
1

21世紀のチューリングマシン
―多様化した計算概念の統合

logic, concurrency, constraints, X-calculi

Kazunori Ueda, Waseda University
(Joint work with many colleagues)

October 20, 2007

Copyright (C) 2002-2007 Kazunori Ueda

2

Computing paradigms must change . . .

20th century

von Neumann architecture
+ sequential computation

Turing Machines
(computability)
RAM model (complexity)
λ-calculus (programming
languages)
Floating point arithmetic
(numerical analysis)

21st century

multi-core / clusters /
Grid / distributed /
embedded / molecular / ...

3

Computing paradigms must change . . .

20th century

von Neumann architecture
+ sequential computation

Turing Machines
(computability)
RAM model (complexity)
λ-calculus (programming
languages)
Floating point arithmetic
(numerical analysis)

21st century

multi-core / clusters /
Grid / distributed /
embedded / molecular / ...

What to teach at
Universities?

Concurrency
Everywhere!

4

The FGCS Project (1982 – 1993)

The Challenge: Bridging Knowledge Information
Processing and Parallel Processing

Parallel Computer Architecure

Knowledge Information Processing

??? (= “Kernel Language”)

5

The FGCS Project (1982 – 1993)

Working Hypothesis: Logic Programming

Parallel Computer Architecure

Knowledge Information Processing

Logic Programming

6

The FGCS Project (1982 – 1993)

Outcome as of 1993:

Parallel Computer Architecure

Knowledge Information Processing

Concurrent Logic Programming

Logic Programming

7

Early History of Constraint-Based Concurrency

Relational Language

Concurrent Prolog PARLOG

GHC

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCNCHR

Single Idea:
Dataflow

Synchronization

8

Early History of Constraint-Based Concurrency

Relational Language

Concurrent Prolog PARLOG

GHC

Flat GHC

Moded Flat GHC

Oz/Mozart

AKL

FCP PARLOG

KL1 Strand

ALPS

CCP

CC++

Janus

Andorra
Prolog

1980

1985

1990

P-Prolog

timed/hybrid CC

PCN

CCS (Process Algebra)

(Theoretical) CSP

Linear Logic

Pi-Calculus

CHR

ABCL
MultiLisp

LO

SOS

Natural Semantics

9

Offspring of Concurrent LP

Concurrent Constraint Programming (late 1980’s)
Inspired by Constraint Logic Programming
Logical view of communication (Ask / Tell)
Generalization of data domains (esp. multisets)

CHR (Constraint Handling Rules) (early 1990’s)
Allows multisets of goals in rule heads
An expressive multiset rewriting language
Many applications (esp. constraint solvers)

Timed / Hybrid CCP (early-mid 1990’s)
Introduced time, defaults, and continuous change
High-level language for timed and hybrid systems

10

Further Readings

Logic Programming and Concurrency: a Personal
Perspective
- The ALP NewsLetter, Vol. 19, No. 2, 2006 (6 pages).

Concurrent Logic/Constraint Programming: The
Next 10 Years
- In The Logic Programming Paradigm: A 25-Year
Perspective, Springer, 1999, pp. 53-71.

The Fifth Generation Project: Personal
Perspectives
- Comm. ACM, Vol. 36, No. 3, 1993, pp. 65-76.

11

Concurrent Logic/Constraint
Programming:

The Next 10 Years

Kazunori Ueda
Waseda University

Slides from the Shakertown Meeting, April 1998

12

Grand Challenges

A “λ-calculus” in concurrency field
cf. X-calculus (calculus of X)
X: π, action, join, gamma, ambient, ...

Common platform for non-
conventional computation (parallel,
distributed, embedded, real-time, mobile)
Type systems (in the broadest sense) and
frameworks of analysis for both logical and
physical properties

13

Two Approaches to
Addressing Novel Applications

Synthetic
– More expressive power
– Integration of features

Analytic
– Identifying smaller fragments of LP with

nice and useful properties
cf. Turing machines vs. pushdown
automata

– Separation prior to integration

14

LP vs. Concurrent LP

Concurrent LP = LP + choice
= LP – completeness

Choice is essential for specifying arbitration,
changes denotational semantics drastically,
but otherwise . . .

15

Concurrent LP
= LP + directionality (of dataflow)
= Logic

+ embedded concurrency control
Moded Concurrent LP / CCP:

ask + tell + strong moding
can/should share more interest with (I)LP

LP vs. Concurrent LP

Guarded Horn Clauses and KL1

Weakest Concurrent Constraint
Language
– ask + eventual tell (asynchronous)
– parallel composition
– hiding
– nondeterministic choice

A realistic language as well as a model
– value passing
– data structures (cf. CCS, CSP, . . .)

17

Data- and demand-driven communication
Messages with reply boxes
First-class channels (encoded as lists or
difference lists)
Replicable read-only data
Implicit redirection across sites

Logical Variables as
Communication Channels

18

embedded and
small/nanoscale
embedded and
small/nanoscale

ordinary scale
（PC/WS/clusters）

＋
classical program-

ming models

ordinary scale
（PC/WS/clusters）

＋
classical program-

ming models
wide-areawide-area

software design ≈
logical considerations

logical + physical
constraints

dedicated
technologies

ad hoc
extension

Basic software must be seamless, simple, verifiable and robustBasic software must be seamless, simple, verifiable and robust

From Turing machine and RAM models to universal models and
languages that integrate logic (correctness) and physics (cost)
From Turing machine and RAM models to universal models and
languages that integrate logic (correctness) and physics (cost)

ad hoc
extension

dedicated
technologies

logical + physical
constraints

software technology must address physical constraints

m kmmm
upward

scalability
downward
scalability

MEXT 21st Century COE Program (2002-2007)
Ultra-scalable Basic Software Technologies

19

LMNtal (pronounce: “elemental ”)

L = “logical” links

M = multisets / membranes

N = (nested) nodes

ta = transformation

l = language

“Turing machine” for universal computing
environments, covering wide-area down to
embedded computing

“Turing machine” for universal computing
environments, covering wide-area down to
embedded computing

m

n

m

t a

l

l l

20

LMNtal : What and Why

Rule-based concurrent language for expressing
& rewriting both connectivity and hierarchy

Connectivity and hierarchy are the two
structuring mechanisms found in many fields
ranging from society to biology, not to
mention the world of computing

Computation is manipulation of diagrams
Links express 1-to-1 connectivity
Membranes express hierarchy and locality
Allows programming by self-organization

21Models and languages
with multisets and symmetric join

Petri Nets
Production Systems and RETE match
Graph transformation formalisms
CCS, CSP
Concurrent logic/constraint programming
Linda
Linear Logic languages
Interaction Net
Chemical Abst. Machine, reflexive CHAM, Join Calculus
Gamma model
Constraint Handling Rules
Mobile ambients
P-system, membrane computing
Amorphous computing
Bigraphical reactive system

22Models and languages
with membranes + hierarchies

Petri Nets
Production Systems and RETE match
Graph transformation formalisms *
CCS, CSP
Concurrent logic/constraint programming
Linda *
Linear Logic languages
Interaction Net
Chemical Abst. Machine, reflexive CHAM, Join Calculus
Gamma model
Constraint Handling Rules
Mobile ambients
P-system, membrane computing
Amorphous computing
Bigraphical reactive system

* : some versions
feature hierarchies

Seal calculus
Kell calculus
Brane calculi

23

Expressive power of hierarchical graphs

c

i o

m

+

i o

+

c m

s

X
X

mm

g

m

X

m

m

X

m

Y Y

Z

Y Y

i oX0
Y0

X

Y

A

hub formed by
membrane

n-to-1 comm.

cyclic structures

asynchronous π-calculus

map function

b

nn

nn

n

right
S

L2

L1

AL0

S1

channel formed by
membrane

closed unary
function

operation

buffer
header

send

receive

protected by
membrane unprotected

24

LMNtal : Overview

Computational model based on hierarchical
graph rewriting

Non-directional links (logical variables)
Membranes
Fine-graind concurrency

Full-fledged impl. as a practical language

LMNtal 言語モデル

Java処理系 (ガード，算術演算，型，モジュール，FLI，
省略構文，最適化，グラフィカルトレース，対話実行)

グラフィックス 並列・分散 検証 ロボット制御

C処理系
Micro Edition / SLIM

高性能λ計算

OCaml処理系

Native Codeπ計算 膜計算

? ? ? ? ?? ?? ?

25

LMNtal : Language and implementation

Language
Developed since 2002, tested from many angles

K. Ueda and N. Kato, LNCS 3365, etc.
Implementation

Translator to Java running on JDK 1.5
http://www.ueda.info.waseda.ac.jp/lmntal/

50,000 LOC, very low entry barrier
Dedicated intermediate code
Features: Module systems / Foreign-
language interface to Java / Visualizer /
interactive mode / optimizer /
library APIs etc.

C60 generated from 2 rules and 2 atoms

26

Graphs and Multisets

Graphs

Multisets

Note: multisets are graphs

2

.

3

.

5

.

7

. []

100 100 100 10 10

*

+

b

a x

answer
atom (ternary)

bond

molecule (process)

OH H

OH H

OH H

27

Text representation

Graphs

2

.

3

.

5

.

7

. []

*

+

5

2 x

answer

'.'(2,B,A), '.'(3,C,B),
'.'(5,D,C), '.'(7,E,D), '[]'(E)

– or –
A= '.'(2,'.'(3,'.'(5,'.'(7,'[]')))

– or – A=[2|[3|[5|[7|[]]]]
– or – A=[2,3,5,7]

answer(A),
+(B,C,A), *(D,E,B),

2(D), x(E), 5(C)
– or –

answer(+(*(2,x),5))

Link (link variables)

A B C D E

A

B C

D E

28

Text representation

Multisets and cells

100 100 100 10 10

OH H

OH H

OH H

{100, 100, 100, 10, 10}

tube1(X), {+(X),
'H'(A), 'O'(A,B), 'H'(B),
'H'(C), 'O'(C,D), 'H'(D),
'H'(E), 'O'(E,F), 'H'(F)}

– or –
tube1({ 'O'('H','H'),

'O'('H','H'), 'O'('H','H') })

tube1

+

29

Pure lambda calculus (1)

H=apply(lambda(A,B), C) :- H=B, A=C.
lambda(A,B)=cp(C,D,L), {+L,$q} :-

C=lambda(E,F), D=lambda(G,H), A=cp(E,G,L1), B=cp(F,H,L2),
{{+L1},+L2,sub(S)}, {super(S),$q}.

apply(A,B)=cp(C,D,L), {+L,$q} :-
C= apply(E,F), D= apply(G,H), A=cp(E,G,L1), B=cp(F,H,L2),
{+L1,+L2,$q}.

cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},+L2,$q} :-
A=C, B=D, {{$p},$q}.

cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},$q}, {+L2,top,$r} :-
C=cp(E,F,L3), D=cp(G,H,L4), {{+L3,+L4,$p},$q},
A=cp(E,G,L5), B=cp(F,H,L6), {+L5,+L6,top,$r}.

$u=cp(A,B,L), {+L,$q} :- unary($u) | A=$u, B=$u, {$q}.

graph copying
β-reduction

30

Pure lambda calculus (2)

lambda(A,B)=rm :- A=rm, B=rm.
apply(A,B)=rm :- A=rm, B=rm.
cp(A,B,L)=rm, {+L,$q} :- A=rm, B=rm, {$q}.
cp(A,B,L)=rm, {{+L,$p},$q} :- A=rm, B=rm, {{$p},$q}.
rm=rm :- .
$u=rm :- unary($u) | .

{{},$p,sub(S)}, {$q,super(S)} :- {$p,$q}.
A=cp(B,C) :- A=cp(B,C,L), {+L,top}.
{top} :- .

graph destruction

color management

31

Pure lambda calculus (3)

a

λ

H

A B
C

H

BA

C

H=apply(lambda(A,B), C) :- H=B, A=C.

32

lambda(cp(F0,F1),
lambda(X,apply(F0,apply(F1,X))), Result).

Pure lambda calculus (4)

Church numeral 2: λ f . λx. f (f x)

32 : (((λm.λn.nm) 3) 2)
N=n(2) :- N=lambda(cp(F0,F1),
lambda(X, apply(F0,apply(F1,X)))).

N=n(3) :- N=lambda(cp(F0,cp(F1,F2)),
lambda(X, apply(F0,apply(F1,apply(F2,X))))).

res=apply(apply(apply(n(2), n(3)), succ), 0).

H=apply(succ, I) :- int(I) | H=I+1.

converting to numbers
applying succ and 0 to
the Church numeral 32

λ

λ

a

a

c

33

Pure lambda calculus (5)

cn

a cn cn

a a cn

λ cn’ cn’

λ λ

cn

cn

(apply-cp)

cn

c0 cn cn

c0 c0

(cp-cp1)

(lambda-cp)

(cp-cp2)

34

Recent development of the LMNtal project

Foundations
• Implementation with

guranteed complexity
• Linear logic semantics

Implementation
• SLIM: high-speed, light-

weight backend based on
translation to C source
(coming soon)

New directions
• Engine for model

checking

Challenges
• Provably correct and provably efficient parallel software
• Parallel verification

