213D Fa—1) Ty
— ZRRIEL=-ETE DS

logic, concurrency, constraints, X-calculi

Kazunori Ueda, Waseda University
(Joint work with many colleagues)

October 20, 2007

Copyright (C) 2002-2007 Kazunori Ueda 1

Computing paradigms must change . . .

20th century 21st century

multi-core / clusters /

von Neumann architecture Grid / distributed /

+ sequential computation

embedded / molecular / ...

¢ Turing Machines
(computability)

¢ RAM model (complexity)

¢ A-calculus (programming
languages)

¢ Floating point arithmetic
(numerical analysis)

Computing paradigms must cp+ Concurrency

Everywhere!

20th century

von Neumann architecture

+ sequential computation

mul’ri—ccc;re / clusters /
Grid / distributed /
embedded / molecular / ...

¢ Turing Machines
(computability)

¢ RAM model (complexity)

¢ A-calculus (programming
languages)

¢ Floating point arithmetic
(numerical analysis)

h at
ties?

What to tg
Univer

The FGCS Project (1982 - 1993)

¢ The Challenge: Bridging Knowledge Information
Processing and Parallel Processing

Knowledge Information Processing

??7? (= “Kernel Language”)

Parallel Computer Architecure

The FGCS Project (1982 - 1993)

¢ Working Hypothesis: Logic Programming

Knowledge Information Processing

Logic Programming

Parallel Computer Architecure

The FGCS Project (1982 - 1993)

¢ Outcome as of 1993:

Knowledge Information Processing

Logic Programming

Concurrent Logic Programming

Parallel Computer Architecure

7

Early History of Constraint-Based Concurrency

1980 Relational Language — Single ldea:
ik Dataflow
Concurrent Prolog l PARLOG @ Synchronization
1985 GTC
FCP Flat GHC - PARLOG | P-Prolog
| l ALPS l
- Andorra
J KL1 [Strand C(i:P Prolog
1990 ! | AI+<L
Moded Flat GHC CHR PCN Janus ‘
! l B
CC++ Il

timed/hybrid CC Oz/Mozart

8

Early History of Constraint-Based Concurrency

1980 CCS (Process Algebra)
SOS

1985 (Theoretical) CSP¢
ABCL
Linear Logic Natural Semantics

MultiLisp

Pi-Calculus
1990 LO

Offspring of Concurrent LP

¢ Concurrent Constraint Programming (late 1980's)
e Inspired by Constraint Logic Programming
® Logical view of communication (Ask / Tell)
e Generalization of data domains (esp. multisets)

¢ CHR (Constraint Handling Rules) (early 1990's)
e Allows multisets of goals in rule heads
® An expressive multiset rewriting language
e Many applications (esp. constraint solvers)

¢ Timed / Hybrid CCP (early-mid 1990's)
e Introduced time, defaults, and continuous change
e High-level language for timed and hybrid systems

Further Readings

¢ Logic Programming and Concurrency: a Personal
Perspective
- The ALP NewsLetter, Vol. 19, No. 2, 2006 (6 pages).

¢ Concurrent Logic/Constraint Programming: The
Next 10 Years
- In The Logic Programming Paradigm: A 25-Year
Perspective, Springer, 1999, pp. 53-71.

¢ The Fifth Generation Project: Personal
Perspectives
- Comm. ACM, Vol. 36, No. 3, 1993, pp. 65-76.

10

Slides from the Shakertown Meeting, April 1998

Concurrent Logic/Canstraint
Programming:
The Next 10 Years
— ——

Kazunoti Ueda -
Waseda University

11

Grand-Challenges

¢ A “A-calculus” in concurrency field
cf. X-calculus (calculus of«X)
X. m, action, join, gamma, ambient, ...
¢ Common platform for non-

conventional computation (parallel,
distributed, embedded, real-time, mobile)

¢ Type systems (in the broadest sense) and
frameworks of analysis for both logical-and
physical properties

12

Two, Approaches to
Addressing Novel Applications

¢ Synthetic
— More expressive power
— Integration of features
¢ Analytic

= ldentifying smaller fragments of LP with
nice and useful properties

cf. Turing machines vs. pushdown
automata

— Separation prior to integration

13

L P vs. Concurrent LP

¢ Concurrent LP. = LP + choice
= LP — completeness

227

Choice Is essential for specifying arbitration,
changes denotational semantics drastically,
but otherwise . . .

14

L P vs. Concurrent LP

¢ Concurrent LP
= LP +directionality (of dataflow)
= Logic
+ embedded concurrency control
4 Concurrent LP / CCP:

ask

can/should-share more interest with (1)L.P

15

Guarded Horn Clauses'and KL1

¢ Weakest Concurrent Constraint
Language
—ask + eventual tell (asynchronous)

parallel’composition
niding

nondeterministic choice

¢ A realistic language as well as a model
— value passing
— data structures (cf. CCS, CSP, . . .)

Logical Variables as
Communication Channels

¢ Data- and demand-driven communication
¢ Messages with reply boxes

¢ First-class.channels:(encoded:-as lists or
difference lists)

¢ Re
¢Im

nlicable read-only data

olicit redirection across sites

17

MEXT 21st Century COE Program (2002-2007) 18
Ultra-scalable Basic Software Technologies

downward upward
scalability mm m Km scalability

demed arxg ordinary scale) arxg dmed
techAosgies ex Won (PC/WS/clusters) |ex Won techAogies

embedded and 4
classical program- jmesssd \ide-
small/nanoscalel| ming rrl?odgls J wide areaJ

N

logical + physical software design = logical + physical
constraints logical considerations constraints
A A

.. software technology must address physical constraints -

From Turing machine and RAM models to universal models and
languages that integrate logic (correctness) and physics (cost)

Basic software must be seamless, simple, verifiable and r'obusTJ

19

LMNtal (pronounce: “elemental ")

environments, covering wide-area down to
embedded computing
e
L5 ="logical" links O-®

“Turing machine” for universal computing L

M = multisets / membranes @@ (%)

N = (nested) nodes
ta = transformation i t l

d
\
[= language &

20

LMNtal: What and Why

¢ Rule-based concurrent language for expressing
& rewriting both connectivity and hierarchy

® Connectivity and hierarchy are the two
structuring mechanisms found in many fields
ranging from society to biology, not to
mention the world of computing

¢ Computation is manipulation of diagrams
® Links express 1-to-1 connectivity
® Membranes express hierarchy and locality
® Allows programming by self-organization

Models and languages 21
with multisets and symmetric join

Petri Nets

Production Systems and RETE match
Graph transformation formalisms

CCS, CSP

Concurrent logic/constraint programming
Linda

Linear Logic languages

Interaction Net

Chemical Abst. Machine, reflexive CHAM, Join Calculus
Gamma model

Constraint Handling Rules

Mobile ambients

P-system, membrane computing
Amorphous computing

Bigraphical reactive system

L AR 2B 2B 2N 2B 2B 2% 2R 2% 2% 2R 2% 2R 2 2

Models and languages 2
with membranes + hierarchies

* . some versions
feature hierarchies

Chemical Abst. Machine

Mobile ambients

P-system, membrane computing ¢ Seal calculus
¢ Kell calculus

Bigraphical reactive system ¢ Brane calculi

L AR 2B 2B 2N 2B 2B 2% 2R 2% 2% 2R 2% 2R 2 2

23

Expressive power of hierarchical graphs

hub formed by channel formed by

................... membrane Y membrane !
YO #
- send
X

protected by
membr'cme

unproTecTed
recelve /ﬁ

asynchronous n-calculus

______________ 9'3§uen<ifuigﬁry {&D‘Q]
’L ©
=) LAY @

O/
cyclic structures map function

24

LMNtal: Overview

¢ Computational model based on hierarchical
graph rewriting
® Non-directional links (logical variables)
® Membranes
® Fine-graind concurrency

¢ Full-fledged impl. as a practical language

2] (2) 7]

[jﬁﬁlj) ﬁj\jﬁt&] [@EIE] [/1 E‘I'%:] 5 ARy HEIHEI] =14EgE ’. ' Native Code

JavafllEBR (A— F, HfTEH, ®, £Ya1—, FLL CILIE R I
LR, Bt F574hLFL—R, HEE) I Tomin e Bt e

LMNtal =5

25

LMNtal: Language and implementation

¢ Language

e Developed since 2002, tested from many angles

s K. Ueda and N. Kato, LNCS 3365, etc.

¢ Implementation
e Translator to Java running on JDK 1.5

= http://www.ueda.info.waseda.ac. jp/Imntal/

e 50,000 LOC, very low entry barrier
e Dedicated intermediate code

e Features: Module systems / Foreign-
language interface to Java / Visualizer /
interactive mode / optimizer /
library APIs etc.

L ir's L)) = [B]%]

aaaaaaa

C60 generated from 2 rules and 2 atoms

26

Graphs and Multisets

~atom (ternary)
’ ,bond [answer

s om e |
ofkC
oo A

molecule (process)

¢ Multisets T s

¢ Graphs

27

Text representation , Link (link variables)

¢ Graphs '.'(2,B/,/A), ' (3,C,B),
' '(5,D,C), "."(7.E,D), '[1'(E)

(OO —or-
A="(2,0(30(5, (7))
2 3 6 @ —or— A=[2 | [31[51[7 | 011

—or- A=[2,3,5,7]

[answer]
answer(A),
e +(B,C,A), *(D,E,B),
2(D), x(E), 5(C)
(X & ~or -

(2) (%) answer(+(*(2,x),5))

Text representation

¢ Multisets and cells

609009 o9 @ @

[tubel]
4 @)
: .

28

{100, 100, 100, 10, 10}

tube1(X), {+(X),
H'(A), 'O°(A,B), "H'(B),
H'(C), '0°(C,D), 'H'(D),
H(E), O'ER, H(E}
tubel({'O'('H',"H"),
O'CH'HY), 'O'CHH) })

graph copyinﬁg\

Pure lambda calculus (1) 5, giction

H=apply(lambda(A,B), C) :- H=B, A=C.

lambda(A,B)=cp(C,D,L), {+L,$q9} :-
C=lambda(E,F), D=lambda(G,H), A=cp(E,G,L1), B=cp(F,H,L2),
{{+L1},+L2,sub(S)}, {super(S),$q}.

apply(A,B)=cp(C,D,L), {+L,$qg} :-
C= apply(E,F), D= apply(G,H), A=cp(E,G,L1), B=cp(F,H,L2),
{+L1,+L2,%qg}.

cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},+L2,$9} :-
A=C, B=D, {{$p}.$q}.

cp(A,B,L1)=cp(C,D,L2), {{+L1,$p}.$q}, {+L2,top,$r} :-
C=cp(E,F,L3), D=cp(G,H,L4), {{+L3,+L.4,$p},$q},
A=cp(E,G,L5), B=cp(F,H,L6), {+L5,+L6,top,$r}.

$u=cp(A,B,L), {+L,$g} :- unary($u) | A=%u, B=%u, {$qg}.

30

Pure lambda calculus (2) graph destruction

lambda(A,B)=rm - A=rm, B=rm.

apply(A,B)=rm :- A=rm, B=rm.

cp(A,B,L)=rm, {+L,$q} :- A=rm, B=rm, {$q}.
cp(A,B,L)=rm, {{+L,$p}.$q9} :- A=rm, B=rm, {{$p}.$q}.
rm=rm :- .

$u=rm :- unary($u) | .

{{}$p,sub(S)}, {$q,super(S)} :- {$p.$q}.
A=cp(B,C) :- A=cp(B,C,L), {+L,top}.

{top} :-.

color management

31

Pure lambda calculus (3)

H=apply(lambda(A,B), C) :- H=B, A=C.

H H
|
(2,
-
SOV
A B A B

~ -
—————
\-\

sssss

_——

-

32

Pure lambda calculus (4) 3
Qs
¢ Church numeral 2: Af. Ax. f(fXx) '@

lambda(cp(FO,F1), —_

lambda(X,apply(FO,apply(F1,X))), Result).
¢ 3%: ((Am.An.nm) 3) 2)

N=n(2) :- N=lambda(cp(FO,F1),
lambda(X, apply(FO,apply(F1,X)))).

N=n(3) :- N=lambda(cp(FO,cp(F1,F2)),
lambda(X, apply(FO,apply(F1,apply(F2,X))))).

res=apply(apply(apply(n(2), n(3)), succ), 0).

H=apply(succ, I) :- int(l) | H=1+1.
. applying succ and O to
converting to numbers +he Church numeral 32

33

Pure lambda calculus (b)

) fa) {a (A AA
LE e

(apply-cp) (lambda-cp)

c B OO
I X

(cp-cpl) (Cp-cp2)

34

Recent development of the LMNTtal project

-
Challenges

~

* Provably correct and provably efficient parallel software

* Parallel verification

v

Implementation

* SLIM: high-speed, light-
weight backend based on
translation to C source
(coming soon)

~

/Founda’rions A

* Implementation with
guranteed complexity

)

_* Linear logic semantics

KNew directions A
* Engine for model
_ Ch@Cking Y,

