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ABSTRACT
We propose a translation method from a constraint-based
language into real-time transition systems that are a tradi-
tional framework for formalizing HA. We discuss differences
between the two modeling languages with respect to the
translation method.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory

General Terms
Languages

1. INTRODUCTION
Modeling frameworks for hybrid systems [7] include equa-

tion-based (or constraint-based) languages [5] and hybrid au-
tomata (HA) [6]. This paper provides a translation method
(Section 4) from a constraint-based language called Tiny
HCC (Section 2) into a real-time transition system (Section
3), which is a traditional framework for describing the se-
mantics of HA [6, 2]. The translation allows developments
on the analysis of HA (e.g., nonzeno property [6], finite-set
refutability [2], and bisimulation analysis) to be extended
for Tiny HCC programs.

Figure 1 illustrates a model of a well-known bouncing par-
ticle in the Tiny HCC language. In this model, the one-
dimensional position and velocity of the particle are rep-
resented by real functions over time p, v : R≥0 → R. At
line 1, we bound the initial domain of p at time t = 0.
The hence P construct at lines 2–5 activates the inner sub-
program P over the time line for every t > 0. At line 3, we
describe a constraint to keep the value of p unchanged even
when a discrete change occurred. Constructs of the form
if C then P at lines 4 and 5 check whether the constraint
C is entailed by the constraint store, and when C is en-
tailed, interpret the sub-process P . The sub-process at line
4 involves a constraint that express the dynamics of the par-
ticle (we express the derivative dp(τ)/dτ by ṗ). A contact
of the particle with the ground is detected by the constraint
p− = 0 at line 5 (we express the left-hand limit limt↑τ p(t)
of p(τ) by p−), and the following sub-process describes an
instantaneous change of the velocity. We describe how an
execution of the model is formalized in Section 5.

An HA illustrated in Figure 2 also models the bouncing
particle. We describe differences between these two frame-
works in Section 6.

1: p > 0,
2: hence {

3: cont(p),
4: if p > 0 then {ṗ = v, v̇ = −1},
5: if p− = 0 then v = − 1

2
v− }

Figure 1: Bouncing particle in Tiny HCC.
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Figure 2: Bouncing particle in HA.

1.1 Related Work
Gupta et al. [4] proposed a translation method from and

to HCC (an extended Tiny HCC) and HA. An example that
simulated an HA by HCC (an extended Tiny HCC) was also
shown [1]. However, we consider the translation method is
not sufficient enough to compare the two languages because
the method only handles a variant of HA that is different
from HA described in this paper: discrete states involve
HCC programs; and a state transition should occur when-
ever a guard constraint is satisfied.

Falaschi et al. [3] described another translation method
from HCC into HA. The method first generates a graph
structure that expresses executions of an HCC program,
and then the method converts the structure into an HA.
The translation method seems to be insufficient because a
translation succeeds only when bounded structure can be
generated from a program. Moreover, only limited exam-
ples were considered. It is not clear whether the method
handles generic programs including a program with uncer-
tain parameters that may result in qualitatively different
executions.

2. HYBRID CONCURRENT CONSTRAINT
PROGRAMMING

Gupta et al. [5] proposed a programming language called
hybrid concurrent constraint programming (HCC). HCC de-
scribes hybrid systems in a declarative style using constraints
(i.e., partial information). Computation in HCC is per-



formed by (concurrent) processes that communicate with
each other in terms of constraints intermediated by a con-
straint store. Computation proceeds by accumulating con-
straints into the store, and by checking whether constraints
are entailed by the constraints in the store.

In this paper, we consider the Tiny HCC language, a small
subset of the full HCC constructs.

2.1 The Tiny HCC Language
The following is the syntax of Tiny HCC processes:

(process) P ::= C | if C then P | P,P | hence P | ε

(constraint) C ::= A | cont(V )

(expression) A ::= an arithmetic expression involving V

(variable) V ::= id | ˙id | id−

A tell process C adds the constraint C to a constraint
store, which is a conjunction of all the constraints given by
the tell processes. All variables in an expression A range
over real-valued functions over time R≥0 → R. A variable is
represented by an identifier id such as x (i.e., an abbreviation
for x(τ)). The constraint C held by the tell process is one
of the following kinds:

• instantaneous constraints of the form A not involving
variables of the form ˙id ;

• continuous constraints of the form A involving only
pure identifiers and ˙id as variables; or

• constraints of the form cont(V ) that propagate the
value of x−(τ) into the variable x(τ) in an execution
(this constraint was introduced in the existing imple-
mentation of HCC [1]).

An ask process, if C then P , contains a constraint C
called a guard constraint of the form A involving only pure
identifiers, or only id− as variables (an instance is denoted
hereafter by cg). When the entailment relation between the
constraint store and the guard constraint cg held by an ask
process is changed, a discrete change is triggered. In this
study, we consider the ask processes if cg then P formed
as follows:

• cg contains only variables of the form id−, and P con-
tains only instantaneous constraints; or

• cg contains only variables described by pure identifiers,
and P contains only tell processes that maintain con-
tinuous constraints.

A hence process hence P activates a process P along the
time line for all t > t0, where t0 is the time at which the
hence process is interpreted.

We consider Tiny HCC as a language scheme, and we do
not specify a class of expressions that describe constraints.

3. REAL-TIME TRANSITION SYSTEMS
Real-time transition systems (RTTSs) are transition sys-

tems in which transitions are labeled by positive real num-
bers that represent the duration of the transitions [2].

An RTTS is defined as a triple 〈S, T ,S0〉, where S is a
state space, T ⊆ S×R≥0×S is the time transition relation,
and S0 ⊆ S is a set of initial states. A transition (s, t, s′) ∈ T
is also denoted by s

t→ s′. The relation satisfies the following
conditions:

〈c, c′, H, m〉 ; 〈ε, c′ ∧ c, H, m〉 (1)

c `cg

〈(if cg then P ), c, H, m〉 ; 〈P, c, H, m〉 (2)

〈P1, c, H, m〉 ; 〈P ′
1, c

′, H ′, m〉
〈(P1,P2), c, H, m〉 ; 〈(P ′

1,P2), c′, H ′, m〉 (3)

〈(hence P ), c, H, c〉 ; 〈P, c, (H,hence P ), c〉 (4)

〈(hence P ), c, H,d〉 ; 〈ε, c, (H,hence P ),d〉 (5)

〈cont(xi), c, H, m〉 ; 〈cont(xi), c ∧ cont(xi), H, m〉 (6)

〈H, (x=v), ε, c〉 ∗
; 〈P, c, H ′, c〉, φ |= c,

t ∈ R>0, ∀t′∈(0, t)

(〈P, (x=φ(t′) ∧ x− =φ(t′)), ε,d〉 ∗
; 〈P, c′, ε,d〉)

〈H, v〉 t→ 〈(P,H ′), φ(t)〉
(7)

〈P, (x− =v−), ε,d〉 ∗
; 〈P ′, c, H,d〉, v |= c

〈P, v−〉
0→ 〈H, v〉

(8)

Figure 3: Translation rules from Tiny HCC into
RTTSs.

• Every transition s
t→ s′ with t > 0 can be split into

transitions s
t′→ s′′ and s′′

t′′→ s′, where t = t′ + t′′ and
t′, t′′ > 0.

• For every two transitions s
t→ s′ and s′

t′→ s′′ with

t, t′ > 0, there exists a transition s
t+t′→ s′′.

In an RTTS, we describe a discrete change from a state s ∈ S
to s′ ∈ S by s

0→ s′, and we describe a continuous change

from s to s′ with the duration of t ∈ R>0 by s
t→ s′.

4. TRANSLATION METHOD
We formalize the operational semantics of Tiny HCC by

means of translation into RTTSs. Gupta and others de-
scribed the formal denotational and operational semantics
of (default) HCC [5].

A program P in Tiny HCC is translated into an RTTS
〈S, T ,S0〉 as follows. We express the tuple of all pure identi-
fiers of variables appearing in a program by x = (x1, . . . , xn),
and the tuple of variables of the form id− corresponding to
x by x− = (x1−, . . . , xn−). We use the following tuples to
express states in S of the RTTS and states internally used
in transitions:

• Pairs 〈P, v〉 consisting of a Tiny HCC program P and
a value v in the continuous state space Rn. S is a set
of these pairs.

• Quadruples 〈P, c, H, m〉 consisting of a Tiny HCC pro-
gram P , a constraint store c, a Tiny HCC program
H to be interpreted in the next phase, and a flag for
switching between two modes {c,d}.



Before defining the transition relation T , we define a transi-
tion relation 〈P, c, H, m〉 ; 〈P ′, c′, H ′, m〉 by Rules (1)–(6)
in Figure 3 corresponding to each construct of Tiny HCC.
When these transition rules are examined in the premises of
Rules 7 and 8, the transitions are applied until no further
transitions can take place.

• Rule (1) describes the tell process that conjuncts an
atomic constraint c with the store c′.

• Rule (2) describes the ask processes. The guard con-
straint cg should be entailed (denoted by )̀ by the
store c to take out the process P .

• Rule (3) represents the parallel composition of pro-
cesses P1 and P2. We also consider the reduction of P2

in the same way.

• Rules (4) and (5) describe the hence P process that
expands the process P over the time line. It takes out
P to apply the reduction in a continuous change phase,
and just disappears in a discrete change phase. In each
phase, the process is copied into the third element to
continue the process in the next phase.

• Rule (6) describes the tell process of the constraint
cont(xi), where xi is an element of x. The process is
interpreted as in Rule (1), except for that it remains
after the transition.

Now, we define the transitions in T by Rules (7) and (8).

• Rule (7) describes continuous changes expressed as

the transition 〈H, v〉 t→ 〈(P,H ′), φ(t)〉. In the first
premise, the program H is interpreted with the store
x = v. In the interpretation a hence process hence P ′

is reduced to the sub-processes P ′, and all ask pro-
cesses in H remain in P . We then have a store c that
can be regarded as an initial value problem for an or-
dinary differential equation (IVP-ODE), and we can
obtain a trajectory φ satisfying (denoted by |=) the
constraint store (the second premise). In the fourth
premise, we check that the set of ask processes in P
does not change over the time interval (0, t). Notice
that an ask process disappears when the state (i.e., en-
tailment relation) of the guard constraint on x or x−
changed.

• Rule (8) represents two kinds of transitions. First, it
determines the set of initial states S0 of the RTTS. As-
sume we have 〈P, •〉, where P is an input program and
• is a special value denoting the undefined value. In the

premise, we compute 〈P, true, ε,d〉 ∗
; 〈P ′, c, H,d〉,

where P ′ is a residual process not needed in this case,
c stores the constraints added by the tell processes in
P , and H is a composition of hence processes in P . An
initial state in S0 is obtained as 〈H, v〉, where v is a
value of x satisfying the constraint c.

• Second, Rule (8) describes the computation of dis-
crete changes. In the premise, the transition 〈P, (x− =

v−), ε,d〉 ∗
; 〈P ′, c, H,d〉 results in a constraint store

c and a composed process H of hence processes in P .
We then compute a value v that satisfies the constraint
c, and an initial state 〈H, v〉 for the next continuous
change.

5. EXAMPLE

In the following, we describe an execution of the Tiny
HCC program in Figure 1, henceforth referred to as Pin .
We abbreviate sub-processes in Pin to Pa and Ph as follows:

• Pa :

1: cont(p),
2: if p− = 0 then v = − 1

2
v−

• Ph :

1: hence {

2: Pa,

3: if p > 0 then {ṗ = v, v̇ = −1} }

We also abbreviate the following constraint to cc:

cont(p) ∧ ṗ = v ∧ v̇ = −1.

The execution of the program proceeds as follows:

1. We first obtain an initial state at time 0 (i.e., a state
s0 ∈ S0 of the associated RTTS). We apply Rule (8) to
a state 〈Pin , •〉, where • denotes the undefined value,
as follows:

〈Pin , true, ε,d〉 ∗
; 〈ε, c0, Ph ,d〉, v0 |= c0

(8)

〈Pin , •〉 0→ 〈Ph , v0〉

The first premise is proved by applying the rules ; in
Figure 3 as many times as possible. As a result, we
obtain a quadruple 〈ε, c0, Ph ,d〉, where

c0 ≡ p > 0,

and Ph is the hence process in Pin . In the second
premise, v0 denotes a value for the variable (p, v) that
satisfies the constraint c0. Assume that we take the
value (1, 0).

2. The resulting state evolves continuously over time t >
0 with respect to Rule (7). Here, we consider the con-

tinuous transition
δ→, where δ ∈ R>0 is a duration

for an evolution (we assume a sufficiently small δ that
causes no discrete change). The transition is formal-
ized as follows:

〈Ph , (x=v0), ε, c〉
∗
; 〈Pa , c0, Ph , c〉,

φ0 |= c0, δ ∈ R>0,

∀t′∈(0, δ)

(〈Pa , (x=φ0(t
′)

∧x− =φ0(t
′)), ε,d〉

∗
; 〈Pa , ct′ , ε,d〉)

(7)

〈Ph , v0〉
δ→ 〈(Pa,Ph), φ0(δ)〉

The antecedent of
δ→ is the tuple obtained in Step 1,

and the constraint store c0 in the premise is set as

c0 ≡ cc ∧ p = 1 ∧ v = 0.

In the second premise φ0 |= c0, a continuous trajectory
φ0 is obtained with respect to the IVP-ODE stored in
c0. In the last premise of Rule (7), we check that the

closure of transitions
∗
; does not change the program

Pa for every t′ ∈ (0, δ). For example, at time t′ = 1,
we have a state 〈Pa , φ0(1)〉, where φ0(1) = (1/2, 1).



As the result of transitions
∗
;, we have the quadruple

〈Pa , ct′ , ε,d〉, where

ct′ ≡ cont(p) ∧ x− = (1/2, 1),

and we can confirm that the first element is unchanged
from the antecedent.

3. We describe another successive continuous transition
δ′→, after the transition in Step 2. We again assume a
sufficiently small δ′ ∈ R>0. The transition is formal-
ized as follows:

〈(Pa,Ph), (x=φ0(δ)), ε, c〉
∗
; 〈Pa , cδ, Ph , c〉,

φδ |= cδ, δ′ ∈ R>0,

∀t′∈(0, δ′)

(〈Pa , (x=φδ(t
′)

∧x− =φδ(t
′)), ε,d〉

∗
; 〈Pa , ct′ , ε,d〉)

(7)

〈(Pa,Ph), φ0(δ)〉
δ′→ 〈(Pa,Ph), φδ(δ

′)〉

The reductions are computed as in Step 2. In the first
premise, we compute the constraint store cδ, where δ
is the duration evolved in Step 2. When δ = 1,

cδ ≡ cc ∧ p = 1/2 ∧ v = 1.

The continuous trajectory φδ is equivalent to φ0 in
Step 2 except that the initial time is shifted for δ = 1.

4. Assume the duration
√

2, and the value φ0(
√

2) =
(0,−

√
2) of the trajectory φ0 obtained in Step 2. The

guard constraint p− = 0 is satisfied by assigning the
first element of φ0(

√
2) to p−. We can consider the con-

tinuous transition
√

2→ from the initial state at time 0 as
in Step 2. The time set (0,

√
2) examined in the fourth

premise of Rule (7) is the maximal set in this phase of
continuous transitions because a discrete change causes
within the time set (0, δ′′), where δ′′ >

√
2.

5. Next, we assume the duration δ′′ >
√

2, and consider

again the continuous transition
δ′′→ from the initial state

at time 0. The fourth premise in Rule (7) is checked
by computing Rule (8) for t′ ∈ (0, δ′′). For t′ =

√
2,

the transition is applied as

〈Pa , (x=φ0(t
′) ∧ x− =φ0(t

′)), ε,d〉 ∗
; 〈P ′

a , ct′ , ε,d〉

The process Pa in the antecedent is changed into P ′
a :

1: cont(p)

An ask process in Pa disappears by Rule (2) because
the constraint x− = φ0(t

′) entails the guard constraint

p− = 0. Accordingly, the transition
δ′′→ from the initial

state is not possible.

6. We adopt the instantaneous transition at time t1 =
√

2
as follows:

〈(Pa,Ph), (x− = φ0(t
1)), ε,d〉 ∗

; 〈P ′
a , ct1 , Ph ,d〉,

vt1 |= ct1
(8)

〈(Pa,Ph), φ0(t
1)〉 0→ 〈Ph , vt1〉

The resulting constraint store is as follows:

ct1 ≡ cont(p) ∧ v =
√

2/2,

1: hence {

2: ṗ = v,cont(p),
3: if p ≥ 10 then v̇ = −1,
4: if p < 10 then v̇ = 1 }

Figure 4: Thermostat modeled by Tiny HCC.

and the value vt1 is evaluated by the premise vt1 |= ct1

as follows:

vt1 = (0,
√

2/2),

where cont(p) assigns the value in the previous state
(i.e., φ0(t

1)) to the variable p.

7. The resulting state in Step 6 evolves over time t1 + δ
(δ ∈ R>0) with respect to Rule (7) as in Step 2.

〈Ph , vt1〉
δ→ 〈(Pa,Ph), φt1(δ)〉

The following transitions are formalized in the same
way as described above.

6. DISCUSSION
It is allowed to describe (guarded) constraints separately

in a Tiny HCC program. At every instant, the transition
relation ; described by Rules (1)–(6) computes a constraint
store that accumulates activated constraints in the program.
In contrast, an HA explicitly associates a set of constraints
to a discrete state.

Another aspect of Tiny HCC is that we handle several
kinds of constraints as described in Section 2.1, and their
combinations. Accordingly, we can consider models that
are translated slightly differently from the bouncing particle.
For example, a model of thermostat illustrated in Figure 4
has two ask processes involving continuous constraints. A
discrete change occurs corresponding to a switching of the
two continuous constraints.

Yet another reason is that, in an execution of Tiny HCC, a
discrete change occurs at the earliest state satisfying a guard
constraint, i.e., an instantaneous transition should take place
whenever the premises of Rule (8) hold.
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