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Abstract. Parallel robots enjoy enhanced mechanical characteristics that have to
be contrasted with a more complicated design. In particular, they often have par-
allel singularities at some poses, and the robot may become uncontrollable, and
could even be damaged, in such configurations. The computation of singularity
free sets of reachable poses, called generalized aspects, is therefore a key issue
in their design. A new methodology based on numerical constraint programming
is proposed to compute a certified enclosure of such generalized aspects which
fully automatically applies to arbitrary robot kinematic model.
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1 Introduction

Mechanical manipulators, commonly called robots, are widely used in the industry to
automatize various tasks. Robots are a mechanical assembly of rigid links connected
by mobile joints. Some joints are actuated and they allow commanding the robot oper-
ating link, called its end-effector (or platform). One key characteristic of a robot is its
reachable workspace, informally defined as the set of poses its end-effector can reach.
Indeed, its size defines the scope of operational trajectories the robot will be able to per-
form. Robots comply with either a serial or a parallel (or possibly a hybrid) assembly,
whether their links are connected in series or in parallel. Parallel robots [14, 16] present
several advantages with respect to serial ones: They are naturally stiffer, leading to more
accurate motions with larger loads, and allow high speed motions. These advantages
are contrasted by a more complicated design as the computation and analysis of their
workspace present several difficulties. First, one pose of the robot’s end-effector may
be reached by several different sets of actuated joint commands (which correspond to
different working modes), and conversely one set of input commands may lead to sev-
eral poses of its end-effector (which correspond to different assembly modes). Second,
parallel robots generally have parallel singularities, i.e., specific configurations where
they become uncontrollable and can even be damaged.

The kinematics of a parallel robot is modeled by a system of equations that relates
the pose of its end-effector (which includes its position and possibly its orientation)



to its commands. Hence computing the pose knowing the commands, or conversely,
requires solving a system of equations, called respectively the direct and inverse kine-
matic problems. Usually, the number of pose coordinates (also known as degrees of
freedom (DOF)), the number of commands and the number of equations are the same.
Therefore, the relation between the pose and the command is generically a local bijec-
tion. However, in some non-generic configurations, the pose and the command are not
anymore related by a local bijection. This may affect the robot behavior, e.g., destroying
it if some command is enforced with no corresponding pose. These non-generic cases
are called robot singularities and they can be of two kinds [1]: Serial or parallel. One
central issue in designing parallel robots is to compute connected sets of singularity
free poses, so that the robot can safely operate inside those sets. Such a set is called a
generalized aspect in [6] when it is maximal with respect to inclusion.

A key issue when computing the aspects is the certification of the results: Avoiding
singularities is mandatory, and the connectivity between robot configurations must be
certified. This ensures that the robot can actually move safely from one configuration
to another. Very few frameworks provide such certifications, among which algebraic
computations and interval analysis. The cylindrical algebraic decomposition was used
in [5], with the usual restrictions of algebraic methods and with a connectivity analysis
limited to robots with two DOF. Interval analysis was used in [17] for robots having
a single solution to their inverse kinematic problem. Though limited, this method can
still tackle important classes of robots like the Stewart platform. A quad-tree with cer-
tification of non-singularity was built in [4] for some planar robots with two DOF. This
method extends to higher dimensional robots, but it requires the a priori separation of
working modes by adhoc inequalities, and is not certified with respect to connectivity.

In this paper we propose a branch and prune algorithm incorporating the certifica-
tion of the solutions and of their connectivity. This allows a fully automated compu-
tation of the generalized aspect from the model of arbitrary parallel robots, including
robots with multiple solutions to their direct and inverse kinematic problems, without
requiring any a priori study to separate their working modes. The algorithm is applica-
ble to robots of any dimension, although the complexity of the computations currently
restricts its application to robots with three degrees of freedom.

A motivating example is presented in Section 2 followed by some preliminaries
about numerical constraint programming and robotics in Section 3. The proposed algo-
rithm for certified aspect computation is presented in Section 4. Finally, experiments on
planar robots with two and three degrees of freedom are presented in Section 5.

Notations Boldface letters denote vectors. Thus f(x) = 0 denotes a system of equa-
tions f on a vector of variables x: f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0. The
Jacobian matrix of f(x) with respect to variables x′ ⊆ x is denoted Fx′(x), and
detFx′(x) denotes its determinant. Interval variables are denoted using bracketed sym-
bols, e.g. [x] = [x, x] := {x ∈ R | x ≤ x ≤ x}. Hence, [x] is an interval vector (or
box) and [A] = ([aij ]) is an interval matrix. IR denotes the set of intervals and IRn the
set of n-dimensional boxes. For an interval [x], we denote wid[x] := x − x its width,
int[x] := {x ∈ R | x < x < x} its interior, and mid[x] := (x + x)/2 its midpoint.
These notations are extended to interval vectors.
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Fig. 1. The PRRP in a nonsingular pose (left) and in singular poses (right).

2 Motivating Example

Description. Consider the simple PRRP4 planar robot depicted in Figure 1 which in-
volves two prismatic joints (gray rectangles) sliding along two perpendicular axes.
These prismatic joints are connected through three rigid bars (black lines) linked by two
revolute joints (circles) which allow free rotations between the rigid bars. The positions
of the prismatic joints are respectively denoted by x and q, the end-effector position
x being on the horizontal axis and the command q corresponding to the height on the
vertical axis. The left-hand side diagram of Figure 1 shows one nonsingular configu-
ration of the robot (note that there is another symmetric pose x associated to the same
command q where x is negative). From this configuration, when q changes vertically x
changes horizontally, and both are related by a local bijection, hence this configuration
is non-singular. The right-hand side diagram shows two singular configurations. In the
green, plain line, pose (where the robot’s main rigid bar is horizontal), increasing or
decreasing the command q entails a decrease of x, hence a locally non-bijective corre-
spondence between these values. In the red, dashed line, pose (where the robot’s main
rigid bar is vertical), increasing or decreasing the command q would entail a vertical
motion of the end-effector which is impossible due to the robot architecture, hence a
potential damage to the robot structure. The green configuration is a serial singularity,
which restricts the robot mobility without damaging it; the red configuration is a parallel
singularity, which is generally dangerous for the robot structure.

Kinematic model. The kinematic model of this robot is easily derived: The coordinates
of the revolute joints are respectively (a, q) and (x, b), where a and b are architecture
parameters corresponding to the lengths of the two horizontal and vertical small rigid
bars. Then the main oblique rigid bar enforces the distance between these two points to
be equal to its length l, a third architecture parameter. Hence, the kinematic model is

(x− a)2 + (q − b)2 = l2. (1)

4 In robotics, manipulators are typically named according to the sequence of joints they are made
of, e.g., P for prismatic and R for revolute, actuated ones being underlined.
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Fig. 2. Left: The PRRP kinematic model solutions set. Right: The computed paving.

The solution set of this model, the circle of center (a, b) and radius l, is depicted on the
left hand side diagram in Figure 2. The direct kinematic problem consists in computing
x knowing q, leading in the case of this robot to two solutions a ±

√
l2 − (q − b)2 if

q ∈ [b− l, b+ l], no solution otherwise. Similarly, the inverse kinematic problem con-
sists in computing q knowing x, leading to two solutions b±

√
l2 − (x− a)2 provided

that x ∈ [a − l, a + l], no solution otherwise. This simple robot is typical of parallel
robots, which can have several solutions to their direct and inverse kinematic problems.
It is also typical regarding its singularities: It has two serial singularities where the so-
lution set has a vertical tangent (green, leftmost and rightmost, points on the left hand
side diagram in Figure 2), and two parallel singularities where the solution set has a
horizontal tangent (red, topmost and bottommost, points on the left hand side diagram
in Figure 2). These four singularities split the solution set into four singularity free re-
gions, called generalized aspects. Accordingly, we can determine the singularity free
reachable workspace of the robot by projecting each aspect onto the x component (see
the thick lines above and under the paving on the right-hand side in Figure 2).

Certified Enclosure of Generalized Aspects. This paper aims at using numerical con-
straint programming in order to compute some certified enclosures of the different as-
pects. The standard branch and prune algorithm is adapted in such a way that solving the
robot kinematic model together with non-singularity constraints leads to the enclosure
depicted on the right-hand side of Figure 2. The solution boxes verify:

1. In each box, for each pose x there exists a unique command q such that (x, q)
satisfies the robot kinematic model;

2. Each box does not contain any singularity;
3. Each two neighbor boxes share a common solution.

The first two properties ensure that each box is crossed by a single aspect, and that this
aspect covers the whole box projection on the x subspace. The third certificate allows
connecting neighbor boxes proving that they belong to the same aspect. Therefore, the
connected components A1, A2, A3, A4 of the computed boxes shown in Figure 2 allow
separating the four aspects, and provide, by projection, certified inner approximations
of the singularity-free reachable workspace of the robot.



3 Preliminaries

3.1 Numerical Constraint Programming

Numerical constraint solving inherits principles and methods from discrete constraint
solving [18] and interval analysis [19]. Indeed, as their variable domains are continu-
ous subsets of R, it is impossible to enumerate the possible assignments and numeric
constraint solvers thus resorts to interval computations. As a result, we use an interval
extension [f ] : IRn → IR of each function f : Rn → R involved in a constraint, such
that ∀[a] ∈ IRn, ∀a ∈ [a], f(a) ∈ [f ]([a]).

Numerical Constraint Satisfaction Problems A numerical constraint satisfaction
problem (NCSP) is defined as a triple 〈v, [v], c〉 that consists of

– a vector of variables v = (v1, . . . , vn),
– an initial domain, in the form of a box, represented as [v] ∈ IRn, and
– a constraint c(v) := (f(v) = 0 ∧ g(v) ≥ 0), f : Rn → Re and g : Rn → Ri,

i.e., a conjunction of equations and inequalities.

A solution of an NCSP is an assignment of its variables v ∈ [v] that satisfies its
constraints. The solution set Σ of an NCSP is the region within its initial domain that
satisfies its constraints, i.e., Σ([v]) := {v ∈ [v] | c(v)}.

The Branch and Prune Algorithm The branch and prune algorithm [22] is the stan-
dard complete solving method for NCSPs. It takes a problem as an input and outputs
two sets of boxes, called respectively the undecided (U) and solution (S) boxes. It inter-
leaves a refutation phase, called prune, that eliminates inconsistent assignments within
a box, and an exploration phase, called branch, that divides a box into several sub-boxes
to be searched recursively, until a prescribed precision ε is reached. Algorithm 1 shows
a generic description of this scheme. It involves four subroutines: Extract (extraction
of the next box to be processed), Prunec (reduction of the domains based on refutation
of assignments that cannot satisfy a subset of constraint c), Provec (certification that a
box contains a solution of the constraint c), and Branch (division of the processed box
into sub-boxes to be further processed). Each of them has to be instantiated depending
on the problem to be solved. The procedure Prunec obviously depends on the type of
constraint in the problem (e.g. inequalities only), as well as on other characteristics of
the problem. The procedures Extract and Branch allow defining the search strategy
(e.g. breadth-first, depth-first, etc.) which may be tuned differently with regards to the
problem. The procedure Provec actually defines the aim of the branch and prune: Be-
ing a solution can take different meaning depending on the considered problem and
the question asked.5 For instance, if the question is to find the real solutions of a well-
constrained system of equations, then it will generally implement a solution existence
(and often uniqueness) theorem, e.g., Miranda, Brouwer or interval Newton [21], that
guarantees that the considered box contains a (unique) real solution; on the other hand,

5 For discrete CSPs, Provec usually checks the given assignment satisfies the constraint.



Algorithm 1 Branch and prune
Input: NCSP 〈v, ([v]), c〉, precision ε > 0
Output: pair of sets of boxes (U ,S)

1: L ← {[v]}, S ← ∅ and U ← ∅
2: while L 6= ∅ do
3: [v]← Extract(L)
4: [v]← Prunec([v])
5: if [v] 6= ∅ then
6: if Provec([v]) then
7: S ← S ∪ {[v]}
8: else if wid[v] > ε then
9: L ← L ∪ Branch([v])

10: else
11: U ← U ∪ {[v]}
12: end if
13: end if
14: end while
15: return (U ,S)

if the question is to compute the solution set of a conjunction of inequality constraints,
then it will usually implement a solution universality test that guarantees that every real
assignment in the considered box is a solution of the NCSP.

3.2 Parallel Robots, Singularities and Generalized Aspects

As illustrated in Section 2, the kinematic model of a parallel robot can be expressed as
a system of equations relating its end-effector pose x and its commands q:

f(x,q) = 0. (2)

The subspace restricted to the pose parameters x (resp. command parameters q) is
known as the workspace (resp. joint-space). The projection Σx (resp. Σq) of the so-
lution set of equation 2 is called the robot reachable workspace (resp. reachable joint-
space). The solution set Σ itself is called the kinematic manifold and lies in what is
known as the (pose-command) product space. In this paper, we restrict to the most
typical architectures which satisfy dimx = dimq = dim f = n, i.e., neither over-
nor under-actuated manipulators. Then, by the implicit function theorem, this system
of equations defines a local bijection between x and q provided the Jacobian matri-
ces Fx(x,q) and Fq(x,q) are non-singular. The configurations (x,q) that do not sat-
isfy these regularity conditions are called singularities, respectively serial or parallel
whether Fq(x,q) or Fx(x,q) is singular. These singularity conditions correspond to
the horizontal and vertical tangents of the kinematic manifold described in Section 2.

A key issue in robotics is to be able to control a robot avoiding singularities (in
particular reaching a parallel singularity can dramatically damage a robot). This leads
to the definition of generalized aspects [6] as maximal connected sets of nonsingular



configurations (x,q) that can all be reached without crossing any singularity. More
formally, the set of reachable nonsingular configurations of the robot is

{(x,q) ∈ Rn × Rn | f(x,q) = 0,detFx(x,q) 6= 0,detFq(x,q) 6= 0}. (3)

This corresponds e.g. to the left hand side diagram in Figure 2 where the four singu-
larities (green and red points) are removed. As illustrated by this diagram, the set (3) is
generally made of different maximal connected components. The generalized aspects
of the robots are defined to be these maximal connected singularity free components.

For a given generalized aspect A, its projection Ax is a maximal singularity-free
region in the robot reachable workspace. Knowing these regions allows roboticians
to safely plan robot motions: Any two poses in Ax are connected by at least one
singularity-free path. In addition, the study of aspects provides important information
about robot characteristics, e.g., if (x,q) and (x,q′) exist in an aspect A and q 6= q′,
i.e., two different commands yield the same pose, then the robot is said to be cusp-
idal [20]. Cuspidal robots can change working mode without crossing singularities,
yielding an extra flexibility in their usage. Finally, the computation of aspects allows
roboticians to make informed choices when designing a robot for a given task.

4 Description of the Method

The proposed method for the generalized aspect computation relies on solving the fol-
lowing NCSP whose solutions are the nonsingular configurations of the robot:〈

(x,q) , ([x], [q]) , f(x,q) = 0 ∧ detFx(x,q) 6= 0 ∧ detFq(x,q) 6= 0
〉
. (4)

Let Σ([x], [q]) be the solution set of this NCSP. Our method computes a set of boxes
partly covering this solution set, grouped into connected subsets that represent approx-
imations of the aspects of the considered robot. The computed boxes have to satisfy
the specific properties stated in Subsection 4.1. The corresponding branch and prune
instantiation is described in Subsection 4.2. The connections between the output boxes
have to be certified as described in Subsection 4.3.

4.1 From the NCSP Model to the Generalized Aspects Computation

We aim at computing a (finite) set of boxes S ⊆ IRn × IRn together with (undirected)
links N ⊆ S2, satisfying the following three properties:

(P1) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∃ a unique q ∈ [q], f(x,q) = 0;
(P2) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∀q ∈ [q],detFx(x,q) 6= 0 ∧ detFq(x,q) 6= 0;
(P3) ∀

(
([x], [q]), ([x′], [q′])

)
∈ N , ∃(x,q) ∈ ([x], [q]) ∩ ([x′], [q′]), f(x,q) = 0.

Property (P1) allows defining in each ([x], [q]) ∈ S a function κ([x],[q]) : [x] → [q]
that associates the unique command q = κ([x],[q])(x) with a given position x ∈ [x]
(i.e., the solution of the inverse kinematic problem locally defined inside ([x], [q])).
Property (P2) allows applying the Implicit Function Theorem to prove that κ([x],[q]) is



differentiable (and hence continuous) inside [x]. Therefore, for a given box ([x], [q]) ∈
S, the solution set restricted to this box

Σ([x], [q]) =
{(

x, κ([x],[q])(x)
)
: x ∈ [x]

}
(5)

is proved to be connected and singularity free, and is thus a subset of one generalized
aspect. These properties are satisfied by the motivating example output shown on the
right-hand side in Figure 2. Remark that given a box ([x], [q]) ∈ S and a position
x ∈ [x], the corresponding command κ([x],[q])(x) is easily computed using Newton
iterations applied to the system f(x, ·) = 0 with initial iterate q̃ ∈ [q] (e.g. q̃ = mid[q]).

Property (P3) basically entails that Σ([x], [q]) and Σ([x′], [q′]) are connected, and
are thus subsets of the same aspect. Finally, assuming Sk ⊆ S to be a connected com-
ponent of the undirected graph (S,N ), the solution set∪

([x],[q])∈Sk

Σ([x], [q]) (6)

is proved to belong to one generalized aspect. The next two subsections explain how to
instantiate the branch and prune algorithm in order to achieve these three properties.

4.2 Instantiaton of the Branch and Prune Algorithm

Pruning In our context, implementing the Prunec function as a standard AC3-like
fixed-point propagation of contracting operators that enforce local consistencies, like
the Hull [2, 15] or the Box consistencies [2, 10], is sufficient. Indeed, this allows an
inexpensive refutation of non-solution boxes. Moreover, stronger consistency can be
achieved at no additional cost thanks to the solution test described below: the interval-
Newton-based operator applied for certifying that a box covers an aspect can also refute
non-solution boxes and allows pruning with respect to the whole constraint.

Search Strategy The standard search strategy for NCSPs applies appropriately in our
context. Because boxes are output as soon as they are certified or they have reached
a prescribed precision, using a DFS approach to the Extract function is adequate and
avoids the risk of filling up the memory, unlike a BFS or LFS6 approach. The Branch
function typically selects a variable in a round-robin manner (i.e., all domains are se-
lected cyclically) and splits the corresponding interval at its midpoint (i.e., a domain is
split into two halves).

Solution Test The Provec procedure of Algorithm 1 has to return true only when Prop-
erty (P1) and Property (P2) are verified. The former is related to proving the existence
of solution which is performed using a parametric Newton operator as described in
the following paragraph. The latter requires checking the regularity of some interval
matrices as described in the next paragraph.

6 Largest-first search



Existence proof. The standard way to prove that a box ([x], [q]) satisfies Property
(P1) is to use a parametric interval Newton existence test [8, 9, 11]. Using the Hansen-
Sengupta [21] version of the interval Newton, the following sequence is computed

[q0] := [q], . . . , [qk+1] := [H]([qk]) ∩ [qk] (7)

where [H] is the Hansen-Sengupta operator applied to the system f([x], ·) = 0. As
soon as ∅ 6= [qk+1] ⊆ int[qk] is verified, the box ([x], [qk+1]) is proved to satisfy
Property (P1), and hence so does ([x], [q]) since the former is included in the latter.
However, because Algorithm 1 has to bisect the domain [q] for insuring convergence
by separating the different commands associated to the same pose,7 this test fails in
practice in most situations. This issue was overcome in [11], in the restricted context
of constraints of the form x = f(q), by computing [qk+1] := [H]([qk]) in (7), i.e.,
removing the intersection with [qk], in order to allow inflating and shifting [qk−1] if
necessary.8 As a result, the Hansen-Sengupta acts as a rigorous local search routine
allowing the sequence to converge towards the aimed solution set. An inflation factor
τ also has to be applied before the Hansen-Sengupta operator so as to ease the strict
inclusion test after each iteration. Hence, the computation of [qk+1] is as follows:

[q̃k] := mid[qk] + τ([qk]−mid[qk]) and [qk+1] := [H]([q̃k]). (8)

Then the condition ∅ 6= [qk+1] ⊆ int[q̃k] also implies Property (P1) and is likely to
succeed as soon as ([x], [q]) is small enough and close enough to some nonsingular
solution, which eventually happens thanks to the bisection process. A typical value for
the inflation factor is τ = 1.01; It would have to be more accurately tuned for badly
conditioned problems, but it is not the case of usual robots.

Regularity test. In order to satisfy the regularity constraints, the interval evaluation of
each Jacobian Fx and Fq over the box ([x], [q]) has to be regular. Testing the regularity
of interval matrices is NP-hard, so sufficient conditions are usually used instead. Here,
we use the strong regularity of a square interval matrix [A], which consists in checking
that C[A] is strongly diagonally dominant, where C is usually chosen as an approximate
inverse of the midpoint of [A] (see [21]).

4.3 Connected Component Computation

In order to distinguish boxes in S belonging to one specific aspect from the rest of the
paving, we use transitively the relation between linked boxes defined by Property (P3),
i.e., we have to compute connected components with respect to the links in N . This is
done in three steps:

Step 1. Compute neighborhood relations between boxes, i.e., determine when two
boxes share at least one common point;

Step 2. Certify aspect connectivity in neighbor boxes, i.e., check Property (P3);
Step 3. Compute connected components with respect to the certified links.
7 In [8], only problems where parameters have one solution were tackled, hence allowing suc-

cessfully using the parametric existence test (7).
8 This was already used in [9] in a completely different context related to sensitivity analysis,

and in a recently submitted work of the authors dedicated to the projection of a manifold.



Step 1. Computing Neighborhood Relations Two boxes ([x], [q]) and ([x′], [q′])
are neighbors if and only if they share at least one common point, i.e., ([x], [q]) ∩
([x′], [q′]) 6= ∅. The neighborhood relations between boxes N are obtained during the
branch and prune computation: After the current box has been pruned (line 4 of Alg. 1),
its neighbors are updated accordingly (it may have lost some neighbors); also, the boxes
produced when splitting the current box (line 9 of Alg. 1) inherit from (some of) the
neighbors of the current box, and are neighbors to one another. One delicate point in
managing neighborhood comes from the fact that pose or command parameters are of-
ten angles whose domains are restricted to a single period, e.g., [−π, π]; the periodicity
of these parameters has to be taken into account: Boxes are neighbors when they share
a common point modulo 2π on their periodic dimensions.

Step 2. Certifying Connectivity Between Neighbors Once the branch and prune al-
gorithm has produced the paving S and its neighboring information N , a post-process
is applied to filter fromN the links that do not guarantee the two neighbor boxes cover
the same aspect: it may happen that two neighbor boxes share no common point sat-
isfying the kinematic relation f = 0, e.g., if they each cover a portion of two disjoint,
but close, aspects. Asserting neighborhood Property (P3) requires again a certification
procedure: For any neighbor boxes

(
([x], [q]), ([x′], [q′])

)
∈ N , we verify

∃q ∈ ([q]∩[q′]), f(mid([x]∩[x′]),q) = 0. (9)

Indeed, for connectivity to be certified, it is sufficient to prove that the intersection of
neighbor boxes share at least one point from the same aspect. Because neighbor boxes
([x], [q]) and ([x′], [q′]) are in S, they satisfy Property (P1) and Property (P2), i.e.,
∀x∈([x]∩ [x′]),∃ a unique q∈ [q], f(x,q) = 0 and ∃ a unique q′∈ [q′], f(x,q′) = 0.
We need to check these unique values q and q′ are actually the same for one value x
inside [x] ∩ [x′], e.g., x = mid([x]∩[x′]). Using the certification procedure described
in Section 4.2 allows proving Equation (9). Each link is certified this way. If the certifi-
cation fails for a given link, it is removed from N .

Step 3. Computing Connected Components Given the setN of certified connections
between certified boxes in S, a standard connected component computation algorithm
(e.g., [13]) is applied in order to obtain a partition of S into Sk, each Sk covering a
single aspect of the considered robot.

5 Experiments

We present experiments on four planar robots with respectively 2 and 3 degrees of
freedom, yielding respectively a 2-/3-manifold in a 4/6 dimensional product space.

Robot Models Robot RPRPR (resp. RRRRR) has two arms, each connecting an anchor
point (A, B) to its end-effector (P ), each composed of a revolute joint, a prismatic
(resp. revolute) joint and again a revolute joint in sequence. The end-effector P lies at
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Fig. 3. RPRPR (top-left), RRRRR (top-right), 3-RPR (bottom-left) and 3-RRR (bottom-right).

the shared extremal revolute joint and is described as a 2D point (x1, x2) ∈ [−20, 20]2.
The prismatic (resp. initial revolute) joint in each arm is actuated, allowing to vary the
arms lengths (resp. angles). The arm lengths (resp. angles) are considered to be the
command (q1, q2) ∈ [2, 6]× [4, 9] (resp. [−π, π]2) of the robot. Using the architecture
parameters defined in [3] (resp. [6]), their kinematic equations are:

x2
1 + x2

2 − q21 = 0,
(x1 − 9)2 + x2

2 − q22 = 0,

and, respectively

(x1 − 8 cos q1)
2 + (x2 − 8 sin q1)

2 − 25 = 0,
(x1 − 9− 5 cos q2)

2 + (x2 − 5 sin q2)
2 − 64 = 0.

Robot 3-RPR (resp. 3-RRR, with the restriction that it has only a fixed orientation,
i.e., x3 = 0, its free orientation variant being too complex for the current implementa-
tion of the method) has three arms, each connecting an anchor point (A1, A2, A3) to its
end-effector (P ), each composed of a revolute joint, a prismatic (resp. revolute) joint
and again a revolute joint in sequence. The end-effector is a triangular platform whose
vertices are attached to the extremal revolute joints of the arms. The position parame-
ters (x1, x2, x3) represent the coordinates (x1, x2) ∈ [−50, 50]2 of one vertex of the
platform, and the angle x3 ∈ [−π, π] between its basis and the horizontal axis. The
prismatic (resp. initial revolute) joint in each arm is actuated, allowing to vary the arm
lengths (resp. angles). The arm lengths (resp. angles) are considered to be the command
(q1, q2, q3) ∈ [10, 32]3 (resp [−π, π]3) of the robot. Using the architecture parameters
defined in [7] (resp. [3]), their kinematic equations are:

x2
1 + x2

2 − q21 = 0,
(x1 + 17 cosx3 − 15.9)2 + (x2 + 17 sinx3)

2 − q22 = 0,
(x1 + 20.8 cos(x3 + 0.8822))2 + (x2 + 20.8 sin(x3 + 0.8822)− 10)2 − q23 = 0,



and, respectively

(x1 − 10− 10 cos q1)
2 + (x2 − 10− 10 sin q1)

2 − 100 = 0,
(x1 + 10 cosx3 − 10− 10 cos q2)

2+
(x2 + 10 sinx3 − 10− 10 sin q2)

2 − 100 = 0,

(x1 + 10
√
2 cos(x3 + π/4)− 10 cos q3)

2+

(x2 + 10
√
2 sin(x3 + π/4)− 10− 10 sin q3)

2 − 100 = 0.

Implementation We have implemented the proposed method described in Section 4
using the Realpaver library [12] in C++, specializing the classes for the different rou-
tines in the branch and prune algorithm. Given an NCSP that models a robot and a
prescribed precision ε, the implementation outputs certified boxes grouped by certified
connected components as explained in Section 4. Hence we can count not only the num-
ber of output boxes but also the number of output certified connected components. The
experiments were run using a 3.4GHz Intel Xeon processor with 16GB of RAM.

Results of the Method Table 1 provides some figures on our computations. Its columns
represent the different robots we consider. Line “# aspects” provides the theoretically
established number of aspects of each robot provided in [3, 6, 7]; This value is unknown
for the 3-RRR robot. Line “precision” gives the prescribed precision ε used in the com-
putation. Lines “# boxes” and “# CC” give respectively the number of boxes and the
number of connected components returned by our method. Line “time” gives the overall
computational time in seconds of the method, including the post-processes.

Table 1. Experimental results.

PRRP RPRPR RRRRR 3-RPR 3-RRR
# aspects 4 2 10 2 unknown
precision 0.1 0.1 0.1 0.3 0.008
# boxes 38 2 176 69 612 13 564 854 11 870 068
# CC 4 4 1 767 44 220 56 269
# CCfiltered 4 2 10 2 25
time (in sec.) 0.003 0.36 38 12 700 10 700

Note that despite the quite coarse precisions we have used, the number of output
boxes can be very large, due to the dimension of the search space we are paving. The
number of connected components is much smaller, but still it is not of the same order
as the theoretically known number of aspects, implying numerous disjoint connected
components does in fact belong to the same aspect. This is explained by the numer-
ical instability of the kinematic equations of the robots in the vicinity of the aspect
boundaries, which are singularities of the robot. Indeed, in these regions, the numerical
certification process cannot operate homogeneously, resulting in disconnected subsets
of certified boxes, separated either by non-certified boxes or by non-certified links.
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(d) 3-RRR

Fig. 4. Number of boxes in each connected component. Each bar corresponding to a connected
component shows the number of contained boxes (ordered largest first).

Under this assumption, each aspect should consist of, on the one hand, one large
connected component comprising wide boxes covering the regular inner part of the
aspect, and smaller and smaller boxes close to its boundary; And, on the other hand,
numerous small connected components comprising tiny boxes gathered on its boundary.
As a result, the number of boxes in the “boundary” components should be many times
smaller than that of the regular component in an aspect. It should thus be possible to
filter out these spurious tiny “boundary” components, based on the number of boxes
they contain, as they have no practical use in robotics.

In order to distinguish the relevant components from the spurious ones, we use
such a filtering post-process on the output of our method: Output connected compo-
nents are ordered by decreasing number of constituting boxes; The largest ratio, in
number of constituting boxes, between two consecutive components in this order is
computed, and used as a separation between relevant and spurious components. Apply-
ing this heuristic post-process, the number of obtained connected components, reported
at Line “# CCfiltered” in Table 1, reaches the theoretically known number of aspects in
the case of the robots we considered. Figure 4 illustrates the number of boxes of the
connected components retained after filtering (the dashed lines represent the computed
heuristic thresholds). This seems to indicate that our assumption is correct for the con-
sidered robots, i.e., that the major part of each aspect is indeed covered with a single
large, regular, connected component.

The retained connected components projected onto the x subspace are depicted in
Figures 5 and 6.9 They graphically correspond to the aspects of the robots for which
they are theoretically known (e.g., see [3, 4, 6, 7]). Note that the red boxes, that enclose
the singularity curves, seem to cross the aspects due to the projection, while they of
course do not cross in the product space.

Because the computation requires an exponentially growing time and space with
respect to the prescribed precision ε, we need to tweak it for an efficient and reliable as-
pect determination. For the first three robots, the precision ε = 0.1 gave precise enough

9 These figures are also available at http://www.dsksh.com/aspects/.
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Fig. 5. Computed 3D workspace of of 3-RPR (after filtering). First figure shows the undecided
boxes that cover the surface of the workspace. Second and third figures show the certified con-
nected components corresponding to the two aspects.

results to determine the correct number of aspects after filtering out the spurious compo-
nents. For 3-RPR, we needed the coarser precision ε = 0.3 to compute without causing
over-consumption of the memory. In the computation of 3-RRR, the threshold between
the regular and the spurious components was not as clear as for the other robots, even
though we improved the precision up to ε = 0.008. Enumerating the obtained compo-
nents from the largest ones, we assume that this robot (with fixed-orientation) has 25
aspects, the following components being likely to be a part of another component, i.e.,
spurious. This remains to be formally demonstrated.

6 Conclusion

The computation of aspects, i.e., singularity free connected sets of configurations, is a
critical task in the design and analysis of parallel robots. The proposed algorithm uses
numerical constraint programming to fully certify this computation. It is worth noting
that this is the first algorithm that automatically handles such a large class of kinematic
models with fully certifying the configuration existence, non-singularity and connec-
tivity: The only restriction of the algorithm is its computational complexity, which is
obviously exponential with respect to the number of degrees of freedom of the robot.
The presented experiments have reported the sharp approximations of aspects for some
realistic models: The correct number of aspects was computed for well-known planar
robots with two and three degrees of freedom. The more challenging 3-RRR, whose
number of aspects is still an open question, remains out of reach because of the com-
plexity of the computation, though we have obtained some promising results fixing the
orientation of its moving-platform. Tuning the propagation and search strategies of the
algorithms should allow fully analyzing it in the future. Finally, although experiments
have shown that the proposed method computes approximations of all aspects of well-
known robots, it cannot be used for actually rigorously counting the aspects, a challenge
we will address in the future on the basis of this method.
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Fig. 6. Projections into the 2D workspace of the computed aspects (after filtering). Green boxes
are certified; red and black boxes are undecided (i.e., do not satisfy Properties (P1) and (P2),
respectively).
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