2,
and B3 should not be guaranteed to contain a solution.

5.4.4 Computing an Enclosure for the Earliest Solution

The union of boxes computed by the proposed technique may enclose multiple
solutions. A box that encloses the earliest solution is selected as follows.

1. Compute the clusters of boxes by concatenating two boxes if they are ad-
jacent.

2. Find the cluster containing the earliest time.
3. If this cluster intersects with the initial value set, then discard this cluster

and search for the next earliest cluster.

Note that we assume each of the clusters computed in Step 1 and the initial
value set in Step 3 enclose a unique solution.

5.5 Implementation
We implemented the proposed method on top of the Elisa system described in
Section 3.3.4, which is an implementation of the BranchAndPrune algorithm.
Our implementation consists of about 4000 lines of C++ code.

The main classes are illustrated in Table 5.1. We implemented classes shown in
the upper half of the table for representing continuous constraints. We represent

– 60 –

5.6 Examples and Experiments

Table 5.1 Main classes in the implementation.

object type class
variables Time, ContVar
constraints ContConstraint
models HybridModel

algorithm class
HCSRevise HybridNewtonReduction
Select HybridChoice

guard constraints as real constraints in the implementation. HCSRevise was
implemented as the HybridNewtonReduction class by extending the Reduction
class in Elisa. In HybridNewtonReduction, we implemented two strategies to
manage the solving process of IVP-ODEs. These strategies are optimised for
computing only the earliest solution, and for computing all the solutions within
an input box, respectively. The Select procedure used in Prune algorithm
(Figure 3.3, line 3) was tweaked by the HybridChoice class to preferentially
apply HCSRevise before applying other Revise implementations for RCSs.

The VNODE-LP solver described in Section 2.3 was used to solve IVP-ODEs. We
extended it to control the upper bounds of step sizes in the computation. Our
implementation also caches the results by VNODE-LP for reuse. The parameters
were set as k = 20, atol = 10−20, and rtol = 10−20. We also used the FADBAD++
library [77] for automatic differentiation.

5.6 Examples and Experiments
Section 5.6.1 describes a simulation of a bouncing particle by modeling each
bounce of the particle as an HCS. We then describe several HCS examples that
involve nonlinear constraints (Section 5.6.2). Section 5.6.3 reports the results of
comparisons with the Mathematica system. Section 5.6.4 reports the results of
computing all the solutions of the above examples within the input box.

The parameters in the proposed method were set as wmax = 10−2 and hmin =
10−13. BC5Revise was used for reduction of the continuous state domain. In
the experiments of Sections 5.6.1 and 5.6.3, we modified the implementation
to terminate the computation after an enclosure for the earliest solution was
obtained.

– 61 –

Chapter 5 Hybrid Constraint Systems

falling

ṗx = vx, ṗy = vy,
v̇x = 0, v̇y = −g − k · vy,

sin(px) − py ≥ 0

(px, py, vx, vy) ∈ [2]×[5]×[0]×[−5]

bounce

sin(px) − py = 0,

(px, py, vx, vy) := (px, py,
(1−e·cos(px)2)·vx+(1+e)·cos(px)·vy

1+cos(px)2 ,

(1+e)·cos(px)·vx+(−e+cos(px)2)·vy

1+cos(px)2)

Figure 5.5 Model of bouncing particle in HA.

5.6.1 Interval-based Simulation of Bouncing Particle

In this section, we describe an interval-based simulation of the bouncing particle
model of Example 13. Here, we modify the HA as illustrated in Figure 5.5
(assuming g = 9.8, k = 0.3, and e = 0.8).

From the model, we have the initial domain [2]× [5]× [0]× [−5] and a trace
(Definition 21) of an execution of the form {falling1, . . . , fallingk}. Then, we can
construct an HCS corresponding to each step of the execution. For example, the
first step is described by an HCS 〈x̃, [0, 103]×R4, {cg}, 〈y,M(R≥0, R4), {ci, cc}〉〉,
where

x̃ = (t, px, py, vx, vy),

y = (ypx , ypy , yvx , yvy),

cg ≡ (y(t) = (px, py, vx, vy) ∧ sin(px) = py),

ci ≡ ∃(τ0, v0)∈ [0]×[2]×[5]×[0]×[−5] (y(τ0) = v0),

cc ≡ ∀τ ∈Dt (ẏ(τ) = (yvx(τ), yvy (τ), 0,−g − k · yvy (τ))).

Table 5.2 shows the results of solving the HCSs for the first five steps. We also
solved the HCSs with the proposed method that did not apply the interval Newton
method at line 6 of the algorithms HCSReviseL (Figure 5.4) and HCSReviseU.
The computation results are shown in the lower rows. Each row corresponds to
a solution of an HCS. Each column shows:

• The step number of the execution.
• The resulting time domain I0.
• The number of times Branch was called.
• The number of times HCSRevise was called.
• The execution time in milliseconds of the simulation (for the whole steps

from 1 to n).

– 62 –

5.6 Examples and Experiments

Table 5.2 Computation results for bouncing particle model.

(a) proposed method
n result (I0) branch revise time (ms)
1 0.56636310070[488, 589] 0 2 40
2 1.51931342141[670, 914] 1 28 120
3 2.6883363074[045, 587] 0 54 210
4 3.333749635[478, 754] 1 73 280
5 4.33428886[471, 587] 0 81 320

(b) proposed method (without interval Newton narrowing)

1 0.56636310070[400, 534] 1 158 360
2 1.5193134214[155, 205] 1 301 700
3 2.688336307[375, 478] 1 500 1130
4 3.333749635[347, 843] 1 648 1490
5 4.33428886[412, 619] 1 795 1840

The widths of the first results were around 10−12 (determined as about 10 times
the hmin parameter). The subsequent results widened as the initial domains
computed from the previous HCSs widened.

From the first HCS solution and the reset function described in the HA, a
bounce of the particle was computed to set up the initial values for the next
phase (we computed by the natural interval extension of the reset function).
Accordingly, we had another HCS for the second bounce. For the second HCS,
there are two theoretical solutions because the initial state also satisfies the guard
constraint. In this case, we computed the enclosure for the second earliest solution
by ignoring the initial state as described in Section 5.4.4. The simulation for the
following steps of the execution were computed by the same procedure.

Figure 5.6 illustrates the boxes enclosing trajectories of the particle bouncing
off the surface three times. These boxes were computed while solving three HCSs,
each of which correspond to the parabolic motion of the particle (dashed-boxes
in the figure represents results for the first and third continuous phase).

In the solving process for the first HCS, we confirmed that the time domain I0

was quadratically reduced by the interval Newton operator. For example, in the
solution for the first bounce, we had

– 63 –

Chapter 5 Hybrid Constraint Systems

Figure 5.6 Trajectory of bouncing particle and interval enclosure of trajectory.

I0
0 = [0.5366024006905468, 0.6462371408659776],

I1
0 = [0.5655469230670141, 0.5675738062165443],

I2
0 = [0.5663629650559695, 0.5663632653947441],

I3
0 = [0.5663631007048800, 0.5663631007048839].

We confirmed that the numbers of revising the time domains and execution time
were reduced by the interval Newton method as shown in Table 5.2. The reduc-
tions above provided the guarantee of the existence and uniqueness of a solution
within the domain. Each of the results in the upper rows was guaranteed to
contain a solution in this way.

5.6.2 Examples of Nonlinear HCSs

Here, we provide several HCSs that involve nonlinear constraints as continuous
and guard constraints.

Example 24 We consider the problem of detecting the intersection of a trajec-
tory following the continuous constraint described by the Van der Pol equation

– 64 –

5.6 Examples and Experiments

y = (y1, y2), Dt = [0, 100], D = R2,

ci ≡ (y(0) = (1, 0)),

cc ≡ ∀τ ∈Dt (ẏ1(τ) = y2(τ) ∧ ẏ2(τ) = 10 · (1 − y1(τ)2) · y2(τ) − y1(τ)),

and the guard constraint described by an ellipse

x̃ = (t, x1, x2),

cg ≡ (y(t) = (x1, x2) ∧ x2
1

9
+

x2
2

255
− 1 = 0).

Example 25 The detection of the intersection of a trajectory following the con-
tinuous constraint described by the Lorenz equation

y = (y1, y2, y3), Dt = [0, 25], D = R3,

ci ≡ (y(0) = (15, 15, 36)),

cc ≡ ∀τ ∈Dt (ẏ1(τ) = 10 · (y2(τ) − y1(τ))

∧ ẏ2(τ) = y1(τ) · (28 − y3(τ)) − y2(τ)

∧ ẏ2(τ) = y2(τ) − 8
3
· y3(τ)),

and the guard constraint described by a sphere

x̃ = (t, x1, x2, x2),

cg ≡ (y(t) = (x1, x2, x3) ∧ x2
1 + x2

2 + (x3 − 28)2 − 700 = 0).

Example 26 An HCS derived from the verification of a circuit involving a tunnel
diode [29].

x̃ = (t, vt , it), y = (yvt , yit),

Dt = [0, 7 · 10−9], D = R2,

cg ≡ (y(t) = (vt , it) ∧ (vt − 0.35) · (vt − 0.055)),

ci ≡ (y(0) = (0.35, 0.00002)),

cc ≡ ∀τ ∈Dt (ẏvt(τ) = (−(0.0692 · yvt(τ)3 − 0.0421 · yvt(τ)2

+ 0.004 · yvt(τ) − 8.9579 · 10−4) + yit(τ)) · 1012

∧ ẏit(τ) = (−yvt(τ) − 200 · yit(τ) + 0.3) · 106).

– 65 –

Chapter 5 Hybrid Constraint Systems

Table 5.3 Comparison of results (1).

(a) proposed method
problem result (I0) branch revise time (ms)
(1) b1 0.56636310070[488, 589] 0 2 40
(2) b2 1.51931342141[670, 914] 1 28 120
(3) vdp 10.412056185[399, 407] 1 167 120
(4) lorenz 10.097265[363, 417] 1 440 560

(b) proposed method (without interval Newton narrowing)

(1) b1 0.56636310070[400, 534] 1 158 360
(2) b2 1.5193134214[155, 205] 1 301 700
(3) vdp 10.412056185[398, 407] 1 288 220
(4) lorenz 10.097265[363, 417] 1 674 870

Table 5.4 Comparison of results (2).

(c) Mathematica (symbolic)
problem result (t) time
(1) b1 0.56636310070 73
(2) b2 unsolvable –
(3) vdp unsolvable –
(4) lorenz unsolvable –

(d) Mathematica (numeric) (d’) Mathematica (numeric)
(1) b1 0.56636309967 4 0.56636310070 18
(2) b2 1.51931341936 4 1.51931342141 21
(3) vdp 10.41204598059 13 10.41205618538 343
(4) lorenz 10.09936434992 31 10.09726539120 1511

5.6.3 Comparison with Existing Methods

To evaluate the computational efficiency and to confirm the accuracy of the re-
sults, we used several solvers, including the proposed method, to solve the follow-
ing HCS problems:

(1, 2) The first and second bounces of the bouncing particle (Section 5.6.1).
(3) The Van der Pol equation and an ellipse (Example 24).
(4) The Lorenz equation and the sphere (Example 25).

We solved the above problems with the following methods:

– 66 –

5.6 Examples and Experiments

(a) The proposed method.
(b) The proposed method that does not apply the interval Newton method.
(c) The symbolic DSolve solver with the Minimize function in Mathematica

7.0 [82].
(d, d’) The numerical NDSolve solver with the EventLocator option in Mathe-

matica. We solved the problems with the default settings in (d), and by
setting WorkingPrecision to 28 and MaxSteps to Infinity in (d’).

Tables 5.2 and 5.3 report the computed (interval) values for the time variable t
(represented by I0 and t), the profiling results, and the execution time. As shown
by the results for (a) and (b), the interval Newton method decreased the number
of reductions and execution time. The results show that our method has several
advantages over Mathematica:

• In the results (c), DSolve of Mathematica computed a rigorous solution
but treated only the problem (1).

• The results (d) and (d’) showed that our method solved HCSs more ef-
ficiently than the NDSolve method. Additionally, NDSolve uses approx-
imation algorithms and cannot ensure the achieved accuracy of a result,
whereas our method guarantees the accuracy of a result.

• Another advantage of our method is that we can give intervals to the initial
values and the coefficients in constraints. DSolve and NDSolve do not
handle ODEs with uncertain parameters.

5.6.4 Computation of Multiple Solutions

The computation results of Examples 24–26 are shown in Table 5.5. We here
computed sets of boxes that enclose all the solutions within the input boxes. We
set the parameter wmax as 10−2, 10−6, and 10−11 for Examples 24, 25, and 26,
respectively. Each column corresponds to:

• The computed time domain I0 (we select the earliest box).
• The number of boxes computed as results.
• The number of boxes that are guaranteed to contain a solution.
• The number of calls to Branch and HCSRevise.
• The execution time.

The upper and lower part of the table show the results with and without applying
the interval Newton method as in the previous sections.

Although the numbers of branches in the upper half were less than the results
in the lower half, it did not affect the improvement of the execution time. In the

– 67 –

Chapter 5 Hybrid Constraint Systems

Table 5.5 Results of computing all solutions.

(a) proposed method
problem result (I0) boxes ex. branch revise time (ms)
vdp 10.412056185[396, 409] 24 16 35 610 19033
lorenz 10.097265[362, 418] 2 2 5 418 10713
diode [0, 1] · 10−12 2 1 1 21 3473

(b) proposed method (without interval Newton narrowing)
vdp 10.412056185[363, 443] 23 – 34 3695 21920
lorenz 10.097258[021, 943] 32 – 31 1061 10383
diode [0, 9.29] · 10−13 2 – 1 54 3346

computation, the solving process for ODEs was expensive (it took many itera-
tions with small time intervals). The solving process with the interval Newton
method became further expensive when the number of calls to the ODE solver
and number of cached box enclosures of trajectories increased. We consider that
our implementation that caches the results by the ODE solver can be improved
to accelerate the solving processes.

For the first problem, we had 24 boxes in the upper results and 23 boxes in the
lower results. The method with the interval Newton method guaranteed that 16
boxes out of 24 boxes contained unique solutions. However, the method outputed
more redundant boxes than the other method because the results by the ODE
solver became less accurate with our caching mechanism.

For the third problem, the interval Newton method guaranteed the existence
of a solution only for a box, although the other box also contained a solution.
It failed because the solution existed at time t = 0, and the trajectory was not
defined for t < 0, even though it was required to guarantee the existence of the
solution.

– 68 –

Chapter 6

Bounded Reachability Analysis of

Hybrid Systems

This chapter is intended to construct a model checking framework for hybrid
systems described by HA with unsafe regions. It computes the reachable region
of a model, and verifies the reachability to the unsafe states. Model checkers
for hybrid systems such as References [43, 67, 29] have difficulties in verification,
especially when the models belong to the class of nonlinear hybrid systems, where
vector fields in the continuous state space or conditions for discrete changes are
expressed by nonlinear constraints. Since most of the existing tools take linear
hybrid systems as inputs, users need to linearize a problem by hand for each
instance.

We propose a satisfiability modulo theories (SMT) framework for the bounded
model checking (BMC) of nonlinear hybrid systems. In the framework, the
bounded length of executions of a model is described by a predicate logic for-
mula involving arithmetic constraints [4, 28, 23, 37]. Checking the satisfiability
of the formula corresponds to the reachability analysis of the model (in this sense,
we call this computation bounded reachability analysis). The computation may
become possible for systems that are too large for unbounded execution. An SMT
solver enumerates propositional models of the formula using a SAT (propositional
satisfiability) solver and then checks the consistency of these models by calling
theory solvers that handle the conjunctions of arithmetic constraints. BMC for
possibly nonlinear hybrid systems is simply encoded using formulas involving
ODEs [23]. However, there have been only a few SMT-based implementations
that support nonlinear hybrid systems (e.g., by Bu et al. [11]).

More specifically, this chapter presents a framework for the bounded reacha-
bility analysis of HA involving nonlinear constraints.

– 69 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

• In the framework, an HA is encoded into a predicate logic formula involving
constraints described in Section 5, namely, instantaneous, continuous, and
guard constraints. We describe a phase of continuous changes between two
discrete changes as an HCS.

• We propose a set of algorithms for checking the satisfiability of the encoded
formula (Section 6.3). The algorithms work tightly with (i) a SAT solver
that enumerates possible sets of constraints, and (ii) a theory solver based
on the HCS solver that simulates a phase of continuous change. Basically,
the SAT solver enumerates a candidate set of constraints of which the
satisfiability is checked using the theory solver. The theory solver helps
the SAT solver decide whether a discrete change should occur, since the
decision is confirmed by simulating continuous changes that may cause the
discrete change. The theory solver often restarts a simulation to refine the
accuracy of over-approximation by dividing an initial interval value. In our
method, the SAT solver manages the tree of divided initial values.

• In the proposed algorithms, the theory solver efficiently computes a set of
boxes that enclose a counter-example by using the interval Newton method.
Ordinary over-approximation methods do not necessarily guarantee that a
computed enclosure contains a counter-example. In contrast, the HCS
solver we adopt guarantees the existence of a unique solution in a result
when the checking of certain conditions succeeds. This work focuses on
the search of such sets of boxes in which a unique counter-example exists.
When the algorithms fail to find such sets of boxes, we can still prove
that the model has no counter-example by exhaustively searching the rest
of the state space. When a check certainty succeeds, useful results can
be obtained, such as “an over-approximation containing a unique counter-
example,” and “an initial box certainly reaching the unsafe region.”

We have implemented the proposed method as a tool called hydlogic (Sec-
tion 6.4), and used it to analyze several examples including those with nonlinear
constraints (Section 6.5).

6.1 Constraint-based Representation of Hybrid Systems
We describe hybrid systems with unsafe states as predicate logic formulas that
involve constraints in HCSs (Section 5.2). We explain how a reachability problem
of an HA is translated into satisfiability checking of a formula. This encoding
method is a modification of the former methods [4, 23].

– 70 –

6.1 Constraint-based Representation of Hybrid Systems

6.1.1 Encoding RTTSs

Before describing how we encode HA, we present how to encode a k-step execution
of RTTSs (Definition 16) into a logic formula. Such an execution is of the form

s0 t1→ s1
−

0→ s1 t2→ · · · tk

→ sk
−

0→ sk, (6.1)

where, for i ∈ {1, . . . , k},

• s0, si, si
− ∈ S and ti ∈ R>0,

• (si
−

0→ si) ∈ T corresponds to a discrete change, and

• (si−1 ti

→ si) ∈ T corresponds to a continuous change.

In the following, we call the pair of adjacent transitions si−1 ti

→ si
−

0→ si the i-th
step of an execution.

Definition 32 A k-step execution of an RTTS S = 〈S, T ,S0〉 is encoded into a
formula [[S]]k as follows:

1. Prepare the following variables:
• (k+1) Boolean variables bi

s (i ∈ {0, . . . , k}) for each state s ∈ S repre-
senting whether the state is activated in the i-th step.

• k variables ti over R>0 (i ∈ {1, . . . , k}) representing the duration be-
tween each two discrete changes.

2. The following formula expresses that a unique state in S is activated in the
i-th step

UQ i =
⊗
s∈S

bi
s,

where ⊗ means that exactly one of the arguments is true.
3. Let s, s′, and s′− be states in S. We describe that whenever two variables

bi−1
s and bi

s′ are true, there should be transitions s
ti

→ s′−
0→ s′ (ti ∈ R>0)

TRANS i =
∧

s,s′∈S

(bi−1
s ∧ bi

s′) ⇒ ((s ti

→ s′−) ∈ T ∧ (s′−
0→ s′) ∈ T).

Note that the encoding method for (s ti

→ s′−) ∈ T and (s′−
0→ s′) ∈ T is

not detailed here. We later describe the encoding method for HA.

– 71 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

4. Finally, we describe the initial state, and conjunct all the above formulas.

[[S]]k =
∨

s0∈S0

bs0 ∧ UQ0 ∧
k∧

i=1

(UQ i ∧ TRANS i).

Satisfiability of the formula translated from an RTTS corresponds to whether an
execution exists that is consistent with the RTTS’s specification.

Lemma 5 For an RTTS S, suppose [[S]]k is a formula encoded as described
above. If [[S]]k is satisfiable by a valuation that enables the Boolean variables
b0
s0 , b1

s1 , . . . , bk
sk corresponding to the states in S, and assigns real numbers to the

variables t1, . . . , tk, then an execution exists in the form of Equation 6.1. If [[S]]k

is unsatisfiable, S permits no execution.

Proof. Straightforward from Definition 16.

6.1.2 Encoding Method for HA

Here, we consider a k-step execution of an HA (Lemma 3) of the form

〈q0, x0〉 t1→ 〈q0, x1
−〉

0→ 〈q1, x1〉 t2→ · · · tk

→ 〈qk−1, xk
−〉

0→ 〈qk, xk〉.

Each element in the above execution is specified as follows (i ∈ {1, . . . , k}):

• q0, qi ∈ Q, x0, xi, xi
− ∈ Rn, and ti ∈ R>0.

• 〈q0, x0〉 is implied by (q0, X ′) = Init and x0 ∈ X ′.
• For a discrete change 〈qi−1, xi

−〉
0→ 〈qi, xi〉, (qi−1, qi) ∈ E , grd (qi−1,qi)(xi

−)
= 0, xi = rst (qi−1,qi)(xi

−), and xi ∈ Invqi should hold.

• For a continuous change 〈qi−1, xi−1〉 ti

→ 〈qi−1, xi
−〉, a discrete state qi−1

specifies a vector field fqi−1 . Then, a continuous trajectory φ : [0, ti] → Rn

is determined with the ODE φ̇(τ) = fqi−1(φ(τ)) ∧ φ(0) = xi−1. Since fqi−1

is Lipschitz continuous, a unique trajectory is determined by the IVP-ODE.
For all t ∈ (0, ti), φ(t) ∈ Invqi−1 should hold. xi

− is obtained as φ(ti).

Now we describe how we can encode a k-step reachability to unsafe states of
an HA, i.e., k-step unsafety (Definition 23), into a predicate logic formula. In

– 72 –

6.1 Constraint-based Representation of Hybrid Systems

the encoded formula, we utilize the constraint cnt(t, x−) that corresponds to a
continuous constraint cc of HCSs (Definition 29), which is defined as follows:

cnt(t, x−) ≡ ∀τ ∈ [0, tmax] (ẏ(τ) = f (y(τ))) ∧ (y(t) = x−),

where t, x−, and y are variables ranging over R>0, Rn, and R≥0 → Rn, respec-
tively, f is a function Rn → Rn, and tmax is a constant in R>0.

Definition 33 (encoding method for HA) Given an HA S = 〈Q, Rn, E ,F ,
I,G,R, Init〉, a k-step execution of S is encoded as a formula [[S]]k as follows:

1. Prepare the following variables:
• (k+1) Boolean variables bi

q (i ∈ {0, . . . , k}) for each discrete state q ∈ Q
representing whether the state is activated in the i-th step.

• k Boolean variables bi
e (i ∈ {1, . . . , k}) for each discrete state transition

e ∈ E representing the activation of the transition.
• (k+1) variables xi (i ∈ {0, . . . , k}) and k variables xi

− (i ∈ {1, . . . , k})
over n-real vectors representing the continuous state after the i-th tran-
sition and before the i-th transition, respectively.

• k variables ti over R>0 (i ∈ {1, . . . , k}) representing the time at which
the i-th transition takes place.

• k variables xi
inv over n-dimensional real vectors and k variables tinv

over R≥0 (i ∈ {1, . . . , k}).
2. The following formulas express that a unique discrete state is activated and

a unique transition takes place in the i-th step

UQ i =
⊗
q∈Q

bi
q, UE i =

⊗
e∈E

bi
e,

where ⊗ means that exactly one of the arguments is true.
3. Let q be a discrete state specified in Init .1. The initial state is described

by the following formula

INIT = b0
q ∧ x0 ∈ Init .2.

4. Taking a discrete state transition e = (q, q′) ∈ E at step i implies enabling
the discrete states q at step (i − 1) and q′ at step i. Moreover, the guard
constraint should be satisfied by xi

−, and the initial state xi for the next step
is determined by the reset function (checking of the invariant is described

– 73 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

in the next step). For transitions in E , we describe the following formulas

EDGE i =
∧

e=(q,q′)∈E

(bi
e ⇒ (bi−1

q ∧ bi
q′)),

TRANS i =EDGE i ∧
∧
e∈E

(bi
e ⇒ (grde(x

i
−) = 0 ∧ xi = rste(xi

−))).

5. The following formula expresses the i-th continuous state evolution that
corresponds to the discrete state q determined in the (i − 1)-th step

CONT i =
∧
q∈Q

(bi−1
q ⇒ cnt i

q(t
i, xi

−)).

The invariant in the i-th step is described through the following formula

INV i =(cnt i
q(t

i
inv, x

i
inv) ∧ 0 ≤ tiinv ≤ ti ∧ xi

inv /∈ Invq) ⇒ ¬bi
q.

6. Finally, conjunct all the formulas described above. We also express that
the unsafety (to be falsified in model checking) holds. In this framework,
unsafety properties are represented as discrete states US ⊆ Q in a model.
For each variable bi

us corresponding to us ∈ US , we express that us will be
reached within the k-step execution

[[S]]k =INIT ∧ UQ0 ∧
k∧

i=1

(UQ i ∧ UE i ∧ TRANS i ∧ CONT i ∧ INV i)

∧
k∨

i=1

∨
us∈US

bi
us .

Lemma 6 For an HA, suppose [[S]]k is a formula encoded for k steps as described
above. If [[S]]k is unsatisfiable, then S is safe for its k-step execution.

Proof. The encoding method follows the translation scheme in Definition 20, and
the conditions in Lemma 3.

6.1.3 Encoding Method for Tiny HCC Programs

We can also consider to encode executions of Tiny HCC programs. To compute
an execution, we interpret the program for every step in the execution, while

– 74 –

6.2 Basic Procedure of Proposed Method

enumerating qualitatively different executions [48]. Interval-based interpretation
method for Tiny HCC based on the consistency techniques (Sections 3.3 and 5.4)
and entailment checking (Section 3.2) is described in Reference [49]. Enumeration
of different executions is done by the SAT solver as in the method for HA.

6.2 Basic Procedure of Proposed Method
In this section, we describe a lazy theorem proving method [19] that checks the
safety of a model S of an HA with unsafe regions. The pseudo-algorithm is
illustrated in Figure 6.1 showing the basic procedure of the method that checks
the satisfiability of the formula [[S]]k. Input to the algorithm is a model S and
a maximum number of steps k ∈ N to verify. The algorithm returns one of the
following values:

• sat (satisfiable);
• unsat (unsatisfiable); or
• unknown indicating that it cannot be decided whether the formula is

satisfiable or not (due to the too coarse initial condition).

When sat is returned, the existence of a counter-example, which signals the
unsafety of the systems, is guaranteed.

At line 1, the model S is encoded into [[S]]k. When reading a predicate logic
formula lf , the algorithm first translates lf into a propositional logic formula
bf by mapping each constraint in lf to a propositional variable (these maps are
preserved in a table), and then substitutes bf into P . A flag uk initialized at
line 2 indicates whether the satisfiability of the formula is decidable or not. Then
the SAT solver processes the proposition P and computes a valuation ν for the
propositional variables within them (line 4). If there is no valuation, the algorithm
terminates and returns unknown or unsat.

A valuation ν implies an initial domain D0,ν (i.e., a set of initial values) and a
trace γν (Definition 21) at line 7. Given an initial domain D0,ν and a trace γν , we
can compute an over-approximation Φ of the set of hybrid trajectories that are
sketched by D0,ν and γν , as described in Section 5.6.1. When the approximation
is guaranteed to contain a unique trajectory, the procedure returns sat (line 9).
When no trajectory exists with respect to D0,ν and γν , the procedure proceeds to
the next loop to deduce another trace (line 11). Otherwise, the procedure checks
whether the initial domain can be refined, and applies the refinement (line 14) or
not (line 16), before proceeding to the next loop.

– 75 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

Input: model S, maximum step k
Output: satisfiability sat ∈ {sat,unsat,unknown}
1: P := encode [[S]]k

2: uk := false
3: loop
4: ν := Solve(P)
5: if ν = false then
6: return uk ? unknown : unsat
7: Φ := compute the set of hybrid trajectories φ conforming to the initial

domain D0,ν and trace γν

8: if Φ contains a unique solution then
9: return sat

10: else if Φ = ∅ then
11: Continue()
12: else
13: if D0,ν can be refined then
14: P := P ∧ Refine(D0,ν); Continue()
15: else
16: uk := true; Continue()
17: endloop

Figure 6.1 Basic procedure of bounded reachability analysis.

6.3 Algorithms for Checking the Satisfiability
In this section, we propose a set of algorithms that is equivalent to the procedure
described in the previous section. The algorithms check the safety of a model S
of an HA with unsafe regions, and return sat, unsat, or unknown.

In the algorithms, we use interval-based techniques to deduce the satisfiability
of constraints in a formula by computing a set of boxes that may enclose the solu-
tion of the constraints. As in DPLL(T) [30], we tightly integrate a modern SAT
solver and the HCS solver described in Section 5.5. Our method incrementally
runs a SAT solver, for each step, to enumerate combinations of active constraints
in a formula, e.g. the discrete state to enable in the current step, the continuous
constraint in the discrete state, and the guard constraint for a possible transi-
tion from the current state. Then, the interval-based HCS solver computes an
enclosure of states that cause the next discrete change. With this result, the
algorithms check the consistency of the set of constraints for the current step.

– 76 –

6.3 Algorithms for Checking the Satisfiability

As in the previous work [15, 67, 28, 23], we dynamically refine an over-
approximation of continuous changes to obtain a more accurate enclosure.
Refinements are done by splitting one of the components of an initial boxed
value. The refined initial values are enumerated by the SAT solver. Refinements
are guided by whether or not computed intervals are proved to enclose a unique
solution, or whether or not an initial interval value is precise enough.

6.3.1 Incremental Solving

The IncSolve algorithm illustrated in Figure 6.2 checks the satisfiability of the
formula [[S]]k. At lines 1–2, the algorithm translates S into [[S]]k and reads the
subformula INIT ∧UQ0 describing the initial states into the proposition database
P (P is always modified by appending formulas).

In the loop starting from line 5, the algorithm incrementally checks the satisfi-
ability of [[S]]i for i ∈ {1, . . . , k}. At line 6, the subformulas UQ i, CONT i, INV i,
and EDGE i are read. Then the SAT solver processes the proposition P and
computes a valuation for the propositional variables within them (lines 7–10). If
there is no valuation, the algorithm terminates and returns unknown or unsat.
Note that TRANS i is not handled here. The algorithm returns sat if the current
discrete state is unsafe (line 12).

The decision of a discrete state transition e ∈ E to take place is computed in
the HcsPropag procedure described in the next section (line 14). For each e ∈ E
from the state qi, HcsPropag checks whether the transition will be enabled or
not, and returns a triple (rese, Be, qe) that consists of:

• the result rese of the check;
• a box enclosure Be of reachable continuous states that is consistent with

the guard constraint grde; and
• the next discrete state qe to proceed to.

At lines 15–26, the algorithm analyzes the results.

• When the box Be is guaranteed to contain a unique solution of grde, the
algorithm learns an initial condition for the next step and proceeds to the
next loop (line 17).

• When grde is unsatisfiable, the algorithm learns that it does not need to
re-check this transition in the sequel (line 20). This is effective when the
algorithm refines the initial domain and re-simulates the execution from
the domain.

• Otherwise, grde may be satisfied or may not. Thus, the algorithm tries
to refine the initial domain (see Section 6.3.3) at line 23. If it cannot be

– 77 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

Input: HA S, maximum step k
Output: satisfiability sat ∈ {sat,unsat,unknown}
1: encode S to obtain [[S]]k

2: P := INIT ∧ UQ0

3: uk := false
4: i := 1
5: while 1 ≤ i ≤ k do
6: P := P ∧ (UQ i ∧ UE i ∧ CONT i ∧ INV i ∧ EDGE i)
7: sat := Solve(P)
8: if ¬sat then
9: return uk ? unknown : unsat

10: (qi,Di−1, cnt i
qi , Invq) := collect true-valued constraints from P

11: if qi ∈ US then
12: return sat
13: E ′ := {(q, q′) ∈ E | q = qi}
14: {(rese, Be, qe)}e∈E′ := HcsPropag(E ′,Di−1, cnt i

qi , Invq)
15: for e ∈ E ′ do
16: if rese = true then
17: P := P ∧ ((qi+1 =qe) ⇒ (∀j∈{1, . . . , n} ((xi+1).j∈Rste(Be).j)))
18: else
19: if Be = ∅ then
20: P := P ∧ (¬e)
21: else
22: if ¬ (the initial domain is precise enough) then
23: P := Refine(P); i := 1;Continue()
24: else
25: uk := true; P := P ∧ (¬e)
26: endfor
27: i := i + 1
28: endwhile
29: return uk ? unknown : unsat

Figure 6.2 IncSolve algorithm.

refined, i.e., the initial domain is too coarse to divide, the algorithm turns
on the flag uk .

If there is no possible transition, the algorithm returns unknown or unsat (line
29).

– 78 –

6.3 Algorithms for Checking the Satisfiability

6.3.2 Propagation by Solving HCSs

The HcsPropag algorithm (Figure 6.3) computes a continuous state evolution
simultaneously evaluating the guard constraints to determine the next transition
to take place. This is done by constructing an HCS for each candidate transition,
and solving it with the method described in Section 5. The procedure is equivalent
to theory propagation in DPLL(T). The inputs consist of a set E of candidate
transitions, an initial domain D0 that describes an initial constraint (denoted by
Di−1 in IncSolve), a continuous constraint cntq, and an invariant Invq for the
current step.

The destination state qe and the guard constraint grde are given by a transition
e ∈ E (line 3). At line 5, an initial domain is prepared by setting a maximum
time interval beyond the initial time and the invariant box for the current state.

An HCS is solved at line 6 and a set of boxes are obtained as a result. Here, we
regard the process of solving HCSs described in Section 5.4 as a contracting map
SolveHCS : In+1 → P(In+1) that refines an input box into a set of boxes that
are appropriate for box-consistent HCSs. A resulting set of boxes is analysed at
lines 7–14. When a result is empty, the algorithm returns true and ∅ (line 8). As
described in Section 5.4, the SolveHCS process may guarantee that a box contains
a unique solution of the HCS. The algorithm returns true if the existence of a
solution is guaranteed, or false otherwise.

6.3.3 Over-approximation Refinement

The Refine procedure called from IncSolve tries to refine an over-
approximation by dividing the initial box and re-computing the over-
approximation for each of the divided boxes. In a refinement, an initial
box is divided along one of the components of the box (each time the component
is changed in a round-robin manner). In our method, we have a parameter
wmin ∈ R>0, and the width of component chosen above should be larger than
wmin. When an initial box is refined, the solver learns an additional formula on
the initial constraint. In the formula, we use Boolean variables id i (i ∈ N) which
give an identifier to each initial box. Beforehand, we give id0 to INIT by adding
the formula id0 ⇔ INIT to the proposition database P . Let D0 be an initial
boxed value, and assume that D0 is divided into boxes D0,1 and D0,2. Then, we
construct the following formula and add this to the solver.

– 79 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

Input: set E of transitions, initial domain D0, constraint cntq, invariant Invq

Output: set R of tuples (res, B, q) ∈ {true, false}×In×Q
1: R := ∅
2: for e ∈ E do
3: (qe, cg,e) := collect the destination state and the guard constraint of e
4: ci := construct an instantaneous constraint with respect to D0

5: B := (I0, . . . , In), where I0 = [0, tmax] and I1 × · · · × In = Invq

6: BS := SolveHCS (B), // see Section 5.4
where HCS = 〈x̃, I0×Invq, {cg}, 〈y,M(I0, Invq), {ci, cntq}〉〉

7: if BS = ∅ then
8: R := R ∪ {(false, ∅, qe)}
9: else

10: for B ∈ BS do
11: if B is proved to contain a solution then
12: R := R ∪ {(true, B, qe)}
13: else
14: R := R ∪ {(false, B, qe)}
15: endfor
16: return R

Figure 6.3 HcsPropag algorithm.

((id0 ∧ qi+1) ⇒ (id1 ⊕ id2)) ∧ (¬id1 ∨ ¬id2)

∧ (id1 ⇒ (x0 ∈ D0,1)) ∧ (id2 ⇒ (x0 ∈ D0,2)).

After a refinement, the Continue() command at line 23 of IncSolve restarts
the solving loop from step i = 1. Accordingly, one of the identifiers id1 and id2

is selected, and the computation of refined over-approximation starts. Note that
not id1 and id2 but id0 may be selected because a search along a different path
may be still on the way.

6.3.4 Example of Reachability Analysis

We describe how the proposed method verifies the hybrid system in Example
15. Here, we change the initial domain to (p, γ, c) ∈ [−1, 0]× [π/6, π/4]× [0].
Parameters are set as r = 2 and ω = π/4. Figures 6.4 and 6.5 illustrate the
computation.

– 80 –

6.3 Algorithms for Checking the Satisfiability

Figure 6.4 Process of solving car steering example.

• Figure 6.4 shows computed domains for p along the time line. The hori-
zontal line at t = 0 denotes the initial domains for p. The vertical lines
correspond to the boundary values for the discrete state transitions. Bend-
ing lines show the results of numerical computation using the boundary
values of the initial domain.

• Figure 6.5 illustrates the enumeration of refined initial domains and deci-
sions on transitions. Enumeration starts from the upper-left of the figure.
A simulation from an initial domain proceeds horizontally as directed by
the arrows. Each node is labeled by a tuple consisting of a result of a
guard constraint evaluation, a domain satisfying the guard constraint, and
the next state to transit. Refinements of the initial domains are shown by
the identifier numbers directed by the dotted arrows.

The computation proceeds as follows:

a. In the computation for the first step (i = 1), the initial state go ahead

– 81 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

id \ step 1 2 3 4

0
(true,D0,0,

go ahead)
(false ,D1,0,

left border)

(false , ∅,
right border)

1
(true,D0,1,

go ahead)
(true,D1,1,

left border)
(false,D2,0,

in canal)

(true,D2,1,

correct left)
(true,D3,0,

straight ahead)

2
(true,D0,2,

go ahead)
(false ,D1,2,

left border)
(false , ∅,

right border)

3
(true,D0,3,

go ahead)
(true,D1,3,

left border)
(false,D2,2,

in canal)

4
(true,D0,4,

go ahead)
(true,D1,4,

left border)
(true,D2,3,

in canal)

Figure 6.5 Enumeration of possible execution paths.

and the initial domain D0 = ([0, tmax], [−1, 0], [π/6, π/4], [0]) are activated
at line 10 of IncSolve based on a result of the SAT solver (we denote
D0 by D0,0 in the following, where an identifier for (refined) domains is
subscripted). Then, HcsPropag constructs HCSs with respect to the
state go ahead and the transitions from go ahead to left border and
right border. By solving these HCSs, HcsPropag computes the results
{(false,D1,0, left border), (false, ∅, right border)}. Since all the results
contain false, which means the existence of a solution is not proved, the
algorithm refines D0,0 to D0,1 and D0,2 by dividing the component [−1, 0]
for p into [−0.5, 0] and [−1,−0.5].

b. Subsequently, from the refined initial domain D0,1, HcsPropag com-
putes the result {(true,D1,1, left border)}. IncSolve proceeds to the
second step of the execution, and HcsPropag computes the results
{(false,D2,0, in canal), (true,D2,1, correct left)} from D1,1. Since
D2,0 is returned with false, D0,1 is refined into D0,3 and D0,4 along the

– 82 –

6.4 Implementation

component for γ, i.e., [π/6, π/4] into [π/6, 5π/24] and [5π/24, π/4] (Figure
6.4 (b) illustrates these domains). The algorithm also computes the
execution path that moves into correct left at step 3, and then reaches
straight ahead at step 4 of the execution.

c. From D0,2, the algorithm is still unable to decide whether the transition
to left border may be enabled or not. The algorithm applies another
refinement.

d. From D0,3, the algorithm computes the domain D2,2 without the guarantee
of existence, as in the computation from D0,1. Note that the execution
path from D2,2 to straight ahead is not computed here again, since the
existence of this path was learned in Step b.

e. Finally, from D0,4, the algorithm computes a counter-example guaranteed
to reach in canal at step 3 of the execution.

6.4 Implementation
We built a prototype implementation called hydlogic of the method described
in this chapter. hydlogic is implemented in OCaml, C, and C++, and consists
of about 2000 lines of code. Inputs to hydlogic are a textual description of an
HA, the maximum step k, and the threshold wmin for the refinement of initial
domains. hydlogic translates an input model into a formula as explained in
Section 6.1. Then, the core component checks the satisfiability of the formula by
the method in Section 6.3. hydlogic integrates the following external solvers.

• The Decision Procedure Toolkit (DPT) [32] is used as an incremental SAT
solver. DPT is an implementation of a DPLL-based SAT solver in OCaml.
It has a flexible API for adding clauses incrementally and controlling search
procedures.

• We use the implementation described in Section 5.5 for solving HCSs.

6.5 Experiments
We present experimental results for three examples. It shows how the complexity
scales by the unrolled execution steps, the size of models, and the size of boxes
given by initial constraints. We also compared the tool with HSolver [67] and
PHAVer [29]. Note that the experimentation here were done on a 2.4GHz Intel
Core 2 Duo processor with 4GB of RAM.

– 83 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

6.5.1 Car Steering Problem

Example 27 Consider the car steering problem given in Example 15. We first
analyzed the unsafety of the model. hydlogic took 692.74 seconds and 1716
times of refinements to prove the existence of a counter-example. We set the
minimum width wmin of the initial boxed values to 0.05, and the time domain I0

in the HCSs to [0, 3].
We then modified the guard constraint for the edge that enters in canal as p =

2, and analyzed the model again. hydlogic returned the result unknown in 91.88
seconds. Refinements were done 48 times. The result was unknown because we
could not prove the existence property for some of the guard constraints and
the initial values. For example, when the initial domain for p was [0, 0.05], the
existence of a solution to the guard constraint of left border was not proved. We
confirmed that all the evaluation of the transition to in canal had no solution.

We tried to solve the same instance of this problem by HSolver but the com-
putation did not terminate after 10 minutes (though HSolver could solve another
instance of the problem).

6.5.2 Navigation Benchmark

Example 28 We present results for the navigation benchmark problem
taken from References [29, 67]. This problem models an object at a position
(px(τ), py(τ)) ∈ R2 moving within a grid of n × n areas of size 1 × 1 (n ∈ N).
Each area in the grid determines the velocity (vx(τ), vy(τ)) of the object as

(v̇x(τ), v̇y(τ))T = A · ((vx(τ), vy(τ))T − vd),

where

A =
(
−1.2 0.1
0.1 −1.2

)
, vd = (sin(i · π/4), cos(i · π/4))T .

i ∈ {0, . . . , 7} is determined by the each area. The lower left corner area of the
grid has the coordinate (0, 0). We used a map specified by the following matrix

M =

U 2 4
4 3 4
2 2 U

 ,

where U denotes an unsafe region, and the other numbers indicate the values i of
the corresponding areas. We set the initial discrete state as the (1, 2) cell in the
grid, and set the initial values as (px,0, py,0, vx,0, vy,0) ∈ [0, 1]× [1, 2]× [0.5]× [0].

– 84 –

6.5 Experiments

We analyzed the reachability to the unsafe region using hydlogic. Parameters
were set as k = 4, wmin = 0.25, and tmax = 10. We proved the existence of an
execution from the initial state, where (px,0, py,0) ∈ [0.25, 0.5]× [1.5, 1.75], to the
unsafe region at (3, 3). The analysis took 60.1 seconds and 34 refinements.

We then modified the initial condition for py to py,0 ∈ [1, 1.5], and tried to
find an execution path reaching to the unsafe region at (1, 1). We analyzed for
k ∈ {2, . . . , 7} and each computation returned unknown because there were
some guard constraints not guaranteed to be satisfied. We confirmed those guard
constraints are not for the boundary of the unsafe region. The computation took
37.93, 40.33, 43.46, 70.37, 70.36, and 70.38 seconds, respectively.
PHAVer could check the safety of several instances of this problem [29]. An

advantage of hydlogic is that it can prove the existence of an execution reaching
the goals specified as unsafe areas. As previously experimented [67], HSolver
could not solve this problem.

6.5.3 Tunnel Diode Oscillator Circuit

Example 29 The third example taken from [29] models an RLC circuit involving
a tunnel diode. The two-dimensional continuous state (it , vt) ∈ R2 expresses the
current it through the inductor and the voltage drop vt of the tunnel diode. The
vector fields are given by(

v̇t(τ)
i̇t(τ))

)
=

(
(−itd · vt(τ) + it(τ)) · 1012

(−vt(τ) − 200 · it(τ) + 0.3) · 106

)
,

where

itd =



6.0105 · vt(τ)3 − 0.9917 · vt(τ)2 + 0.0545 · vt(τ)
if vt(τ) ≤ 0.055 (q0),

0.0692 · vt(τ)3 − 0.0421 · vt(τ)2 + 0.004 · vt(τ) + 8.9579 · 10−4

if 0.055 ≤ vt(τ) ≤ 0.35 (q1),
0.2634 · vt(τ)3 − 0.2765 · vt(τ)2 + 0.0968 · vt(τ) − 0.0112

if 0.35 ≤ vt(τ) (q2, q3, q
′
3).

We describe the model as an HA, where each discrete state corresponds to an
equation for itd. In the experimentation, we unrolled the model for 7 steps and
tried to find an execution. We set the initial constraint as taking q3 for the discrete
state, and (it , vt) ∈ [0.0006]× [0.45] for the continuous state. hydlogic computed
an enclosure of an execution with the guarantee of the existence. It took 4332

– 85 –

Chapter 6 Bounded Reachability Analysis of Hybrid Systems

seconds. Most of the cputime was spent on the computation by VNODE-LP to solve
the ODEs because VNODE-LP could only take small time steps (around 10−8) in
its iterative computation.

Reference [29] reported that PHAVer took a model, which was linearized be-
forehand, and proved that the continuous state stayed within a certain region.
HSolver also solved a reachability problem based on this example in a reasonable
time [67]. Our method might solve reachable sets more efficiently by applying
recent techniques for solving ODEs with uncertain initial domains. By detecting
that a box enclosure of a state in an execution is included in the initial domain,
we can verify the safety for the infinite steps.

– 86 –

Chapter 7

Related Work

In this chapter, we first overview the existing work on the reliable detection of
discrete changes in comparison with our interval-based technique for solving HCSs
(Section 7.1). Next, we describe related work on the modeling frameworks for
hybrid systems (Section 7.2). Finally, we discuss methods for reachability analysis
(Section 7.3).

7.1 Detection of Discrete Changes
As pointed out by Carloni et al. [12], simulators for hybrid systems based on
numerical methods often compute qualitatively wrong results even for simple
models such as the bouncing particle. We contend that interval-based techniques
that guarantee the existence of a solution provide a reliable framework for the
problems.

Several techniques have been proposed that tackle difficulties in numerical com-
putation [14, 10, 64, 24]. Most of these techniques are based on the discontinuity
locking approach, which is an iterative method as follows. First, a system is in-
tegrated by “locking” the definition of the derivative. Second, after each step of
the integration, it is determined whether the result signals an event occurrence
with respect to a guard constraint. If so, the exact time of occurrence is searched
(e.g., by an interpolation procedure). These numerical techniques are aimed at a
slightly different goal than our own. The techniques output floating-point num-
bers that seem not to be completely incorrect, but contain some errors, while our
technique outputs a complete enclosure of a solution. Moreover, these techniques
do not consider uncertainties in a problem.

Park and Barton [64] handled the discontinuity sticking problem, which was
the problem of detecting the same discrete event right after a discrete change
because of computation errors. They introduced into the detection process the

– 87 –

Chapter 7 Related Work

interval Newton method to guarantee the existence of a single event within a
time interval. However, the guarantee existed only for interpolation polynomials
reduced from the original systems.

More recently, Esposito and Kumar [24] proposed a robust technique based
on extrapolation polynomials that could detect a discrete change occuring in the
vicinity of a model singularity. Our method fails to handle these problems because
the underlying ODE solver fails to guarantee the existence of a solution when the
vector field is ill-defined.

Another study on the reliable detection of discrete changes was done in the
context of model checking to over-approximate the reachable regions of models.
We will discuss this work in Section 7.3.1.

7.2 Modeling Languages for Hybrid Systems

7.2.1 Relationship between HA and HCC

In Section 4, we have not shown the relationship between the two frameworks HA
and (Tiny) HCC. An example that simulated an execution of an HA by an HCC
program was shown [13]. However, the translation method used in the example
did not simulate every execution of the HA (with respect to an uncertain initial
value and non-determinism in the evaluation of guard constraints).

Falaschi [26] proposed a translation method from HCC into HA. Although the
method was designed for generic HCC programs, the translation was only for
bounded executions of HCC programs.

7.2.2 Constraint-based Languages

HCC, which was introduced in Section 4.3, was developed as an extension to the
generic concurrent constraint programming framework [71]. Another generic lan-
guage scheme of constraint programming is constraint logic programming (CLP).
Hickey and Wittenberg [46] presented an approach using the CLP(F) language,
which could describe analytic relations between real variables and functions. The
implementation of CLP(F) supported interval arithmetic. However, the suppres-
sion of interval divergence in computing discrete changes was not considered.

7.3 Reachability Analysis of Hybrid Systems
Model checking techniques for hybrid systems have been developed diligently for
nearly two decades [3, 76, 12]. Much of the existing work related more or less to

– 88 –

7.3 Reachability Analysis of Hybrid Systems

the reachability analysis of models. Such methods were well described as the CE-
GAR (counter-example guided abstraction refinement) framework [15] in which
two procedures were integrated: abstraction of models (i.e., over-approximation
of continuous states); and reasoning on the abstracted models.

In the following sections, we first overview methods that simulate the contin-
uous behavior of models by computing the over-approximation (Section 7.3.1).
Secondly, for an instance of the reasoning part of the model checking framework,
we describe the existing SMT-based frameworks for verifying hybrid systems (Sec-
tion 7.3.2).

7.3.1 Over-Approximation-based Simulation

Nedialkov and von Mohrenschildt [61] and Ramdani and Nedialkov [66] proposed
interval-based methods for simulating hybrid systems. These methods have been
developed on top of the interval-based VNODE method (Section 2.3), on which
our method also depends. The former method [61] was limited in efficiency and
the handling of nonlinear guard conditions. The successive work [66], which was
recently proposed, handled HA that involved nonlinear constraints, including
ODEs, invariant constraints, and guard constraints. This work presented a tech-
nique based on intervals and constraint programming to detect discrete changes
with respect to continuous trajectories and guard (or invariant) constraints. How-
ever, they did not show the details on the constraint-based technique. Our tech-
nique (Section 5.4) adopts the interval Newton method, and has an advantage in
its efficiency and guarantee of the existence of a unique solution.

Various safety verification techniques that abstract continuous state space by
over-approximations have been developed [3, 76]. Some of the techniques rep-
resented the state space by a set of boxes [78, 45, 67, 22], and other techniques
represented the state space by polyhedra [75, 15, 29]. Most of these techniques
were developed in the CEGAR-like frameworks that repeatedly refined over-
approximations in the verification. Hereafter, we review other approaches that
explicitly compute over-approximation in which accuracy is considered in some
sense (e.g., the maximal width of a box).

Janssen et al. [50], Cruz [17], Lin and Stadtherr [53], Ramdani et al. [65],
and others have applied constraint programming techniques to the interval-based
solving of ODEs, which compute the over-approximation of the possible continu-
ous trajectories. Their frameworks allowed the use of parameters in ODEs as well
as the addition of various constraints, such as value-restriction constraints [17].
Although these frameworks did not handle constraints equivalent to the guard
constraints in this study, the frameworks could be integrated with ours.

Polytopes provide efficient representations of the continuous states of hybrid

– 89 –

Chapter 7 Related Work

systems. For example, Girard et al. [31] proposed a method based on zonotopes,
Sankaranarayanan et al. [70] proposed a method called template polyhedra, and
Collins and Goldsztejn [16] proposed a hybrid method of intervals and polytopes
to suppress the wrapping effect. Integration of interval-based and polytope-based
methods is a future research topic.

In many of the above methods, models are described by HA. Discrete changes in
HA are detected by intersecting a reachable region of continuous trajectories, an
invariant constraint of a discrete state, and a guard constraint. The computation
is rather simple compared to the detection methods for the forward simulation
of hybrid systems (e.g., the detection of the earliest discrete change described in
Section 5.4.4).

7.3.2 SMT-based Bounded Model Checking

Fränzle and others [28] proposed an SMT framework that integrated SAT solving
techniques and interval-based consistency techniques for real constraints. Their
method brought useful approaches in SAT solving (e.g., conflict-driven learning
and non-chronological backtracking) into the interval constraint solving. Inte-
gration of the SAT and interval-based solvers in our method is still limited, and
could be improved to integrate more tightly.

Eggers et al. [23] used an interval-based solver for ODEs in the above SMT
framework for the bounded model checking of HA. However, their method did not
support either nonlinear ODEs or nonlinear guard constraints. Their method was
also limited in its integration with the SMT framework. The method collected
ODEs and solved them in a round-robin manner. Our method solves ODEs
incrementally, while the SMT framework unrolls an execution path. To certify
the result and reduce the search space, our method utilizes the existence property
of a unique solution obtained by the interval-based solver.

Ratschan et al. [67, 22] proposed to translate a safety verification problem
of a hybrid system into a constraint satisfaction problem. They also provided
an interval-based implementation of the method that supported nonlinear con-
straints. Their method was not an SMT framework, but was based on a specific
set of complex constraints. Our method provides a simpler and more modular
SMT framework that uses generic solvers for (nonlinear) equations and ODEs.

Also, other methods were proposed including a method based on quantifier
elimination techniques to verify hybrid systems described by inductive invariants
[37], and a method based on convex programming that addressed the bounded
model checking of a class of nonlinear HA [11].

– 90 –

Chapter 8

Conclusion and Future Work

8.1 Conclusion
The main contribution of this thesis is that we have provided a reliable framework
for the simulation and verification of nonlinear hybrid systems (Chapter 4) based
on interval analysis (Chapter 2) and numerical constraint programming (Chapter
3).

HCSs in Chapter 5 formalize the problem of detecting discrete changes in the
executions of hybrid systems, based on constraints whose domains are real num-
bers and trajectories over time. We revealed some relations between RCSs, CCSs,
and HCSs by defining CCSs and HCSs based on the definition of RCSs. We also
extended the box-consistency notion that approximates the solutions of RCSs
for applying to HCSs. This formalism provides a basis for the discussion on the
modeling languages in Chapter 4 and 6.

Our proposed technique for solving HCSs efficiently computes tight and vali-
dated box enclosures of solutions. The interval Newton method we applied ac-
celerates the reduction of input box enclosures. This method may provide a
guarantee of the existence of a solution within an enclosure of the solution, which
helps enable the reliable analysis of hybrid systems in Chapter 6.

In Chapter 4, we described the semantics of two modeling languages HA and
Tiny HCC. We provided a scheme for translating models in these languages into
RTTSs, and also sketched executions of the models as hybrid trajectories.

Based on the contributions above, we have developed a framework for the
bounded model checking and the reliable simulation of nonlinear hybrid systems
(Chapter 6). The hydlogic tool takes an HA as an input and analyzes the
bounded reachability of the input model. Computation by the tool is based on
an SMT approach that translates a model into a predicate logic formula involving
constraints of HCSs. The hydlogic tool enumerates the conjunctions of HCSs

– 91 –

Chapter 8 Conclusion and Future Work

that is deduced from the original formula, and examines the satisfiability by our
interval-based solver for HCSs.

8.2 Future Work

8.2.1 Generalization of HCSs

HCSs can be generalized by handling continuous evolutions not only over time,
but also over multidimensional axes. Interesting applications of this approach
include systems biology. Although our problems are described as initial value
problems, we could also consider problems that involve multiple boundary con-
ditions.

Our technique for solving HCSs can be improved in various ways. Since our
technique handles only small uncertainties in initial boxed values, more efficient
methods for enclosing continuous trajectories are needed. A possible approach is
to overcome the wrapping effect in computation by improving the the represen-
tation of uncertain values (e.g., by polytopes). There have been recent develop-
ments in solving ODEs with uncertainties (e.g., References [53, 65]), which we
could adopt them as solvers for CCSs.

8.2.2 Development of the Modeling Languages

Translations between HA and HCC programs, as well as bisimulation equivalence
between (the subsets of) the two could be discussed. Our method handles Tiny
HCC that contains a minimal set of HCC constructs, while HCC has various
extensions such as variable hiding, and default constraints [40]. Recently, as a
successor of HCC, the HydLa language has been proposed [79]. HydLa supports
constraint hierarchies to facilitate the construction of well-defined models (e.g.,
not over- or under-constrained), which we have found is often difficult in the
modeling.

8.2.3 Towards More Powerful Tools

The procedure of bounded model checking methods coincides with mathematical
induction by showing the existence of bounded executions (i.e., the base case),
and then proving the existence of a loop in the executions. To detect such a loop
by the hydlogic tool, a model should exhibit strong contraction of reachable
regions. We consider that some transformations on the models are needed, so
that a broader class of problems can be regarded as contracting systems.

The implementation of hydlogic could be improved in various ways. For ex-

– 92 –

8.2 Future Work

ample, the interval-based constraint solving can be accelerated by propagating re-
duced intervals between the different computation steps in iterative reasoning [28].
We can also improve the refinement method by utilizing backward-reachability
computation from the unsafe region. Another direction is to combine multiple
theory solvers for various classes of numeric constraints. For example, combining
techniques such as linear programming and formula manipulation with interval-
based solvers will be a reasonable approach to many problems.

– 93 –

Bibliography

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[2] R. Alur, T. Dang, J. Esposito, R. Alur, Y. Hur, F. Ivancic, V. Kumar, I. Lee,
P. Mishra, G. J. Pappas, and O. Sokolsky. Hierarchical hybrid modeling of
embedded systems. In Proc. of the First International Workshop on Embedded
Software, LNCS 2211, pages 14–31. Springer-Verlag, 2001.

[3] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstrac-
tions of hybrid systems. In Proc. of the IEEE, volume 88, pages 971–984,
2000.

[4] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial
hybrid systems with MathSAT. Electronic Notes in Theoretical Computer
Science, 119(2):17–32, 2005.

[5] F. Benhamou. Interval constraint logic programming. In Selected Papers
from Constraint Programming: Basics and Trends, LNCS 910, pages 1–21.
Springer-Verlag, 1994.

[6] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising hull
and box consistency. In Proc. of the 16th International Conference on Logic
Programming (ICLP’99), pages 230–244, 1999.

[7] F. Benhamou and L. Granvilliers. Continuous and interval constraints. Hand-
book of Constraint Programming, pages 571–604, 2006.

[8] F. Benhamou, D. McAllester, and P. van Hentenryck. CLP(intervals) revis-
ited. In Proc. of the 1994 International Symposium on Logic Programming,
pages 124–138. MIT Press, 1994.

[9] F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer,
and boolean constraints. Journal of Logic Programming, 32(1):1–24, 1997.

[10] L. G. Birta, T. I. Oren, and D. L. Kettenis. A robust procedure for discon-
tinuity handling in continuous system simulation. Transactions of the Society
for Computer Simulation International, 2(3):189–205, 1985.

[11] L. Bu, J. Zhao, and X. Li. Path-oriented reachability verification of a class of
nonlinear hybrid automata using convex programming. In Proc. of Verifica-

– 95 –

Bibliography

tion, Model Checking, and Abstract Interpretation (VMCAI’10), LNCS 5944,
pages 78–94. Springer-Verlag, 2010.

[12] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Angiovanni-Vincentelli.
Languages and tools for hybrid systems design. Foundations and Trends in
Electronic Design Automation, 1:1–193, 2006.

[13] B. Carlson and V. Gupta. The hcc programmer’s manual. http://www-cs-
students.stanford.edu/˜vgupta/hcc/papers.html, 1997.

[14] M. B. Carver. Efficient integration over discontinuities in ordinary differential
equation simulations. Mathematics and Computers in Simulation, XX:190–
196, 1978.

[15] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald.
Verification of hybrid systems based on counterexample-guided abstrac-
tion refinement. In Proc. of the 9th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’03),
LNCS 2619, pages 192–207. Springer-Verlag, 2003.

[16] P. Collins and A. Goldsztejn. The reach-and-evolve algorithm for reachabil-
ity analysis of nonlinear dynamical systems. In Proc. of the second Workshop
on Reachability Problems, volume 223 of Electronic Notes in Theoretical Com-
puter Science, pages 87–102, 2008.

[17] J. Cruz. Constraint Reasoning for Differential Models. IOS Press, 2005.
[18] P. J. L. Cuijpers and M. A. Reniers. Lost in translation: Hybrid-time flows vs

real-time transitions. In Proc. of the 11th International Conference on Hybrid
Systems: Computation and Control (HSCC’08), LNCS 4981, pages 116–129.
Springer-Verlag, 2008.

[19] L. M. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded
model checking over infinite domains. In Proc. of the 18th International
Conference on Automated Deduction, volume 2392, pages 438–455. Springer-
Verlag, 2002.

[20] R. Dechter. Constraint Processing. Elsevier, 2003.
[21] Dynasim AB. Dymola. http://www.dynasim.se/.
[22] T. Dzetkulic and S. Ratschan. How to capture hybrid systems evolution into

slices of parallel hyperplanes. In Preprints of the third IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS’09), pages 274–279, 2009.

[23] A. Eggers, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT
approach to hybrid systems. In Proc. of the 6th International Symposium on
Automated Technology for Verification and Analysis (ATVA’08), LNCS 5311,
pages 171–185. Springer-Verlag, 2008.

[24] J. M. Esposito and V. Kumar. A state event detection algorithm for numer-
ically simulating hybrid systems with model singularities. ACM Transactions
on Modeling and Computer Simulation, 17(1):1–22, 2007.

– 96 –

[25] D. Eveillard, D. Ropers, H. de Jong, C. Branlant, and A. Bockmayr. A
multi-scale constraint programming model of alternative splicing regulation.
Theoretical Computer Science (Computational Systems Biology), 325(1), 2004.

[26] M. Falaschi, A. Policriti, and A. Villanueva. Time limited model checking.
In Proc. of International Workshop on Specification Analysis and Validation
for Emerging Technologies in Computational Logic (SAVE’01), 2001.

[27] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design,
30(3):179–198, 2006.

[28] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solv-
ing of large non-linear arithmetic constraint systems with complex boolean
structure. Journal on Satisfiability, Boolean Modeling and Computation,
1:209–236, 2007.

[29] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech.
International Journal on Software Tools for Technology Transfer (STTT),
10(3):263–279, 2008.

[30] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures. In Proc. of the 16th International Confer-
ence on Computer-Aided Verification (CAV’04), LNCS 3114, pages 175–188.
Springer-Verlag, 2004.

[31] A. Girard and C. L. Guernic. Zonotope/hyperplane intersection for hybrid
systems reachability analysis. In Proc. of the 11th International Conference
on Hybrid Systems: Computation and Control (HSCC’08), LNCS 4981, pages
215–228. Springer-Verlag, 2008.

[32] A. Goel and J. Grundy. Decision Procedure Toolkit (version 1.2).
http://dpt.sourceforge.net/, 2008.

[33] F. Goualard. Gaol: NOT Just Another Interval Library (version 2.0.2).
http://sourceforge.net/projects/gaol/, 2006.

[34] L. Granvilliers. RealPaver. http://www.sciences.univ-
nantes.fr/info/perso/permanents/granvil/realpaver/.

[35] L. Granvilliers and F. Benhamou. RealPaver: an interval solver using con-
straint satisfaction techniques. ACM Transactions on Mathematical Software,
32(1):138–156, 2006.

[36] L. Granvilliers and V. Sorin. Elisa (version 1.0.4).
http://sourceforge.net/projects/elisa/, 2005.

[37] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid
systems. In Proc. of the 20th International Conference on Computer Aided
Verification(CAV’08), LNCS 5123, pages 190–203. Springer-Verlag, 2008.

[38] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards formal verification of
analog designs. In Proc. of the International Conference on Computer-Aided

– 97 –

Bibliography

Design (ICCAD’04), pages 210–217, 2004.
[39] V. Gupta, R. Jagadeesan, and V. A. Saraswat. Computing with continuous

change. Science of Computer Programming, 30(1-2):3–49, 1998.
[40] V. Gupta, R. Jagadeesan, V. A. Saraswat, and D. Bobrow. Programming in

hybrid constraint languages. In Hybrid Systems II, LNCS 999, pages 226–251.
Springer-Verlag, 1995.

[41] W. Hartong, L. Hedrich, and E. Barke. Model checking algorithms for analog
verification. In Proc. of the 39th annual Design Automation Conference, pages
542–547. ACM, 2002.

[42] T. A. Henzinger. The theory of hybrid automata. Verification of Digital
and Hybrid Systems, NATO ASI Series F: Computer and Systems Sciences,
170:265–292, 2000.

[43] T. A. Henzinger, P-H. Ho, and H. Wong-Toi. HyTech: A model checker
for hybrid systems. International Journal on Software Tools for Technology
Transfer (STTT), 1:110–122, 1997.

[44] T. A. Henzinger, P-H. Ho, and H. Wong-Toi. Algorithmic analysis of non-
linear hybrid systems. IEEE Transactions on Automatic Control, 43:540–554,
1998.

[45] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond
HyTech: hybrid systems analysis using interval numerical methods. In Proc.
of the third International Workshop on Hybrid Systems: Computation and
Control (HSCC’00), LNCS 1790, pages 130–144. Springer-Verlag, 2000.

[46] T. J. Hickey and D. K. Wittenberg. Rigorous modeling of hybrid systems
using interval arithmetic constraints. In the 7th International Workshop on
Hybrid Systems: Computation and Control (HSCC’04), LNCS 2993, pages
402–416. Springer-Verlag, 2004.

[47] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, 2008.
[48] D. Ishii, K. Ueda, and H. Hosobe. A branching approach to the interval-

based evaluation of ask constraints in Hybrid CCP. In Proc. of CP’07 Doctoral
Programme, pages 49–54, 2007.

[49] D. Ishii, K. Ueda, and H. Hosobe. An interval-based approximation method
for discrete changes in Hybrid cc. In Trends in Constraint Programming (Post-
Proceedings of the CP’06 Workshops), pages 245–255. ISTE, 2007.

[50] M. Janssen, P. Van Hentenryck, and Y. Deville. A constraint satisfaction
approach for enclosing solutions to parametric ordinary differential equations.
SIAM Journal on Numerical Analysis, 40(5):1896–1939, 2002.

[51] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.
Springer-Verlag, 2001.

[52] O. Knueppel, D. Husung, and C. Keil. PROFIL/BIAS (version 2.0.8).
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html, 2009.

– 98 –

[53] Y. Lin and M. A. Stadtherr. Fault detection in continuous-time systems
with uncertain parameters. In Proc. of the American Control Conference
(ACC’07), pages 3216–3221, 2007.

[54] J. Lunze and F. Lamnabhi-Lagarrigue. Handbook of Hybrid Systems Control:
Theory, Tools, Applications. Cambridge University Press, 2009.

[55] The MathWorks. MATLAB/Simulink/Stateflow.
http://www.mathworks.com/products/simulink/.

[56] G. Melquiond, H. Brönnimann, and S. Pion.
Boost interval arithmetic library (version 1.34.0).
http://www.boost.org/doc/libs/1 34 0/libs/numeric/interval/doc/interval.htm,
2006.

[57] R. E. Moore. Methods and applications of interval analysis, volume 2 of
Studies in Applied Mathematics. SIAM, 1979.

[58] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval
Analysis. SIAM, 2009.

[59] N. S. Nedialkov. VNODE-LP: a validated solver for initial value problems
in ordinary differential equations. Technical Report TR CAS-06-06-NN, Mc-
Master University, 2006.

[60] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of
initial value problems for ordinary differential equations. Applied Mathematics
and Computation, 105(1):21–68, 1999.

[61] N. S. Nedialkov and M. von Mohrenschildt. Rigorous simulation of hybrid
dynamic systems with symbolic and interval methods. In Proc. of the Amer-
ican Control Conference (ACC’02), volume 1, pages 140–147, 2002.

[62] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Uni-
versity Press, 1990.

[63] G. J. Pappas. Bisimilar linear systems. Automatica, 39(12), 2003.
[64] T. Park and P. I. Barton. State event location in differential-algebraic mod-

els. ACM Transactions on Modeling and Computer Simulation, 6(2):137–165,
1996.

[65] N. Ramdani, N. Meslem, and Y. Candau. Reachability of uncertain non-
linear systems using a nonlinear hybridization. In Proc. of the 11th Interna-
tional Conference on Hybrid Systems: Computation and Control (HSCC’08),
LNCS 4981, pages 415–428. Springer-Verlag, 2008.

[66] N. Ramdani and N. S. Nedialkov. Computing reachable sets for uncertain
nonlinear hybrid systems using interval constraint propagation techniques. In
Preprints of the third IFAC Conference on Analysis and Design of Hybrid
Systems (ADHS’09), pages 156–161, 2009.

[67] S. Ratschan and Z. She. Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Transactions on Embedded

– 99 –

Bibliography

Computing Systems (TECS), 6(1)(8), 2007.
[68] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming.

Elsevier, 2006.
[69] S. M. Rump. INTLAB - INTerval LABoratory. In Developments in Reliable

Computing, pages 77–104. Kluwer, 1999.
[70] S. Sankaranarayanan, F. Ivancic, and T. Dang. Symbolic model checking of

hybrid systems using template polyhedra. In Proc. of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08), LNCS 4963, pages 188–202. Springer-Verlag, 2008.

[71] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of
concurrent constraint programming. In Proc. of the 18th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’91),
pages 333–352, 1991.

[72] A. J. van der Schaft. Bisimulation of dynamical systems. In Proc. of the
7th International Workshop on Hybrid Systems: Computation and Control
(HSCC’04), LNCS 2993, pages 555–569. Springer-Verlag, 2004.

[73] A. J. van der Schaft and H. Schumacher. An Introduction to Hybrid Dy-
namical Systems, volume 251 of Lecture Notes in Control and Information
Sciences (LNCIS). Springer-Verlag, 2000.

[74] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-physical systems:
a new frontier. Machine learning in cyber trust: security, privacy, and relia-
bility, pages 3–14, 2009.

[75] B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutinan. Modeling and
verification of hybrid dynamical system using checkmate. In Proc. of the 4th
International Conference on Automation of Mixed Processes, pages 323—328.
Shaker Verlag, 2000.

[76] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell. An assessment of the
current status of algorithmic approaches to the verification of hybrid systems.
In Proc. of the 40th IEEE Conference on Decision and Control, pages 2867–
2874, 2001.

[77] O. Stauning. FADBAD++ (version 2.0).
http://www.fadbad.com/fadbad.html, 2006.

[78] O. Stursberg, S. Kowalewski, I. Hoffmann, and J. Preusig. Comparing timed
and hybrid automata as approximations of continuous systems. In Hybrid
Systems IV, LNCS 1273, pages 361–377. Springer-Verlag, 1997.

[79] K. Ueda, D. Ishii, and H. Hosobe. A constraint-based modeling language for
hybrid systems. In Proc. of the fifth Symposium on System Verification, pages
1–6, 2008. (in Japanese)

[80] P. van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial sys-
tems using a branch and prune approach. SIAM Journal on Numerical Anal-

– 100 –

ysis, 34(2):797–827, 1997.
[81] P. van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Lan-

guage for Global Optimization. MIT Press, 1997.
[82] Wolfram Research. Mathematica (version 7.0).

http://www.wolfram.com/products/mathematica/index.html, 2009.

– 101 –

