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Abstract. The Barendregt Cube (introduced in [3]) is a framework in
which eight important typed �-calculi are described in a uniform way.
Moreover, many type systems (like Automath [18], LF [11], ML [17],
and system F [10]) can be related to one of these eight systems. Further-
more, via the propositions-as-types principle, many logical systems can
be described in the Barendregt Cube as well (see for instance [9]).
However, there are important systems (including Automath, LF and
ML) that cannot be adequately placed in the Barendregt Cube or in
the larger framework of Pure Type Systems. In this paper we add a
parameter mechanism to the systems of the Barendregt Cube. In doing
so, we obtain a re�nement of the Cube. In this re�ned Barendregt Cube,
systems like Automath, LF, and ML can be described more naturally
and accurately than in the original Cube.

1 Introduction

In [3], Barendregt proposes a framework, now often called the Barendregt Cube,
in which eight important and well-known type systems are presented in a uni-
form way. This makes a detailed comparison of these systems possible. The
weakest systems of the Cube is Church's simply typed �-calculus �! [7], and
the strongest system is the Calculus of Constructions �C [8]. Girard's well-
known System F [10] �gures on the Cube between �! and �C. Moreover, via
the Propositions-as-Types principle (see [13]), many logical systems can be de-
scribed in the systems of the Cube, see [9].

In the Cube, we have in addition to the usual �-abstraction, a type forming
operator � . Briey, if A is a type, and B is a type possibly containing the
variable x, then �x:A:B is the type of functions that, given a term a : A,
output a value of type B[x := a]. Here a : A expresses that a is of type A,
and B[x := a] means the result of the substitution of a for x in B. If x does
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not occur in B, then �x:A:B is the type of functions from A to B, written
A! B. To the �-abstraction at the level of types corresponds �-abstraction at
the level of objects. Roughly speaking, if M is a term of type B (M and possibly
B containing x), then �x:A:M is a term of type �x:A:B. The Cube has two
sorts � (the set of types) and 2 (the set of kinds) with � : 2. If A : � (resp.
A : 2) we say A is a type (resp. a kind). All systems of the Cube have the same
typing rules. What distinguishes one system from another however is the set R
of pairs of sorts (s1; s2) allowed in the so-called type-formation or �-formation

rule, simply referred to as the rule (�). Each system of the Cube has its own
set R (which must contain (�; �)). A �-type can only be formed in a speci�c
system of the Cube if rule (�) is satis�ed for some (s1; s2) in the set R of that
system. The rule (�) is as follows:

(�)
� ` A : s1 �; x:A ` B : s2

� ` (�x:A:B) : s2
(s1; s2) 2 R

Note that as there are only two sorts, � and 2, and as each set R must
contain (�; �), there are only eight possible di�erent systems of the Cube. With
the rule (�), an important aspect of the Cube is that it provides a factorisation
of the expressive power of the Calculus of Constructions into three features:
polymorphism, type constructors, and dependent types:

{ (�; �) is the basic rule that forms types. All type systems of the Cube have
this rule.

{ (2; �) is the rule that takes care of polymorphism. Girard's System (also
known as �2) is the weakest system on the Cube that features this rule.

{ (2;2) takes care of type constructors. The system �! is the weakest system
on the Cube that features this rule.

{ (�;2) takes care of term dependent types. The system �P is the weakest
system on the Cube that features this rule.

Figures 1: : : 3 illustrate the various systems of the Cube.

Many other well-known type systems, like Automath [18], LF [11], and
ML [17] can be more or less related to one of the systems of the Barendregt
Cube. However, the relations between systems from \practice", and systems of
the Cube are not always perfect. Here are some examples illustrating this point:

Example 1 (Automath) All the Automath systems have a relatively re-
stricted typed �-calculus. But they are more expressive than their �-calculus
suggests at �rst sight. This is due to a strong parameter mechanism. Even if
one removes the typed �-calculus from Automath, a quite expressive system
\PAL", fully based on parameters, remains. See [18]. On the other hand, both
Aut-68 and Aut-QE have been related to the Cube. But the corresponding
Cube-systems are too weak to properly describe these Automath-systems (see
below). We will be able to place both Aut-68 and Aut-QE on our re�ned Cube.



Example 2 (LF) The system LF (see [11]) is often described as the system
�P of the Barendregt Cube. However, Geuvers [9] shows that the use of the
�-formation rule (�;2) is very restricted in the practical use of LF. We will
see that this use is in fact based on a parametric construct rather than on a
�-formation rule. Here again, we will be able to �nd a more precise position of
LF on the Cube which will be the center of the line whose ends are �! and �P .

Example 3 (ML) In ML (see [17]), types are written implicitly �a la Curry.
For example, instead of writing �x:A:B, one writes �x:B and the type checker
in ML looks for the type. It is well-known however from [4] that the implicit
and explicit type schemes can be related. In any case, for the purposes of our
paper, we only consider an explicit version of a subset of ML. Furthermore, we
do not treat recursive types nor the Y combinator. In ML, one can de�ne the
polymorphic identity by:

Id(�:�) = (�x:�:x) : (�! �): (1)

But in ML, it is not possible to make an explicit �-abstraction over � : � by:

Id = (��: � :�x:�:x) : (��: � :�! �) (2)

Those familiar with ML know that the type ��:� :�! � does not belong to the
language of ML and hence the �-abstraction of equation (2) is not possible in
ML. Therefore, we can state that ML does not have a �-formation rule (2; �).
Nevertheless, it clearly has some parameter mechanism (� acting as parameter
of Id) and hence ML has limited access to the rule (2; �) enabling equation (1)
to be de�ned. This means that ML's type system is none of those of the eight
systems of the Cube. We will �nd a place for the type system of ML on our
re�ned Cube. That place will be the intersection of the diagonals of the square
(of the Barendregt Cube) whose corners are �!, �2, �!, and �! (cf. Figure 5).

The above examples show that the Barendregt Cube of [4] cannot accommodate
well-known and practical type systems in a precise manner. In this paper, we
re�ne the Barendregt Cube by extending it with a parameter mechanism. Such
a mechanism allows the construction of terms of the form c(b1; : : : ; bn) where
c is a constant and b1; : : : :bn are terms. In traditional typed �-calculus such a
term would be written as cb1 : : : bn. This last term is constructed step by step.
First, c gets typed, then it is applied to b1, then the result is applied to b2, and
so on. This means that c, cb1, cb1b2, . . . , cb1 : : : bn are all legal terms of the
system. Hence, the attempt to internalise the parameter mechanism into typed
�-calculus as described above, is going too far. In the parametric situation, only
c(b1; : : : ; bn) is a term. Partial constructions of this term like c(b1; : : : ; bi) (for
i < n) are not a part of the syntax.

Adding parameters is an extension, and a useful one, since parametric con-
structs occur in many practical systems:

Example 4 As explained in Example 1, Automath has a parametric system.



Example 5 First-order predicate logic has no �-calculus. It only has parametric
constructs. In [15] it is shown that parametric constructs make it possible to
give a description of �rst-order predicate logic in type theory that is much more
accurate than the traditional approach in typed �-calculus.

Example 6 Parameters occur in many parts of computer science. For example,
look at the following Pascal fragment P with the function double:

function double(z : integer) : integer;

begin

double := z + z

end;

P could be represented by the de�nition

double = (�z:Int:(z+z)) : (Int! Int): (3)

Of course, this declaration can imitate the behaviour of the function perfectly
well. But the construction has the following disadvantages:

{ The declaration has as subterm the type Int ! Int. This subterm does
not occur in P itself. More general, Pascal does not have a mechanism to
construct types of the form A! B. Hence, the representation contains terms
that do not occur in Pascal;

{ double itself is not a separate expression in Pascal: you can't write x :=
double in a program body. One may only use the expression double in a
program, if one speci�es a parameter p that serves as an argument of double.

We conclude that the translation of P as given above is not fully to the point.
A parameter mechanism allows us to translate P in the parametric form

double(z : Int) = (z + z) : Int: (4)

This declaration in (4) does not have the disadvantages of (3) described above.

So for an optimal description of practical systems it may be an advantage to
study the \mild" extension with parametric constructs only.

In Section 2, we give a short description of the Barendregt Cube. In Section 3,
we extend the syntax of the Cube with parametric constructs, and propose types
systems that can type these new constructs. In Section 4 we show that the
proposed extension in fact leads to a re�nement of the Barendregt Cube: it
is split into eight smaller cubes. Section 5 places systems like LF, ML, and
Automath in the Re�ned Barendregt Cube. We conclude in Section 6.

2 The Barendregt Cube

In this section we shortly repeat the de�nition of the systems in the Cube. For
background information the reader may consult [4].



�! (�; �)
�2 (�; �) (2; �)
�P (�; �) (�;2)
�! (�; �) (2;2)
�P2 (�; �) (2; �) (�;2)
�! (�; �) (2; �) (2;2)
�P! (�; �) (�;2) (2;2)
�C (�; �) (2; �) (�;2) (2;2)

Fig. 1. Di�erent type formation conditions
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Fig. 2. The Barendregt Cube

System Related system Names, references

�! �� simply typed �-calculus; [7], [2] (Appendix A), [12] (Chapter 14)
�2 F second order typed �-calculus; [10], [20]
�P aut-QE [6]

LF [11]
�P2 [16]
�! POLYREC [19]
�! F! [10]
�C CC Calculus of Constructions; [8]

Fig. 3. Systems of the Barendregt Cube



De�nition 7 (Terms) Let V be a set of variables. The set T of terms is de�ned
by the following abstract syntax: T ::= � j 2 j V j �V :T :T j�V :T :T j T T :

De�nition 8 (Contexts) A context is a �nite (and possibly empty) list

x1 : A1; : : : ; xn : An (shorthand:
!

x :
!

A) of declarations of typed variables where
xi has type Ai. The set fx1; : : : ; xng of distinct variables is called the domain

dom

�
!

x :
!

A

�
of the context. The empty context is denoted hi. We use � , � as

meta-variables for contexts.

De�nition 9 (Systems of the Barendregt Cube) Let R be a subset of
f(�; �); (�;2); (2; �); (2;2)g such that (�; �) 2 R. The type system �R describes
in which ways judgments � `R A : B (or � ` A : B, if it is clear which R is
used) can be derived. � ` A : B states that A has type B in context � . The
typing rules are inductively de�ned as follows:

(axiom) hi ` � : 2

(start)
� ` A : s

�; x:A ` x : A
x 62 dom (� )

(weak)
� ` A : B � ` C : s

�; x:C ` A : B
x 62 dom (� )

(�)
� ` A : s1 �; x:A ` B : s2

� ` (�x:A:B) : s2
(s1; s2) 2 R

(�)
�; x:A ` b : B � ` (�x:A:B) : s

� ` (�x:A:b) : (�x:A:B)

(appl)
� ` F : (�x:A:B) � ` a : A

� ` Fa : B[x:=a]

(conv)
� ` A : B � ` B0 : s B =� B

0

� ` A : B0

There are eight di�erent possibilities for R leading to the systems in Figure 1.
The dependencies between these systems can be depicted in the Barendregt

Cube (see Figure 2). Furthermore, the systems in the Cube are related to other
type systems as is shown in the overview of Figure 3 which is taken from [4].

3 Parameters

We extend the eight systems of the Barendregt Cube with parametric constructs.
Parametric constructs are of the form c(b1; : : : ; bn) where b1; : : : ; bn are terms
of certain prescribed types. Just as we can allow several kinds of �-constructs
(via the set R) in the Barendregt Cube, we can also allow several kinds of
parametric constructs. This is indicated by a set P, consisting of tuples (s1; s2)
where s1; s2 2 f�;2g. (s1; s2) 2 P means that we allow parametric constructs
c(b1; : : : ; bn) : A where b1; : : : ; bn have types B1; : : : ; Bn of sort s1, and A is of



type s2. However, if both (�; s2) 2 P and (2; s2) 2 P then combinations of
parameters are possible. For example, it is allowed that B1 has type �, whilst
B2 has type 2.

First we describe the extended syntax.

De�nition 10 The set TP of parametric terms is de�ned together with the set
LV of lists of variables and the set LT of lists of terms as follows:

TP ::= V j S j C(LT ) j TP TP j �V :TP :TP j �V :TP :TP ;
LT ::= ? j hLT ; TP i:

where, as usual, V is a set of variables, C is a set of constants, and S = f�;2g is
a set of sorts. Formally, lists of terms are of the form h: : : hh?; A1i; A2i : : : Ani:
We usually write hA1; : : : ; Ani or even A1; : : : ; An. In a parametric term of the
form c(b1; : : : ; bn), the subterms b1; : : : ; bn are called the parameters of the term.

Let
!

x :
!

A denote x1:A1; : : : ; xn:An. We extend the usual de�nition of fv(A), the
set of free variables of a term A, to parametric terms:

fv(c(a1; : : : ; an)) =
Sn
i=1 fv(ai);

Convention 11 Names of bound variables and constants will always be chosen
such that they di�er from the free ones in a term.

Hence, we do not write (�x:A:x)x but (�y:A:y)x.
We extend the de�nition of substitution of a term a for a variable x in a

term b, b[x:=a], to parametric terms, assuming that x is not a bound variable of
either b or a:

c(b1; : : : ; bn)[x:=a] � c(b1[x:=a]; : : : ; bn[x:=a]);

De�nition 12 Given the set of parametric terms, we de�ne the set CP of para-
metric contexts (which we denote by �; � 0; : : : ) and the set LD of lists of variable
declarations as follows:

CP ::= ? j hCP ;V :TP i j hCP ; C(LV ):TP i
LD ::= ? j hLD;V :TP i:

Notice that LD � CP : all lists of variable declarations are contexts, as well.
Now we extend the typing rules of the Cube as follows:

De�nition 13 (The Barendregt Cube with parametric constants) Let
R be as in De�nition 9 and let P be a subset of f(�; �); (�;2); (2; �); (2;2)g,
such that (�; �) 2 P. The judgments that are derivable in �RP are determined
by the rules for �R of De�nition 9 and the following two rules where � �
x1:B1; : : : ; xn:Bn and �i � x1:B1; : : : ; xi�1:Bi�1:

(
!

C-weak) � ` b : B �;�i ` Bi : si �;� ` A : s
�; c(�) : A ` b : B

(si; s) 2 P

(
!

C-app)

�1; c(�):A;�2 ` bi:Bi[xj :=bj ]
i�1
j=1 (i = 1; : : : ; n)

�1; c(�):A;�2 ` A : s (if n = 0)
�1; c(�):A;�2 ` c(b1; : : : ; bn) : A[xj :=bj ]

n
j=1



where the c that is introduced in the
!

C-weakening rule is assumed to be � -fresh.

At �rst sight one might miss a
!

C-introduction rule. Such a rule, however, is
not necessary, as c (on its own) is not a term. c can only be (part of) a term in

the form c(b1; : : : ; bn), and such terms can be typed by the (
!

C-app) rule.

Constant weakening (
!

C-weak) explains how we can introduce a declaration
of a parametric constant in the context. The context � indicates the arity of the
parametric constants (the number of declarations in �), and of which type each
parameter must be (xj : Bj in � means the j-th parameter must be of type Bj).

The extra condition �1; c(�):A;�2 ` A : s in the (
!

C-app) for n = 0 is
necessary to prevent an empty list of premises. Such an empty list of premises
would make it possible to have almost arbitrary contexts in the conclusion. The
extra condition is needed to assure that the context in the conclusion is a legal.

A term a is legal (with respect to a certain type system) if there are � , b such
that either � ` a : b or � ` b : a is derivable (in that type system). Similarly, a
context � is legal if there are a, b such that � ` a : b.

The parametric type system of De�nition 13 has similar meta-theoretical
properties as the systems of the Barendregt Cube. We list them below. The
proofs are similar to those of the Barendregt Cube (see [14]).

Lemma 14 Assume � ` b : B. Then dom (b) ;dom (B) � dom (� );

Lemma 15 (Generation Lemma)

1. If � ` s : C then s � �, C =� 2 and if C 6� 2 then � ` C : s0 for some sort

s0.

2. If � ` x : C then there is s 2 S and B =� C such that � ` B : s and

(x:B) 2 � ;

3. If � ` (�x:A:B) : C then there is (s1; s2) 2 R such that � ` A : s1,
�; x:A ` B : s2 and C =� s2;

4. If � ` (�x:A:b) : C then there is s 2 S and B such that � ` (�x:A:B) : s;
�; x:A ` b : B; and C =� (�x:A:B);

5. If � ` Fa : C then there are A;B such that � ` F : (�x:A:B), � ` a : A
and C =� B[x:=a].

6. If � ` c(b1; : : : ; bn) : D then there exist s, � � x1 : B1; : : : ; xn : Bn and

A such that � ` D =� A[xj :=bj ]
n
j=1, and � ` bi:Bi[xj :=bj ]

i�1
j=1. Moreover,

� � �1; c(�) : A;�2 and �1; � ` A : s. Finally, there are si 2 S such that

�;�i ` Bi : si and (si; s) 2 P.

Lemma 16 (Correctness of Types) If � ` A : B then B � s or � ` B : s
for some s 2 S.

Lemma 17 (Subterm Lemma) If A is legal and B is a subterm of A, then

B is legal.

Lemma 18 (Subject Reduction) If � ` A : B and A!� A
0 then � ` A0 : B.



Lemma 19 (Unicity of Types) If � ` A : B1 and � ` A : B2, then B1 =�

B2.

Theorem 20 (Strong Normalisation) If � ` A : B then A and B are �-

strongly normalising, that is: any �-reduction path of A or B is �nite.

4 The Re�ned Barendregt Cube

The systems of De�nition 13 have six degrees of freedom: three for the possible
choices of (�;2), (2; �) and (2;2) 2 R and three for the possible choices of
(�;2), (2; �), and (2;2) 2 P. However, these choices are not independent since
constructs that can be made with P-rule (s1; s2) can be imitated in a typed
�-calculus with R-rule (s1; s2). This means that the parameter-free type system
with R = f(�; �); (�;2)g is at least as strong as the type system with parameters
with the same set R, but with P = f(�; �); (�;2)g. We make this precise in
Theorem 26.

The insight of Theorem 26 can be expressed by depicting the systems with
parameters of De�nition 13 as a re�nement of the Barendregt Cube. As in the
Barendregt Cube, we start with the system �!, which hasR = f(�; �)g and P =
f(�; �)g. Adding an extra element (s1; s2) toR still corresponds to moving in one
dimension in the Cube. Now we add the possibility of moving in one dimension in
the Cube but stopping half-way. We let this movement correspond to extending
P with (s1; s2). This \going only half-way" is in line with the intuition that �-
formation with (s1; s2) can imitate the construction of a parametric construct
with (s1; s2). In other words, the system obtained by \going all the way" is at
least as strong as the system obtained by \going only half-way".

The re�nement of the Barendregt Cube is depicted in Figure 4. We now make
the above intuition that \R can imitate P" precise.

De�nition 21 Consider the system �RP. We call this system parametrically

conservative if (s1; s2) 2 P implies (s1; s2) 2 R.

Let �RP be parametrically conservative. In order to show that the parameter-
free system �R is at least as powerful as �RP, we need to remove the parameters
from the syntax of �RP. To do so, we replace the parametric application in a
term c(b1; : : : ; bn) by function application cb1; : : : ; bn:

De�nition 22 De�ne the parameter-free translation ftg of a term t 2 TP by:
fag � a if a � x or a � s;

fc(b1; : : : ; bn)g � c fb1g � � � fbng ;

fabg � fag fbg ;

fOx:A:Bg � Ox: fAg : fBg if O is � or �

De�nition 23 We extend the de�nition of f g to contexts:
fhig � hi;

f�; x:Ag � f�g ; x: fAg ;

f�; c(�):Ag � f�g ; c(): f
Q
�:Ag :
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Fig. 4. The re�ned Barendregt Cube

Here, � � x1 : B1; : : : ; xn : Bn, and
Q
�:A is shorthand for

Qn

i=1 xn : Bi:A.

To demonstrate the behaviour of f g under �-reduction, we need a lemma
that shows how to manipulate with substitutions and f g. The proof is straight-
forward, using induction on the structure of a.

Lemma 24 For a; b 2 TP : fa[x:=b]g � fag [x:= fbg]. �

The mapping f g maintains �-reduction:

Lemma 25 a!� a
0 if and only if fag !� fa

0g.

Proof: Follows easily by induction on the structure of a, and Lemma 24. �

Now we show that f g embeds the parametrically conservative �RP in the
parameter-free �R:

Theorem 26 Let �RP be parametrically conservative. If � `RP a : A then

f�g `R fag : fAg :

Proof: Induction on the derivation of � `RP a : A. By Lemma 24, all cases are

easy except for (
!

C-weak). So: assume the last step of the derivation was

� `RP b : B �;�i `RP Bi : si �;� `RP A : s

�; c(�):A `RP b : B
(si; s) 2 P :



By the induction hypothesis, we have:

f�g `R fbg : fBg ; (5)

f�;�ig `R fBig : si; (6)

f�;�g `R fAg : s: (7)

�RP is parametrically conservative, so (si; s) 2 R for i = 1; : : : ; n. Therefore,
we can repeatedly use the �-formation rule, starting with (7) and (6), obtaining

f�g `R
Qn

i=1 xi: fBig : fAg : s: (8)

Notice that
Qn

i=1 xi: fBig : fAg � f
Q
�:Ag. Using (

!

C-weak) on (5) and (8) gives

f�g ; c(): f
Q
�:Ag `R fbg : fBg : �

5 Systems in the Re�ned Barendregt Cube

In this section, we show that the Re�ned Barendregt Cube enables us to com-
pare some well-known type systems with systems from the Barendregt Cube. In
particular, we show that Aut-68, and Aut-QE, LF, and ML, can be seen as
systems in the Re�ned Barendregt Cube. This is depicted in Figure 5 on page
14, and motivated in the three subsections below.

5.1 Automath

The Automath-systems (see [18]) all heavily rely on parametric constructs.
1) Aut-68: The typed �-calculus of one of the most elementary systems of Au-
tomath, Aut-68, is relatively simple and corresponds to �!: it has only (�; �)
as a �-formation rule. This should suggest that Aut-68 has comparable expres-
siveness �!. But for the parametrical constructions there are no limitations in
Aut-68 whose parameter mechanism has the following features:

{ A line (� ; k; pn; type) in a book is nothing more that the declaration of a
parametric constant k(� ):�. There are no demands on the context � , and
this means that for a declaration x:A 2 � we can have either A � type (in
Cube-terminology: A � �, so A : 2) or A:type (in Cube-terminology: A : �).
We conclude that aut-68 has the parameter rules (�;2) and (2;2);

{ Similarly, lines of the form (� ; k; pn;�2) where �2:type, represent para-
metric constants that are constructed using the parameter rules (�; �) and
(2; �).

This suggests that aut-68 can be represented by the parametric system with
R = f(�; �)g and P = f�;2g � f�;2g. The Aut-68 system can be found in the
exact middle of the re�ned Barendregt Cube.

2) Aut-QE: Something similar holds for the more extensive system Aut-QE.
This system has an extra �-formation rule: (�;2) additionally to the rules of



Aut-68. This means that for representing this system, we need the �-formation
rules R = f(�; �); (�;2)g, and parametric rules (s1; s2) for s1; s2 2 f�;2g. This
system is located in the middle of the right side of the Re�ned Barendregt Cube,
exactly in between �C and �P.

3) Pal: It should be noted that the Automath languages are all based on
two concepts: typed �-calculus and a parameter/de�nition mechanism. Both
concepts can be isolated: it is possible to study �-calculus without a parame-
ter/de�nition mechanism (for instance via the format of Pure Type Systems or
the Barendregt Cube of [4]), but one can also isolate the parameter/de�nition
mechanism from Automath. One then obtains a language that is called Pal,
the \PrimitiveAutomath Language". It cannot be described within the Re�ned
Barendregt Cube (as all the systems in that cube have at least some basic �-
calculus in it), but it can be described as a system with the following parametric
speci�cation: R = ?; P = f(�; �); (�;2); (2; �); (2;2)g.

This parametric speci�cation corresponds to the parametric speci�cations
that were given for the Automath systems above, from which the �-formation
rules are removed.

5.2 LF

Geuvers [9] initially describes the system LF (see [11]) as the system �P of the
Cube. However, the use of the �-formation rule (�;2) is quite restrictive in most
applications of LF. Geuvers splits the �-formation rule in two:

(�0)
�; x:A `M : B � ` �x:A:B : �

� ` �0x:A:M : �x:A:B
;

(�P )
�; x:A `M : B � ` �x:A:B : 2

� ` �Px:A:M : �x:A:B
:

System LF without rule (�P ) is called LF
�. �-reduction is split into �0-reduction

and �P -reduction:
(�0x:A:M)N !�0 M [x:=N ];

(�Px:A:M)N !�P M [x:=N ]:

Geuvers then shows that

{ If M : � or M : A : � in LF, then the �P -normal form of M contains no �P ;
{ If � `LF M : A, and �;M;A do not contain a �P , then � `LF� M : A;
{ If � `M : A(: �), all in �P -normal form, then � `LF� M : A(: �).

This means that the only real need for a type �x:A:B : 2 is to be able to
declare a variable in it. The only point at which this is really done is where the
bool-style implementation of the Propositions-As-Types principle pat is made:
the construction of the type of the operator Prf (in an unparameterised form)
has to be made as follows:

prop:� ` prop: � prop:�; �:prop ` �:2

prop:� ` (��:prop:�) : 2
:



In the practical use of LF, this is the only point where the �-formation rule
(�;2) is used. No �P -abstractions are used, either, and the term Prf is only
used when it is applied to a term p:prop. This means that the practical use
of LF would not be restricted if we introduced Prf in a parametric form, and
replaced the �-formation rule (�;2) by a parameter rule (�;2). This puts (the
practical applications of) LF in between the systems �! and �P in the Re�ned
Barendregt Cube.

5.3 ML

In ML (cf. [17]) one can de�ne the polymorphic identity by (we use the notation
of this paper, whereas in ML, the types and the parameters are left implicit):

Id(�:�) = (�x:�:x) : (�! �):

But we cannot make an explicit �-abstraction over �:�. That is, the expression

Id = (��: � :�x:�:x) : (��: � :�! �)

cannot be constructed in ML, as the type ��:�:� ! � does not belong to the
language of ML. Therefore, we can state that ML does not have a �-formation
rule (2; �), but that it does have the parametric rule (2; �).

Similarly, one can introduce the type of lists and some operations by:
List(�:�) : �;
nil(�:�) : List(�);
cons(�:�) : �! List(�)! List(�);
but the expression ��:�:� does not belong to ML, so introducing List by

List : ��:�:�

is not possible in ML. We conclude that ML does not have a �-formation rule
(2;2), but only the parametric rule (2;2). Together with the fact that ML has
a �-formation rule (�; �), this places ML in the middle of the left side of the
re�ned Barendregt Cube, exactly in between �! and �!.

6 Conclusion

In this paper, we observed that many existing type systems do not �t exactly in
the Barendregt Cube. In particular, we explained that previous attempts to de-
scribe LF and Automath were not very successfull. We noted that Automath
uses parameters heavily, and that there are some types that are only used in
special situations by LF and that those types and situations could be covered
by parameters. In addition, we considered an explicitly typed version of ML and
noted that there too, ML cannot occupy any of the corners of the cube. The
reason being that, ML (as well as LF and Automath) allows �-types, but not
all of them. In any corner of the Cube, as soon as an abstraction of a sort is
allowed, all abstractions of that sort are allowed too.
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Fig. 5. LF, ML, Aut-68, and Aut-QE in the re�ned Barendregt Cube

Our above reasoning led us to propose a re�nement of the Cube where not
only the eight corners can be inhabited, but also points half way between these
corners. This way, Automath, LF, and ML �nd more accurate locations on
the Cube to represent their typing systems. We described an extension of the
Barendregt Cube with parameters. This is more a re�nement than an extension,
as new systems that are introduced can be depicted by dividing the traditional
Barendregt Cube into eight sub-cubes. This is due to the fact that parametric
constructs can be imitated by constructions of typed �-calculus (see Theorem 26)
but not the other way around.

We showed that our re�nement makes it possible to:

{ Give a better description of practical type systems like LF and ML than the
systems in the usual Cube.

{ Position systems that could not be placed in the usual Cube (several
Automath-systems).

This makes it possible to give a more detailed comparison between the expres-
siveness of several type systems.

Not only can we add parameters to the Barendregt Cube resulting in an
elegant and more re�ned hierarchy of systems, but we can follow a similar con-
struction to the more generalised notion of Pure Type Systems (PTSs) (see [4]).
In addition, we can add de�nitions (see [5, 22]) and parametric de�nitions to our
above re�nement of the Cube and even to the re�nements of PTSs, giving a very
general hierarchy that can express more precisely and elegantly many practical
systems and that give a full description of Automath.
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