
Interval-based Solving of
Hybrid Constraint Systems ⋆

Daisuke Ishii ∗ Kazunori Ueda ∗,∗∗ Hiroshi Hosobe ∗∗

Alexandre Goldsztejn ∗∗∗

∗ Dept. of Computer Science, Waseda University, 3-4-1, Okubo,
Shinjuku-ku, Tokyo 169-8555, Japan

(e-mail: {ishii, ueda}@ueda.info.waseda.ac.jp).
∗∗ National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, Japan (e-mail: hosobe@nii.ac.jp)
∗∗∗ LINA, Université de Nantes, 2, Rue de la Houssinnière, BP 92208,

F-44322 Nantes Cedex 3, France
(e-mail: alexandre.goldsztejn@univ-nantes.fr)

Abstract: An approach to reliable modeling, simulation and verification of hybrid systems
is interval arithmetic, which guarantees that a set of intervals narrower than specified size
encloses the solution. Interval-based computation of hybrid systems is often difficult, especially
when the systems are described by nonlinear ordinary differential equations (ODEs) and
nonlinear algebraic equations. We formulate the problem of detecting a discrete change in hybrid
systems as a hybrid constraint system (HCS), consisting of a flow constraint on trajectories (i.e.
continuous functions over time) and a guard constraint on states causing discrete changes. We
also propose a technique for solving HCSs by coordinating (i) interval-based solving of nonlinear
ODEs, and (ii) a constraint programming technique for reducing interval enclosures of solutions.
The proposed technique reliably solves HCSs with nonlinear constraints. Our technique employs
the interval Newton method to accelerate the reduction of interval enclosures, while guaranteeing
that the enclosure contains a solution.

Keywords: Hybrid systems, interval arithmetic, constraint programming

1. INTRODUCTION

Detection of states causing discrete changes in continu-
ously evolving hybrid systems plays a significant role in
simulation and verification. The problem is described by
the conjunction of an ordinary differential equation (ODE)
and a condition for a discrete change (guard condition).
Many techniques for the problem (e.g. Esposito and Ku-
mar (2007)) perform numerical computation. Since the
techniques may compute unexpected results due to round-
ing errors, various workarounds have been investigated; for
example, Park and Barton (1996) handled the discontinu-
ity sticking problem, that is, the problem of detecting the
same discrete event right after a discrete change.

Interval arithmetic (Moore et al. (2009)) provides rigor
in numerical computation. Computation in interval arith-
metic produces over-approximation of continuous states
which is a set of intervals or boxes enclosing the theoretical
solutions and the accumulation of round-off errors. Interval
arithmetic has been applied to the simulation (Nedialkov
and von Mohrenschildt (2002)) and verification (Henzinger
et al. (2000); Ratschan and She (2007)) of hybrid systems.

Hybrid systems are modeled by constraints, i.e. equations
on real numbers and functions, and intervals (inequalities)
for uncertain parameters such as initial values (Hickey
⋆ This research is partially supported by JSPS, Grant-in-Aid for
Young Scientists (B) 20700033.

and Wittenberg (2004)). The reliable simulation and veri-
fication are done by integrating continuous dynamics and
discrete changes, together with handling uncertainties and
computation errors. It is not obvious to reliably compute
hybrid systems described by nonlinear ODEs and nonlin-
ear conditions for discrete changes. This paper proposes a
framework for such nonlinear hybrid systems.

• We propose hybrid constraint systems (HCSs) to
describe the problem of detecting discrete changes by
constraints (Section 4). An HCS consists of a flow
constraint on trajectories and a guard constraint on
continuous states. Solving the HCS is computation
of box-consistent domains, which means enclosing
states with intervals that satisfy every constraint. We
see how an HCS serves as a key component in the
simulation of hybrid systems (Section 6.1).

• We develop a technique for solving HCSs by integrat-
ing an interval-based method for nonlinear ODEs by
Nedialkov et al. (1999), and an interval-based con-
straint programming framework by van Hentenryck
et al. (1997)(Section 5). The technique generates a
set of boxes smaller than a specified size that encloses
the theoretical solution.

• The proposed technique employs the interval Newton
method for the quadratic convergence of the reduc-
tion of boxes, and to guarantee that the boxes contain
a solution (Section 5.3). The method uses an interval
Newton operator derived from flow and guard con-



straints. Experimental results show the efficiency of
the method in simulating nonlinear hybrid systems
(Section 6).

2. RELATED WORK

This work extends a technique by Ishii et al. (2008). This
earlier work was limited in formalizing the problem of
detecting discrete changes as a constraint system. The
efficiency of the method was also limited since pruning
on a time domain was based on a binary search technique.

Park and Barton (1996) introduced the interval Newton
method to the detection process to guarantee the existence
of an event within a time interval. However, the guaran-
tee is based on interpolation polynomials converted from
the original problems. Nedialkov and von Mohrenschildt
(2002) proposed an interval-based method for simulating
hybrid systems. The method is limited in efficiency and
handling of nonlinear guard conditions.

Cruz (2005), Lin and Stadtherr (2007), and others are
applying constraint programming techniques to interval-
based solving of ODEs. Their frameworks allow the use
of parameters in ODEs as well as the addition of various
constraints such as value restriction constraints. Although
the frameworks do not handle constraints equivalent to the
guard constraints in this paper, the frameworks might be
integrated with ours.

3. PRELIMINARIES

This section introduces concepts for describing the tech-
nique we propose.

3.1 Interval Arithmetic

A set of machine-representable floating-point numbers is
denoted by F . A (bounded) interval I = [l, u] (l, u ∈ F )
is a set of real numbers, where

I = {r ∈ R | l ≤ r ≤ u}.
I denotes a set of intervals. A box B is a tuple of n intervals
(I1, . . . , In). In denotes a set of boxes. For an interval I,
lb(I) denotes the lower bound, ub(I) denotes the upper
bound, w(I) denotes the width, int(I) denotes the internal
of I, and m(I) denotes the center of I. For r ∈ R, [r]
denotes the narrowest interval containing r.

For f : Rm → Rn, F : Im → In is called an f ’s interval
extension iff it satisfies the following condition (Fi denotes
the i-th component of the value of F )

∀I1∈I · · · ∀Im∈I ∀r1∈I1 · · · ∀rm∈Im ∀i∈{1, . . . , n}
(fi(r1, . . . , rm) ∈ Fi(I1, . . . , Im)).

For I1, . . . , Im ∈ I and an interval extension F of f , a box
F (I1, . . . , Im) is called an interval enclosure of possible
values of f over I1, . . . , Im. For a bounded set R ⊂ R, 2R
denotes the smallest interval I ∈ I that encloses R. For a
constraint c ⊆ Rn, C ⊆ In is an interval extension of c iff
it satisfies the following condition

∀I1∈I · · · ∀In∈I

(∀r1∈I1 · · · ∀rn∈In ((r1, . . . , rn) ∈ c) ⇒ (I1, . . . , In) ∈ C).

3.2 Interval Newton Method

Given an equation h(t) = 0, where h : R → R is
a continuously differentiable function, a solution of the
equation in an interval T is also included in an interval
obtained by the following interval operator

NH,Ḣ(T ) = T ∩
(

[m(T )] − H([m(T )])
Ḣ(T )

)
,

where H and Ḣ are interval extensions of h and its
derivative. NH,Ḣ(T ) is defined iff 0 /∈ Ḣ(T ) holds. The
(uni-variate) interval Newton method iteratively refines
an interval enclosure by the operator above. By taking
a sufficiently small enclosure T of a solution, iterated
applications of NH,Ḣ(T ) will converge. The fixpoint is
denoted by N∗

H,Ḣ
(T ). If the condition NH,Ḣ(T ) ⊆ int(T )

holds, a unique solution t∗ ∈ NH,Ḣ(T ) exists (see Theorem
8.4 in Moore et al. (2009)).

3.3 Interval-based Solving of ODEs

Let y denotes a vector-valued continuous function over
time R → Rn called trajectory. An initial value problem
for an ODE (IVP-ODE) is formed by the conjunction of
equations

ẏ(t) = f(t, y(t)) ∧ y(t0) = y0,

where t0 ∈ R, y0 ∈ Rn and f : Rn+1 → Rn (assuming
Lipschitz continuity). Given an IVP-ODE, a solution de-
noted by yt0,y0 is a trajectory that satisfies the equations.

Given an initial value set (Y0, T0) ∈ In+1, an interval
extension of the solution yt0,y0 , denoted by YT0,Y0 : I →
In, satisfies the following condition

∀t0∈T0 ∀y0∈Y0 ∀t∈T (yt0,y0(t) ∈ YT0,Y0(T )),
where T is a time interval such that lb(T ) ≥ ub(T0).

We employ an existing method VNODE proposed in Ne-
dialkov et al. (1999) and Nedialkov (2006) for solving
IVP-ODEs based on interval arithmetic. Consider an IVP-
ODE, an initial value set (T0, Y0) and a time interval
T1 ∈ I. We obtain a box Y1 = YT0,Y0(T1) using VNODE.
As a by-product of the computation, VNODE computes
an enclosure YT0,Y0([lb(T0), ub(T1)]), because the compu-
tation is done iteratively from the initial value.

In our method, we also need an interval extension of the
derivative of the solution ẎT0,Y0 : I → In. Let T1 ∈ I

be a time interval. Then ẎT0,Y0(T1) will be implemented
as computation of a function F (T1, YT0,Y0(T1)), that is,
an interval extension of f(t, y(t)) in the ODE. Note that
YT0,Y0(T1) should be computed by VNODE beforehand.

3.4 Consistency Technique for Continuous Constraints

Van Hentenryck et al.(1997) proposed a method for solving
a set of continuous constraints C with a tuple of n variables
X = (x1, . . . , xn) and a domain D = (D1, . . . , Dn). See
Benhamou and Granvilliers (2006) for an introduction. C
is a conjunction of constraints in the form of g(X )•0, where
• is a relation e.g. ≤ and =, and g is a continuous function
Rn → R built with elementary arithmetic operations. The
method refines a given domain D by the BranchAnd-
Prune algorithm and computes a set of boxes smaller



Input: set of constraints C, initial domain D, error toler-
ance ϵ

Output: set of consistent domains {Di}i∈{1,...,n}
1: D′ := Prune(C,D)
2: if D′ ̸= ∅ then
3: if the precision of D′ is under ϵ then
4: return {D′}
5: else
6: i := select a component
7: (D1,D2) := Branch(D′, i)
8: return BranchAndPrune(C,D1)∪

BranchAndPrune(C,D2)
9: end if

10: else
11: return ∅
12: end if

Fig. 1. BranchAndPrune algorithm.

than a given error tolerance ϵ, so that the union of boxes
is a box-consistent domain (see Section 4.1) for the con-
straint system. Figure 1 shows the BranchAndPrune
algorithm. The algorithm recursively alternates reducing
and branching of a domain in a problem. In the algorithm,
two procedures are left open as Prune and Branch.
Algorithms such as HC4, BC5 and 3B are known as imple-
mentations for Prune. Branch is usually implemented
as partitioning of a domain into several boxes along a
dimension of the domain.

4. HYBRID CONSTRAINT SYSTEMS

In this section, we define HCSs. We consider continuous
states as (n + 1) dimensional real vectors over time and
space. An HCS describes a crossing point of a trajectory
over time and a time-invariant boundary in the state space.
Figure 2 illustrates an HCS.

Consider a tuple of variables X = (x0, x1, . . . , xn) consist-
ing of a variable x0 representing the time at a crossing
point and n variables x1, . . . , xn representing a state at
the time x0. We then define the following two kinds of
constraints.

• A flow constraint Cf is a constraint described by the
conjunction of the following equations

(ẏ(t) = f(t, y(t)) ∧ y(t0) = y0)
∧ y(x0) = (x1, . . . , xn) ∧ x0 > t0,

where the first part is an IVP-ODE representing an
n-dimensional trajectory yt0,y0 (t0 ∈ R, y0 ∈ Rn, and
f : Rn+1 → Rn is a Lipschitz continuous function).

• A guard constraint Cg is a constraint described by
g(x1, . . . , xn) = 0,

where g is a differentiable function Rn → R.

Possible values for the variables belong to a domain
D = (D0, D1, . . . , Dn) ∈ In+1, where each component
is associated with a variable in X . Values expressing
parameters t0 and y0 in the initial condition in Cf are given
as an initial value set D0 = (D0,0, . . . , Dn,0) ∈ In+1. A
hybrid constraint system is a tuple (X ,D,D0, Cf , Cg) with
a tuple X of variables, a domain D, an initial value set D0,
a flow constraint Cf and a guard constraint Cg.

For example, a ball that bounces off a sinusoidal surface
is modeled as an HCS (X ,D,D0, Cf , Cg), where

X = (x0, x1, x2, x3, x4),
D = (R≥0,R, R, R, R), D0 = ([0], [1], [3], [6], [−2]),
Cf ≡ (ẏ(t) = (ẏ1(t), ẏ2(t), ẏ3(t), ẏ4(t))

= (y3(t), y4(t), 0,−g − k · y4(t)) ∧ y(t0) = y0)
∧ y(x0) = (x1, x2, x3, x4) ∧ x0 > t0,

Cg ≡ sin(2 · x1) − x2 = 0.

x0 is a variable representing time, x1, x2, x3 and x4 are
variables representing the position (x1, x2) and velocity
(x3, x4) of the ball. Movement of the ball is described by
Cf and a contact with the surface is detected by checking
whether Cg is entailed. The initial condition in Cf is
interpreted as ∀t0∈ [0]∀y0∈ [1]×[3]×[6]×[−2] (y(t0) = y0).
Figure 2 (a) illustrates the trajectory of the ball with
parameters set to g = 9.8 and k = 0.3.

Let (X ,D,D0, Cf , Cg) is an HCS, a valuation is a map
X → D from every variable xi ∈ X to a value di ∈ Di

(i ∈ {0, . . . , n}). A solution of the HCS is a valuation
satisfying constraints Cf and Cg. In general, an HCS
may have multiple solutions. When applying HCSs to the
simulation of hybrid systems, the one we are interested in
is the earliest solution. In Figure 2 (a), the HCS has three
solutions inside each of the boxes D1,D2 and D3. The ball
bounces at the earliest solution in D1.

4.1 Box Consistency for HCSs

In this paper, interval-based solving of an HCS means
refining an initial domain to a box-consistent (van Hen-
tenryck et al. (1997)) domain.

We modify the definition of box consistency for HCSs as
follows. Let y be a solution trajectory of a flow constraint
and g be a function describing a guard constraint. Consider
interval extensions G of g and YT0,Y0 of yt0,y0 , where
T0 is D0,0 and Y0 is (D1,0, . . . , Dn,0). For an index i ∈
{0, . . . , n}, the i-th component Di of a domain D is box-
consistent with respect to the other components iff

D0 = 2{d0 ∈ D0 | 0 ∈ G(YT0,Y0([d0] ± [0, hmin]))}
(for i = 0), where hmin ∈ R+ and hmin ≥ w(T0), and

Di = 2{di ∈ Di | di ∈ YT0,Y0,i(D0)∧
0 ∈ G(D1, . . . , Di−1, [di], Di+1, . . . , Dn)}

(for i ∈ {1, . . . , n}). An HCS is box-consistent iff all
the components are box-consistent. hmin in the condition
above is used because it is difficult to compute YT0,Y0([d0])
by VNODE.

Consider a set of floating-point numbers, F = {n ·
10−2 | n ∈ Z}. For the bouncing ball example, a
box D1 = ([0.44, 0.54], [3.86, 3.96], [0.95, 1.05], [5.95, 6.05],
[−6.1,−6.2]) is appropriate for the box-consistent domain.

5. TECHNIQUE FOR SOLVING AN HCS

In this section, a technique for computing the box-
consistent domain of an HCS is described. The tech-
nique applies the BranchAndPrune algorithm in Sec-
tion 3.4 to HCSs with an implementation of Prune called
PruneHCS. The proposed method computes a set of boxes
that encloses all the solutions in the initial domain. The



Fig. 2. Examples of an HCS.

Input: flow constraint Cf ≡ (ẏ(t) = f(t, y(t)) ∧
y(t0) = y0) ∧ (x1, . . . , xn) = y(x0) ∧ x0 > t0,
guard constraint Cg ≡ g(x1, . . . , xn) = 0,
initial domain D = (D0, D1, . . . , Dn) ∈ In+1,
initial value set D0

Output: box-consistent domain D′=(D′
0, . . . , D

′
n)∈In+1

1: repeat
2: D′ := D
3: obtain H and Ḣ from Cg, Cf and D0

4: D0 := NarrowL(H, Ḣ,D0)
5: D0 := NarrowU(H, Ḣ,D0)
6: (D1, . . . , Dn) := (D1, . . . , Dn) ∩ YT0,Y0(D0)
7: (D1, . . . , Dn) := NarrowCCS(Cg, (D1, . . . , Dn))
8: until D = D′

9: return D′

Fig. 3. PruneHCS algorithm.

accuracy of results are specified by the real-valued pa-
rameters ϵ and hmin. ϵ used in the BranchAndPrune
algorithm determines the maximum width of intervals in
a result. A solution exists within hmin from each bound of
the time domain.

Figure 3 shows the PruneHCS algorithm. PruneHCS re-
duces a domain of an HCS by enforcing the box con-
sistency. PruneHCS takes a flow constraint Cf , a guard
constraint Cg, a domain D, and an initial value set D0 as
input. PruneHCS iteratively prunes each component of a
domain until the fixpoint is reached (lines 1–8).

At lines 3–5, the domain D0 of the time variable x0 is
reduced, and then at lines 6–7, the domain (D1, . . . , Dn)
is reduced. Details on each of the reduction methods are
supplied in Sections 5.1 and 5.2. The algorithm returns a
pruned domain D′ at line 9.

5.1 Reduction of the Time Domain

PruneHCS reduces a time domain efficiently by applying
the interval Newton method that solves flow and guard
constraints simultaneously. At line 3 in Figure 3, the
algorithm constructs functions H and Ḣ for the interval
Newton method. The essential idea is that the numerical
solution of the IVP-ODE, denoted hereafter as YT0,Y0 , is
used to construct an interval Newton operator. YT0,Y0 is
obtained by iterative calculation with respect to a flow
constraint Cf and an initial value set D0, as described in
Section 3.3. Accordingly, H and Ḣ are given by

H(T ) = G(YT0,Y0(T )), Ḣ(T ) =
n∑

i=1

(
∂G

∂Xi
· ẎT0,Y0,i(T )

)
,

where YT0,Y0 , G, ẎT0,Y0 and ∂G/∂Xi are interval extensions
of a trajectory yt0,y0 , a function g in a guard constraint
Cg, and their derivatives, respectively. Xi is a variable of G
(i ∈ {1, . . . , n}). To compute ∂G/∂Xi, we apply automatic
differentiation to G.

At lines 4 and 5 of PruneHCS, procedures NarrowL
and NarrowU reduce the lower and upper edges of the
domain. This procedure is an adaptation to HCS of the
algorithm shown in van Hentenryck et al. (1997). The
NarrowL procedure is as follows (NarrowU is similar
except that it operates on the upper edge instead of the
lower edge).

(1) First, the guard constraint is checked for the current
time domain D0. If 0 /∈ H(D0) holds, return ∅ and
terminate.

(2) Calculate the fixpoint of the interval Newton method
D′

0 = N∗
H,Ḣ

(D0). To obtain N∗
H,Ḣ

(D0), D′
0 =

NH,Ḣ(D0) is repeatedly computed until the ratio of
D′

0 to D0 is under a threshold.
(3) Let hmin is a minimal step width for ODE solving, and

consider the box L = [lb(D′
0), lb(D′

0) + hmin]. If the
interval H(L) contains 0, return an interval [lb(D′

0),
ub(D0)], and terminate.

(4) Split D0 in two and apply NarrowL recursively for
each interval. Find the smallest bound l in the results,
return an interval [l, ub(D0)], and terminate.

5.2 Reduction of the Continuous State Domain

Once the narrowing operators reduce a time interval
D0, VNODE computes a box YT0,Y0(D0) enclosing the
trajectories over D0 as described in Section 3.3 (line 6
of Figure 3). Then we can build a continuous constraint
system described in Section 3.4 consisting of the guard
constraint Cg ≡ g(x1, . . . , xn) = 0 and the initial domain
(D1, . . . , Dn) = YT0,Y0(D0). At line 7 of PruneHCS, the
NarrowCCS procedure reduces the domain (D1, . . . , Dn)
by applying one of the narrowing operators shown in
Section 3.4.

5.3 Testing the Unique Existence of a Solution

In general, the number of solutions in boxes computed
by BranchAndPrune is unknown. Using the interval
Newton method, the uniqueness and existence of a solution
within a box is determined under a certain condition.
Theorem 1. Consider an HCS (X ,D,D0, Cf , Cg), where
D = (D0, . . . , Dn). Suppose a call to the procedure
PruneHCS(Cf , Cg,D,D0) returns D′ = (D′

0, . . . , D
′
n). In

the computation, suppose the procedure NarrowL or
NarrowU reduces a time interval D′′

0 to NH,Ḣ(D′′
0 ), and

the following conditions hold. Then, a solution of the HCS
uniquely exists in D′.

• A unique trajectory yt0,y0 exists over D0 with respect
to Cf and D0,

• g in Cg is continuously differentiable over (D1, . . . , Dn),
• NH,Ḣ(D′′

0 ) ⊆ int(D′′
0 ),

• D′
0 ⊆ D′′

0 .



Proof. From the first and second conditions, a function
g ◦ yt0,y0 exists, and is continuously differentiable over D0.
Since G ◦ YT0,Y0 composed by PruneHCS is an interval
extension of g ◦ yt0,y0 , the interval Newton method proves
that a root of g ◦ yt0,y0 uniquely exists in D′′

0 . The third
condition is for the interval Newton method. The last
condition proves the unique existence of the solution in
D′ because the computation by PruneHCS completely
encloses the solution. 2

VNODE validates the first condition for the computed en-
closure. The third condition will be tested in the narrowing
procedures.

For example, the box-consistent domain for the bouncing
ball shown in the previous section encloses a unique
solution. Consider a bouncing ball with an initial value
set D0 = ([0], [1], [3], [6], [−1.7,−1.6]) (see Figure 2 (b)).
The box-consistent domain D4 indicated in the figure is
not guaranteed to have a solution.

5.4 Computing an Enclosure for the Earliest Solution

The union of boxes computed by the proposed technique
may enclose multiple solutions. Boxes enclosing the earliest
solution are selected as follows.

(1) Compute the clusters of boxes by concatenating two
boxes if they are adjacent.

(2) Find a cluster containing the earliest time.
(3) If the cluster intersects with the initial value set, then

discard this and search for the next earliest cluster.

Note that we assume each of the clusters computed in (1)
and the initial value set in (3) enclose a unique solution.

6. EXAMPLES AND EXPERIMENTATION

We implemented the proposed method on top of the Elisa
system (Granvilliers and Sorin (2005)) which is an im-
plementation of the BranchAndPrune algorithm. We
implemented data structures for representing flow con-
straints. PruneHCS was implemented by extending the re-
duction procedure in Elisa. VNODE-LP (Nedialkov (2006))
was used to solve IVP-ODEs. The implementation caches
the results by VNODE-LP for reusing. Our implementation
consists of about 2000 lines of C++ code.

Section 6.1 shows a simulation of a bouncing ball by
modeling each bounce of the ball as an HCS. Section 6.2
reports the results of comparisons with existing methods.
The parameters in the proposed method were set as ϵ =
10−2 and hmin = 10−11. BC5 was used as NarrowCCS.
In the experimentation, we modified the implementation
to terminate the computation after an enclosure for the
earliest solution was obtained. We experimented on a
2.4GHz Intel Core 2 Duo processor with 2GB of RAM.

6.1 Computation of a Bouncing Ball

Consider the bouncing ball described in Section 4. Here, we
change the initial value set to D0 = ([0], [2], [5], [0], [−5]),
and the guard constraint to Cg ≡ sin(x1) − x2 = 0.
Figure 4 illustrates the boxes enclosing a trajectory of
the ball bouncing off the surface three times. Those boxes

-1

0

1

2

3

4

5

2 3 4 5 6 7 8 9 10 11 12

Fig. 4. A trajectory of a bouncing ball on a sinusoidal
surface and an interval enclosure of the trajectory.

were computed while solving three HCSs, each of which
corresponded to a parabolic motion of the ball. From the
result of solving an HCS, a bounce of the ball with a
coefficient of restitution of 0.8 was computed by interval
arithmetic to set up the initial values for the next phase.

We confirmed that the interval D0 of the domain was
quadratically reduced by the interval Newton operator.
For example, in the solving of the first bounce, we had

D0
0 = [0.5366024006905468, 0.6462371408659776],

D1
0 = [0.5655469230670141, 0.5675738062165443],

D2
0 = [0.5663629650559695, 0.5663632653947441],

D3
0 = [0.5663631007048800, 0.5663631007048839].

The reductions provide the guarantee of the existence and
uniqueness of a solution within the domain.

The left half of Table 1 shows computation results. Each
row corresponds to a result of solving an HCS. Each
column shows the number of bounces, the time interval,
the number of calling PruneHCS, the number of calling
NarrowL and NarrowU, and the execution time, in
milliseconds, of a solving. The width of the first result was
10−11, according to the value of hmin. The following results
widened as the initial value set widened.

6.2 Comparison with Existing Methods

To evaluate the computational efficiency and to confirm
the accuracy of the results, we solved several HCS prob-
lems with several solvers including the proposed method.

The following problems were solved: (1, 2) the first and
second bounces of the bouncing ball; (3) the problem of
detecting the intersection of a trajectory following the Van
der Pol equation
ẏ1 = y2, ẏ2 = 10 · (1 − y2

1) · y2 − y1, y1(0)=1, y2(0)=0,

and the ellipse Cg ≡ x2
1/9+x2

2/255 = 1 (we abbreviate yi(t)
with yi); (4) detection of the intersection of a trajectory
following the Lorenz equation

ẏ1 = 10 · (y2 − y1), ẏ2 = y1 · (28 − y3) − y2,

ẏ3 = y1 · y2 − 8/3 · y3, y1(0)=15, y2(0)=15, y3(0)=36,

and the sphere Cg ≡ x2
1 + x2

2 + (x3 − 28)2 = 700. We
solved the above problems with the following methods: (a)
the proposed method; (b) the method proposed by Ishii
et al. (2008) that employs a binary search technique; (c)
the symbolic DSolve solver with the Minimize function in
Mathematica 6.0 (Wolfram Research (2007)); and (d, d’)



Table 1. Computation results for the bouncing ball model.

(a) proposed method (b) existing method
n result (D0) branch reduce time result (D0) branch reduce time

1 0.5663631007[04, 14] 1 2 61 0.566363100[662, 748] 3 132 515
2 1.5193134214[00, 25] 5 27 171 1.51931342[1229, 1508] 5 210 734
3 2.688336307[167, 706] 5 19 125 2.6883363[04386, 10239] 5 200 718

Table 2. Comparison results.

(a) proposed method (b) existing method
problem result (D0) branch reduce time result (D0) branch reduce time

(3) 10.412056185[3994, 4956] 5 167 525 10.412056185[3614, 4187] 4 370 2022
(4) 10.097265[364782, 415188] 1 408 2146 10.097265[359764, 420194] 3 643 5982

(c) Mathematica (symbolic) (d) Mathematica (numeric) (d’) Mathematica (numeric)
problem result (t) time result (t) time result (t) time

(1) 0.56636310070 78 0.56636309967 4 0.56636310070 15
(2) unsolvable – 1.51931341936 3 1.51931342141 12
(3) unsolvable – 10.41204598059 5 10.41205618538 266
(4) unsolvable – 10.09936465531 14 10.09726539120 1109

the numerical NDSolve solver with the EventLocator op-
tion in Mathematica 6.0. We solved the problem with the
default settings in (d), and by setting WorkingPrecision
to 28 and MaxSteps to Infinity in (d’) 1 .

Table 1 and Table 2 report the computed (interval) values
for the time variable x0 (represented by D0 and t), profiling
results, and execution time in milliseconds. As shown in
the results (a) and (b), the proposed technique decreases
the number of reductions and outperforms the method
(b) in efficiency. In (c), DSolve of Mathematica computed
a rigorous solution but treated only the problem (1).
The results (d) and (d’) show that NDSolve solved HCSs
more efficiently than our method. However, NDSolve uses
approximation algorithms and cannot ensure the achieved
accuracy of a result, whereas our method guarantees the
accuracy of a result. Another advantage of our method
is that we can give intervals to the initial values and
coefficients in constraints. DSolve and NDSolve do not
handle ODEs with uncertain parameters.

7. CONCLUSION AND FUTURE WORK

We have presented HCSs and proposed a technique for
solving them. As described in Section 5.1, the technique
guarantees the existence and uniqueness of a solution in a
domain. This method also helps to find the earliest solu-
tions reliably. We need more experimentation in realistic
settings and various optimization of the implementation.
HCSs will be extended to have multiple guard constraints
either in conjunctive and disjunctive way. We plan to solve
such problems by interacting with SAT solvers to compute
every combination of constraints.

REFERENCES

Benhamou, F. and Granvilliers, L. (2006). Continuous and
interval constraints. Handbook of Constraint Program-
ming, 571–604. Elsevier.

Cruz, J. (2005). Constraint Reasoning for Differential
Models. IOS Press.

1 The corresponding Mathematica notebooks are available at
http://www.ueda.info.waseda.ac.jp/~ishii/pub/adhs2009/.

Esposito, J. and Kumar, V. (2007). A state event detection
algorithm for numerically simulating hybrid systems
with model singularities. In ACM TOMACS, 17(1), 1–
22.

Granvilliers, L. and Sorin, V. (2005). Elisa 1.0.4.
http://sourceforge.net/projects/elisa.

Henzinger, T.A., Horowitz, B., Majumdar, R., and Wong-
Toi, H. (2000). Beyond HyTech: hybrid systems analysis
using interval numerical methods. In Proc. HSCC,
LNCS 1790, 130–144.

Hickey, T.J. and Wittenberg, D.K. (2004). Rigorous
modeling of hybrid systems using interval arithmetic
constraints. In Proc. HSCC, LNCS 2993, 402–416.

Ishii, D., Ueda, K., and Hosobe, H. (2008). An interval-
based consistency technique for reliable simulation of
hybrid systems. In IPSJ Trans. on Mathematical Mod-
eling and its Applications, 1(1), 149–159. (in Japanese)

Lin, Y. and Stadtherr, M. (2007). Fault detection in
continuous-time systems with uncertain parameters. In
Proc. ACC, 3216–3221.

Moore, R.E., Kearfott, R.B., and Cloud, M.J. (2009).
Introduction to Interval Analysis. SIAM.

Nedialkov, N.S. (2006). VNODE-LP: a validated solver for
initial value problems in ordinary differential equations.
TR CAS-06-06-NN, McMaster University.

Nedialkov, N.S., Jackson, K.R., and Corliss, G.F. (1999).
Validated solutions of initial value problems for ordinary
differential equations. In Applied Mathematics and
Computation, 105(1), 21–68.

Nedialkov, N.S. and von Mohrenschildt, M. (2002). Rigor-
ous simulation of hybrid dynamic systems with symbolic
and interval methods. In Proc. ACC, vol. 1, 140–147.

Park, T. and Barton, P. (1996). State event location in
differential-algebraic models. In ACM TOMACS, 6(2),
137–165.

Ratschan, S. and She, Z. (2007). Safety verification of hy-
brid systems by constraint propagation-based abstrac-
tion refinement. In ACM TECS, 6(1).

van Hentenryck, P., McAllester, D., and Kapur, D. (1997).
Solving polynomial systems using a branch and prune
approach. In SIAM Journal on Numerical Analysis,
34(2), 797–827.

Wolfram Research (2007). Mathematica 6.0.
http://www.wolfram.com/products/mathematica.


