
A simply typed context calculus

with �rst-class environments

Masahiko Sato1, Takafumi Sakurai2, and Yukiyoshi Kameyama1

1 Graduate School of Informatics, Kyoto University
fmasahiko,kameyamag@kuis.kyoto-u.ac.jp

2 Department of Mathematics and Informatics, Chiba University
sakurai@math.s.chiba-u.ac.jp

Abstract. We introduce a simply typed �-calculus ��" which has both
contexts and environments as �rst-class values. In ��", holes in contexts
are represented by ordinary variables of appropriate types and hole �ll-
ing is represented by the functional application together with a new ab-
straction mechanism which takes care of packing and unpacking of the
term which is used to �ll in the holes of the context. ��" is a conserva-
tive extension of the simply typed ��-calculus, enjoys subject reduction
property, is con
uent and strongly normalizing.
The traditional method of de�ning substitution does not work for our
calculus. So, we also introduce a new method of de�ning substitution.
Although we introduce the new de�nition of substitution out of neces-
sity, the new de�nition turns out to be conceptually simpler than the
traditional de�nition of substitution.

1 Introduction

Informally speaking, a context (in �-calculus) is a �-term with some holes in it.
For example, writing [] for a hole, �y: [] is a context, and by �lling the hole
in it with x + y, we get �y: x + y. By this operation, the variable y in x + y
gets captured and becomes bound in �y: x+ y, and the variable x remains to be
free. So, unlike substitution, hole �lling may introduce new and intended bound
variables.

Recently there have been several attempts to formalize the notion of context
and thereby make computing with contexts possible. For example, Talcott [16],
Lee-Friedman [8], Dami [5], Hashimoto-Ohori [7], Sands [13], Mason [9] and
Bognar-de Vrijer [3] made notable contributions. However, as far as we know,
there is as yet no proposal of a language which has contexts as �rst-class values
and which is at the same time pure in the following sense. We understand that a
functional language is pure1 if (i) it is a conservative extension of the untyped or
simply typed ��-calculus, (ii) con
uent and (iii) strongly normalizing (SN) if the
language is typed and has preservation of strong normalization (PSN) property
if the language is untyped. The conservative extension property guarantees that

1 We have introduced this notion of purity in [15].

the language is logically well-behaved and the con
uence property and SN or
PSN would guarantee that the language is computationally well-behaved.

In this paper, we introduce the calculus ��" (� is for context and " is for
environment) which is pure in the above sense and which has contexts and envi-
ronments as its �rst class values, so that we can bind contexts and environments
to variables and return them as the values of computations. ��" is a simply
typed calculus, and in ��", holes are represented by ordinary variables of appro-
priate types (which we will call hole types) and hole �lling is represented by the
functional application together with a new abstraction mechanism which takes
care of packing and unpacking of the term which is used to �ll in the holes of
the context.

We now illustrate some of the diÆculties we face in formalizing the notion
of context, and explain our solution informally by relating it to previous works.
First, let us consider the context:

a[] � �x: (�y: x+ [])3:

If we �ll the hole in a[] with the term x+ y, we get

a[x+ y] � �x: (�y: x+ (x + y))3:

By �-reducing it, we can convert a[x + y] to �x: x + (x + 3). Since we wish to
compute with contexts, we would also like to reduce the �-redex (�y: x + [])3
in a[]. If we reduce it na��vely, we get x + [], so that a[] reduces to �x: x + [].
Now, if we �ll the hole in �x: x + [] with x + y, we get �x: x + (x + y). This
shows that hole �lling and �-reduction do not commute if we de�ne hole �lling
and �-reduction as above. In this example, we can note that the hole in the
original context a[] is within the scope of �x and �y, while the hole in the
�-reduced context is only within the scope of �x. This means that a part of the
information as to which variables should be captured at the hole is lost if one
reduces a �-redex which has a hole in it. Hashimoto-Ohori [7] did not solve this
problem. Instead they put restriction on the �-reduction rule in their system
and prohibited such �-reductions like the above example.

To solve this problem, we introduce the type AE which represents the set
of objects obtained by abstracting objects of type A with respect to a set E =
fx1; : : : ; xng of variables. Canonical objects of type AE are abstracts of the form
�E: a where a is of type A and the �E binder declares that the variables in E
should be understood as local in a. Moreover, E is also a type and its canonical
elements are environments of the form fa1=x1; : : : ; an=xng. Then, an object a of
type AE can be instantiated to an object b of type A by applying the abstract
a to an environment e = fa1=x1; : : : ; an=xng. We write a

�
e for the application

of the abstract a to the environment e. For example, (�fx; yg: x+ y)
�
f1=x; 2=yg

can be reduced to 3.

In this setting, we can represent the above context a[] as

C � �x: (�y: x+X
�
fx=x; y=yg)3

where X represents the hole and its type is of the form Afx;yg. Now, suppose
that we wish to �ll the hole X with the term x + y. Then, we can achieve this
hole �lling by substituting �fx; yg: x + y for X in C. By this substitution, we
have:

D � �x: (�y: x+ (�fx; yg: x+ y)
�
fx=x; y=yg)3:

D can be reduced to �x: (�y: x + (x + y))3, which can be further reduced to
�x: x + (x + 3) as expected. Let us now see what happens if we reduce the
�-redex in C �rst and then �ll the hole with x + y. By �-reducing C, we get
�x: x+X

�
fx=x; 3=yg. Substituting �fx; yg: x+ y for X in this term, we have

�x: x+ (�fx; yg: x+ y)
�
fx=x; 3=yg;

which we can further reduce to �x: x+ (x+3). We can thus see that hole �lling
and �-reduction commute in this case.

The idea of decorating a hole with an environment is due to Talcott [16],
and Mason [9] also used this idea in his calculus of contexts that has contexts as
�rst-class values. However, in Mason's system, environments appear in a term
containing holes only as annotations. This means that such environments are
objects outside the system. We present our calculus ��" as an extension of
�" [15] which is a simply typed �-calculus that has environments as �rst class
values. So, environments are �rst-class objects in ��". Moreover, Mason de�nes
hole �lling only as a meta-level operation. Therefore, although contexts are �rst-
class values in his system, one cannot compute hole �lling within his system. In
contrast to this, we can compute hole �lling within our system. For example, we
can express the above example of �lling a[] with x+ y as follows:

(�X: �x: (�y: x+X
�
fx=x; y=yg)3)(�fx; yg: x+ y):

We can compute the above term in ��", and we get �x: x+ (x+ 3).
We now turn to another problem in the formalization of contexts. Consider

the informal context �x: []. If we �ll the hole in this context with x, we get
the term �x: x. This term is �-equivalent to �y: y. What is the context which
is �-equivalent to �x: [] and which, when �lled with x, becomes �y: y? It is
certainly preferable that such a context exists, since, otherwise, hole �lling and
�-conversion will not always commute. A na��ve attempt is to �-convert �x: [] to
�y: []. But this does not work, since �lling �y: [] with x results in �y: x which
is not �-equivalent to �y: y. We can solve this problem easily in our setting as
follows. In ��", the context �x: [] is written as �x: X

�
fx=xg and this context

is �-equivalent to �y: X
�
fy=xg. Filling these holes in these two contexts with

x is achieved by substituting �fxg: x for X in these contexts, and the results
are �x: (�fxg: x)

�
fx=xg and �y: (�fxg: x)

�
fy=xg respectively. Then they are

reduced to �x: x and �y: y as expected.
In this paper we also introduce a new method of de�ning substitution. As

we explain below, the traditional method of de�ning substitution does not work
for our calculus. We are therefore forced to use the new method, but, we believe
our new de�nition of substitution is mathematically cleaner than the traditional

method of de�ning substitution. We now give an example where the traditional
method of de�ning substitution fails to work. By way of comparison, we �rst
consider the � term a � �x: x + y. What is the result of substituting x for y
in a? We must be careful enough to avoid the variable clash and rename the
bound variable x in a to a fresh variable, say, z, and we get �z: z + x as the
result of the substitution. Now consider the abstract b � �fxg: x + y. What
will be the result c of substituting x for y in b? If we perform substitution by
the same method as above, we get �fzg: z + x which is wrong for the following
reason. Note that b

�
f2=xg reduces to 2 + y. So, c

�
f2=xg must reduce to 2 + x.

However, we cannot reduce (�fzg: z + x)
�
f2=xg since the argument f2=xg does

not match the binder �fzg. By the same token, the term (�fzg: z + x)
�
f2=xg

is not even typable. We can thus see that, unlike variables bound by the �
binder, we cannot rename variables bound by the � binder. To cope with this
situation, we introduce a new method of de�ning substitution where we rename
free variables (if necessary) to achieve the capture avoiding substitution. So, our
substitution will yield �fxg: x +]x as the result of substituting x for y in b,
where]x in the scope of the �fxg binder is a renamed form of the free variable
x and it stands for the free variable x.

The paper is organized as follows. In section 2, we introduce the type system
of ��", and introduce derivation rules that are used to de�ne (typed) terms
together with their types and free variables. There, we de�ne variables so that
they naturally contain both ordinary variables with names and variables as de
Bruijn indices. In section 3, we de�ne substitution as a meta-level operation. In
section 4, we give reduction rules of ��" and give some examples of computations
in ��". In section 5, we show that ��" enjoys a number of desirable properties
such as con
uence and strong normalizability. In section 6, we give concluding
remarks. Due to lack of space, we have omitted almost all proofs. A full version of
this paper with proofs is accessible at http://www.sato.kuis.kyoto-u.ac.jp/
~masahiko/index-e.html.

2 The Type System

In this section, we de�ne the type system of ��" by de�ning the notion of a
derivation of a typing judgment. A typing judgement is an expression of the
form � ` a : A, and if it is derivable then it means that the expression a is a
term whose type is A and whose set of free variables is � .

In the following we assume that we have given a �nite set of atomic types
which we do not specify further in this paper. We also assume that we have
in�nitely many identi�ers (i). Then, we de�ne variables and types simultaneously
as follows.

A variable (we will use x; y; z; u; v as meta-variables for variables) is a triple
hk; i; Ai where k is a natural number, i is an identi�er and A is a type. A
variable hk; i; Ai is called a pure variable if k = 0. Types (A;B) are de�ned by
the following grammar:

A;B ::= K j E j A) B j AE

where K ranges over atomic types and E over �nite sets of pure variables.
In the following, we will use declaration as a synonym for a �nite set of

variables and pure declaration as a synonym for a �nite set of pure variables.
We use �;� etc. as meta variables for declarations and E;F as meta variables
for pure declarations. A pure declaration fx1; : : : ; xng will also be called an
environment type since it is the type of environments whose canonical forms are
elements of the form fa1=x1; : : : ; an=xng.

If x � hk; i; Ai, then we call k the level of x, i the name of x and A the type

of x. In this case, we sometimes write xA for x and also write]lx for hk+ l; i; Ai,
]x for]1x, and �x for h0; i; Ai.

We write V for the set of all the variables. Let E be a pure declaration. We
de�ne a function *E : V ! V�E by *E(x):=]x if �x 2 E and *E(x):=x if �x 62 E.
We also de�ne +E as the inverse function of *E . Note that +E(x) is de�ned only
when x 62 E. For example, if E is empty, then *E(x) = x for any variable x. If
E is fx; yg, then *E(x) =]1x, *E(]1x) =]2x, *E(z) = z, +E(]2x) =]1x, and
+E(x) is unde�ned. We will use *E later to systematically rename variables to
avoid collision with the variables in E.

Let � be a declaration and E;F be pure declarations. We de�ne the decla-
rations � *E and � +E as follows:

� *E := f*E(x) j x 2 �g; � +E := f+E(x) j x 2 �g;

where � +E is de�ned only when � \E is empty. Furthermore, given two decla-
rations E and F , we de�ne a function mEF : V ! V as follows.

mEF (x) :=

8<
:
*E(x) if x 2 F ;
+F (x) if x 2 E*F ;
x otherwise.

We give a few examples here. If E is fxg, then mEE(x) =]x, mEE(]x) = x,
and mEE(]

2x) =]2x. If E is fx; yg and F is fxg, then mEF (x) =]x, mEF (]x) = x,
mEF (y) = y, and mEF (z) = z. As we will see in the next section, we will use mEF to
rename variables when the order of two binders are exchanged.

Using the function mEF , we de�ne the declaration � mEF as follows.

� mEF := fmEF (x) j x 2 �g:

Lemma 1. We have the following equations.

1. � *E \ E = ;.
2. � *E +E = � . If � \E = ;, then � +E *E = � .

3. ((� �E)+E � F)+F = ((� mFE � F)+F �E)+E .

A typing judgment is an expression of the form � ` a : A where � is a
declaration and A is a type. We have the typing rules in Figure 1 that are used
to derive typing judgments, where those rules whose names end with `I ' (`E')
introduce (eliminate, respectively) the types mentioned in the rule names.

An expression a is said to be a term if a typing judgment of the form � ` a : A
is derivable for some � and A. In this case, we say that � is the set of free

fxg ` xA : A
(axiom)

� ` b : B

(� � fxg)+fxg ` �xA: b : A) B
()I) � ` b : A) B � ` a : A

� [� ` ba : B
()E)

� ` a : A

(� �E)+E ` �E: a : AE
(absI) � ` a : AE � ` e : E

� [� ` a�e : A
(absE)

�1 ` a1 : A1 � � � �n ` an : An

�1 [: : : [�n ` fa1=x
A1

1
; : : : ; an=x

An
n g : fx1; : : : ; xng

(envI)

� ` e : E � ` a : A
� [(��E)+E ` e[[a]] : A

(envE)

In ()I), the variable x must be pure.
In (envI), the variables x1; : : : ; xn must be pure and mutually distinct.

Fig. 1. Typing rules of ��"

variables in a and write FV(a) for it and also say that A is the type of a and write
TY(a) for it. Note that if e � fa1=x1; : : : ; an=xng, then TY(e) is fx1; : : : ; xng.
We will say that these variables are bound by e. We also write T for the set of
all the terms. A term is canonical if it is of the form �x:b, fa1=x1; : : : ; an=xng or
�E: a, that is, if it is obtained by one of the introduction rules. A term is said
to be an environment term if its type is an environment type.

In ()I), since free variables in b are within the scope of �xA, +fxg should
be applied to � � fxg to refer to the variables in b from the outside of the
binder. By the same reason, +E is used in (absI) and (envE). We have explained
the intuitive meaning of the typing rules (absI) and (absE) for introducing and
eliminating abstractions in section 1. The remaining typing rules come from �",
and the reader is referred to [15] for the detailed explanation of these rules. Here,
we only remark that the term e[[a]] in the (envE) rule means to evaluate a in the
environment e. So, for example, if e � f�x: �y: x+ y=z; 1=x; 2=ug; then e[[zxy]]
is evaluated to 1 + y. Note that z and x in zxy are bound by e and y is free in
e[[zxy]].

We give below a simple example of a derivation. In the example below, we
assume that x and y are distinct pure variables.

fyg ` y : A) A) B
(axiom)

f]xg `]x : A
(axiom)

fy;]xg ` y(]x) : A) B
()E)

fxg ` x : A
(axiom)

fy;]x; xg ` y(]x)x : B
()E)

fy; xg ` �x: y(]x)x : A) B
()I)

fg ` �fx; yg: �x: y(]x)x : (A) B)fx;yg
(absI)

:

It is easy to see that if � ` a : A is derivable, then we can completely recover
the entire derivation tree uniquely by inspecting the typed term a2.

We have two kinds of abstractions � and � | � abstracts nameless variables
and � abstracts named variables. We can eliminate � by taking the distinguished
named variable �, replacing � by �f�g, and using the de Bruijn index method
that we explain in the next section. But we did not do so, because we want to
design ��" so that it extends the traditional �-calculus directly. (See also the
comments at the end of section 3.)

3 Substitution

In this section we de�ne substitution as a meta-level syntactic operation. Our def-
inition is conceptually simpler than the ordinary de�nition of substitution where
�-conversion is sometimes necessary to avoid the unwanted capture of variables.
Our method of de�ning substitution is a simple extension of the method due to
de Bruijn [4].

Before going into technical details, we explain our method by comparing
it with the traditional method of de�ning substitution for terms with named
variables [1] and also with the method invented by de Bruijn [4]. In the traditional
method, for example, substitution of x for y in �x: y is done by �rst �-converting
�x: y to, say, �z: y and then replacing y by x. Thus, the result of substitution
is �z: x. The �-conversion was necessary to avoid unwanted capturing of x by
the �x binder in the original term. So, in this approach, one has to de�ne terms
as equivalence classes of concrete terms modulo �-equivalence, and therefore,
we have to check the well-de�nedness of the substitution, since we �rst de�ne
the substitution operation on concrete terms. Also, in this approach, one has
to de�ne �-equivalence before substitution, but the de�nition of �-conversion
requires the notion of renaming variables which is similar to substitution.

We think that such complication in the traditional de�nition of substitution
comes from the fact that avoidance of capturing free variables was achieved by
the renaming of the name of the �-binder. Our approach here is to avoid the
capture of free variables by systematically renaming the free variables which
would otherwise be captured3. For instance, in case of the above example of
substituting x for y in �x: y, we rename x to]x and substitute]x for y, so that
the result of the substitution becomes �x:]x. We note that in the resulting term
�x:]x, the variable]x is di�erent from x within the scope of �x, and that]x
refers to x outside the scope of �x. From this explanation, it should be easy
to understand that the result of substituting x � z for y in �x: �x: x + y is
�x: �x: x + (]2x � z). As can be seen from this example, we rename only those
variables that would otherwise be captured. Therefore, in case capturing does

2 Strictly speaking, in order to have this property, we have to identify those derivations
which are the same up to the di�erence of ordering of the premises of the (envI)
rule.

3 We have introduced this idea of renaming free variables in [14].

not occur, the result of substitution obtained by our method is the same as that
obtained by the traditional method.

We give another example to clarify the intuitive idea. Suppose that x; y; z
are distinct pure variables. Then the following terms are all �-equivalent with
each other.

�x: �y: (�z: y(zx))(yx)

�� �]0x: �]0x: (�]0x:]1x(]0x]2x))(]0x]1x)

�� �x: �y: (�x: y(x]x))(yx):

If we write 0; 1 and 2 for]0x;]1x and]2x, respectively, in the second term above,
we get �0: �0: (�0: 1(02))(01). Therefore, this term is essentially the same as
the representation of the �rst term in de Bruijn indices. We can therefore see
that our terms are natural extensions of both traditional concrete terms with
variable names and name free terms �a la de Bruijn that use indices.

Let � : V ! V be a (possibly) partial function such that �(x) may be
unde�ned for some x 2 V. We extend this function to the function � : T ! T as
follows. � will be total if and only if � is total.

1. �(x) := �(x).
2. �(�x: a) := �x: �fxg(a).

3. �(ba) := �(b)�(a).
4. �(�F: a) := �F: �F (a).
5. �(a

�
f) := �(a)

�
�(f).

6. �(fa1=x1; : : : ; an=xng) := f�(a1)=x1; : : : ; �(an)=xng.
7. �(e[[a]]) := �(e)[[�TY(e)(a)]].

where, for each declaration E, �E : V ! V is de�ned by

�E(x) :=

�
x if x 2 E;
*E(�(+E(x))) otherwise.

(We note that if � is not total, �E is also not total.)

We de�ne the push operation "E by putting a"E :=*E(a), the pull operation
#E by putting a#E := +E(a), and the exchange operation lEF by putting alEF :=

mEF (a).
Let us give a few examples here. Let E be fx; yg.

(�x: x(]3x))"E � *E(�x: x(]3x))

� �x: *Efxg(x(]
3x))

� �x: (*Efxg(x))(*
E
fxg(]

3x))

� �x: x(*fxg*E+fxg(]
3x))

� �x: x(]4x):

Note that FV(�x: x(]3x)) = f]2xg, and f]2xg*E = f]3xg, which is equal to
FV(�x: x(]4x)). Similarly, we have (�x: x(]3x))#E � �x: x(]2x).

For the exchange operation, we have:

(�x: (]x)(]2x))l
fxg
fxg � �x: (]2x)(]x);

(�x: (]x)(]2x))lfygfxg � �x: (]x)(]2x);

where x and y are distinct pure variables.
We now de�ne the substitution operation as follows. Let s � fc1=x1; : : : ;

cn=xng be a canonical environment term. Note that TY(s) = fx1; : : : ; xng in
this case. For each term a we de�ne a term a[s] inductively as follows. (We think
that the 2nd clause below corresponds to the 2nd clause of the de�nition of the
substitution operation � : Æ� � � ! � in Fiore-Plotkin-Turi [6], and we think
that it should be possible to establish a precise correspondence.)

1. x[s] :=

�
ci if x � xi for some i;
+TY(s)(x) otherwise.

2. (�x: b)[s] := �x: blTY(s)fxg [s"fxg].

3. (ba)[s] := b[s]a[s].

4. (�E: a)[s] := �E: alTY(s)E [s"E].
5. (a

�
e)[s] := a[s]

�
e[s].

6. (fa1=x1; : : : ; an=xng)[s] := fa1[s]=x1; : : : ; an[s]=xng.

7. (e[[a]])[s] := e[s][[(alTY(s)TY(e))[s"
TY(e)]]].

We call a[s] the result of substituting c1; : : : ; cn for x1; : : : ; xn in a.
Again we give a few examples. Let s be f]3x=y; (x]x)=xg. Then we have:

(�x: x]x)[s] � �x: (x]x)lfy;xgfxg [s"fxg]

� �x: (]x x)[f]4x=y; (]x]2x)=xg]

� �x: (+fy;xg]x)(]x]2x)

� �x: x(]x]2x);

(�x: xy)[fz=yg] � �x: xz;

where x; y; z are distinct pure variables.
In the �rst example, x in �x: x]x is bound by �x and]x is bound by s.

When s goes into the scope of �x, x and]x should be renamed to]x and x,
respectively so that they are bound by �x and s"fxg.

We can now de�ne the �-equivalence using substitution as follows.

1. x �� x
2. If a[fz=xg] �� a0[fz=x0g], then �x: a �� �x0: a0 where z is a variable such

that z 62 FV(a) [FV(a0) [fx; x0g.
3. If b �� b0 and a �� a0, then ba �� b0a0.
4. If a �� a0, then �E: a �� �E: a0.
5. If a �� a0 and e �� e0, then a

�
e �� a0

�
e0.

6. If a1 �� a01; � � � ; an �� a0n, then fa1=x1; : : : ; an=xng �� fa1=x1; : : : ; an=xng.

7. If a �� a0 and e �� e0, then e[[a]] �� e0[[a0]].

Note that variables bound by � are not renamed in the 4th clause because �
abstracts named variables. On the other hand, variables bound by � may be
renamed in the 2nd clause bacause � plays the same role as � in the traditional
�-calculus.

4 Reduction Rules

In this section we give reduction rules of the ��" calculus. We �rst de�ne 7!��"

as the union of the following three relations 7!�, 7!� and 7!".
The relation 7!� is de�ned by the following single rule:

(�) (�x: b)a 7!� fa=xg[[b]],

and the relation 7!� is de�ned by the following single rule:

(�) (�E: a)
�
e 7!� e[[a]].

The relation 7!" is de�ned by the following 8 conversion rules.

(gc) e[[a]] 7!" a#TY(e), if TY(e) \ FV(a) = ;.
(var) fa1=x1; : : : ; an=xng[[xi]] 7!" ai (1 � i � n).

(fun) e[[�x: b]] 7!" �x: (e"fxg)[[bl
TY(e)
fxg]]

(funapp) e[[ba]] 7!" e[[b]]e[[a]].

(abs) e[[�E: a]] 7!" �E: (e"E)[[al
TY(e)
E]].

(absapp) e[[a
�
f]] 7!" e[[a]]�e[[f]].

(env) e[[fa1=x1; : : : ; an=xng]] 7!" fe[[a1]]=x1; : : : ; e[[an]]=xng.
(eval) e[[f [[x]]]] 7!" e[[f]][[x]], if x 2 TY(f).

The rules other than (eval) are internalized forms of the clauses 1{6 of the
de�nition of substitution in section 3. In these rules we have the environment
term e in place of the canonical environment term s, and the rule (gc) is a
generalization of the second case of clause 1. We can also internalize clause 7
directly and get a correct rule. But, we do not do so since it will result in a
system where the strong normalization property does not hold. Instead we have
the (eval) rule which corresponds to a special case of clause 7. Although the
(eval) rule is a weak version of clause 7, we will see in Theorem 1 that we can
faithfully compute substitution internally by using these reduction rules, and at
the same time the system enjoys the strong normalizability (Theorem 6). In fact,
as can be seen in, e.g., Melli�es [10] and Bloo [2], the strong normalizability of
calculi of explicit substitutions and explicit environments is a subtle problem.
The reader is referred to [15] for a detailed discussion on our choice of the (eval)
rule.

We write a!� b if b is obtained from a by replacing a subterm c in a by d such
that c 7!� d. Similarly !�, !" and !��" are de�ned. The transitive closures
of these reductions are denoted with asterisk (*), such as

�
!". The equivalence

relation generated by!��" is denoted by =��", namely, the re
exive, symmetric,
and transitive closure of !��". Similarly =" is de�ned.

We give a few examples of reduction sequences. Let s � f(x]x)=x;]3x=yg
in the second example.

(�x: �y: x)y !� fy=xg[[�y: x]]

!" �y: (fy=xg"
fyg)[[xlfxgfyg]]

� �y: f]y=xg[[x]]!" �y:]y:

s[[�x: x]x]] !" �x: (s"
fxg)[[(x]x)lfx;ygfxg]]

� �x: f(]x]2x)=x;]4x=yg[[(]x x)]]
�
!" �x: (+fx;yg]x)(]x]2x)

� �x: x(]x]2x):

(�X: �y: X
�
fy=yg)(�fyg: y)!� f�fyg: y=Xg[[�y: X

�
fy=yg]]

�
!" �y: (�fyg: y)�fy=yg

!� �y: fy=yg[[y]]
�
!" �y: y:

In the �rst example, y is renamed to]y so that it is not captured by the �y
binder. The second example corresponds to the example given after the de�nition
of substitution. The third example shows the hole-�lling operation where y is
captured by the �y binder.

We take an example from Hashimoto-Ohori's paper [7]. Consider the term
(�z: C[x + z])x where C is an (informal) context (�x: [] + y)3 and C[x +
z] represents the hole-�lling operation in the �-calculus. In Hashimoto-Ohori's
calculus, this term can be written as

a � (�z: (ÆX:(�u: Xfu=xg + y)3)�fx=vg (v + z))x

where X represents a hole, ÆX abstracts the hole X , and � is a hole-�lling
operator. fu=xg and fx=vg (called renamers) annotate X and � respectively.
They are introduced to solve the problem of variable capturing. In our system,
the above term can be written as

a � (�z: (�X: (�u: X
�
fu=xg+ y)3)(�fxg: (x + z)))x:

We can compute this term in many ways, but, here we give two reduction
sequences.

a!� fx=zg[[(�X: (�u: X
�
fu=xg+ y)3)(�fxg: x+ z)]]

�
!" (�X: (�u: X

�
fu=xg+ y)3)(�fxg: x+]x)

!� f�fxg: x+]x=Xg[[(�u: X
�
fu=xg+ y)3]]

�
!" (�u: (�fxg: x+]x)

�
fu=xg+ y)3

!� (�u: fu=xg[[x+]x]] + y)3
�
!" (�u: u+ x+ y)3

!� f3=ug[[u+ x+ y]]
�
!" 3 + x+ y:

a!� (�z: (�X: f3=ug[[X
�
fu=xg+ y]])(�fxg: x+ z))x

�
!" (�z: (�X: X

�
f3=xg+ y)(�fxg: x+ z))x

!� (�z: f�fxg: x+ z=Xg[[X
�
f3=xg+ y]])x

�
!" (�z: (�fxg: x+ z)

�
f3=xg+ y)x

!� (�z: f3=xg[[x+ z]] + y)x
�
!" (�z: 3 + z + y)x

!� fx=zg[[3 + z + y]]
�
!" 3 + x+ y:

We remark that, in the second reduction sequence above, we have �rst reduced
the innermost �-redex (�u: X

�
fu=xg+ y)3. Such a reduction is not possible in

Hashimoto-Ohori's calculus since in their system the �-conversion is prohibited
when the redex contains a free hole. Though the roles of Xfu=xg and X

�
fu=xg

are similar, u in Xfu=xg should always be a variable, while u in X
�
fu=xg can be

substituted by an arbitrary term. This is the reason why our calculus need not
put any restriction to the (�)-reduction rule (the �-conversion).

We also remark on the hole-�lling operations without going into the technical
details. In Hashimoto-Ohori's calculus, the renamer � in �� works as a variable
binder to the second operand of � (i.e. to the term to be �lled into the hole).
Because their typing rule of M �� N causes a side e�ect to the type of the free
hole in N , they had to put the restriction that each free hole may occur at most
once. Our �E binder, which plays the similar role to the renamer � in �� , does
not have such a problem, because it is merely an abstraction.

Therefore, our calculus ��" can be regarded as a natural and
exible exten-
sion to Hashimoto-Ohori's calculus.

5 Properties of ��"

In this section, we show that ��" enjoys a number of desirable properties. We �rst
show that the meta-level operation of substitution is internally realized by the
operation of evaluation (Theorem 1), and show some properties of substitution.
We also show that ��" enjoys subject reduction property (Theorem 3), con
u-
ence property (Theorem 4), conservativity over the simply typed ��-calculus
(Theorem 5), and strong normalizability (Theorem 6). Theorems 4{6 establish
the purity of ��", and as a corollary to the con
uence of ��", we see that the
operations of hole �lling and �-reduction always commute.

As we have studied in [15], we can internalize the meta-level operation of
substitution by means of evaluation terms which are of the form e[[a]]. We can
show that the meta-level substitution and the internalized substitution coincide,
that is, a[s] =�" s[[a]] holds.

Theorem 1. Let s be a canonical environment term. Then, for any term a,
a[s] =�" s[[a]] holds.

Lemma 2 corresponds to the Substitution Lemma [1] in the �-calculus, that
is, M [x := K][y := L] �M [y := L][x := K[y := L]] if x 6� y and x 62 FV(L).

Lemma 2 (Substitution Lemma). Let s and t be canonical environment

terms. Then, for any term a, a[s][t] � alTY(t)TY(s)[t"
TY(s)][s[t]] holds.

Note that the e�ect of exchanging the order of two substitutions s and t is

adjusted by applying the exchange operation lTY(t)TY(s) to a and the push operation

"TY(s) to t. For example, let a be x]x, s be fz=xg, and t be f]3x=y; (x]x)=xg
in the Lemma. Then, we have

(x]x)[s][t] � (z x)[t]

� z (x]x);

(x]x)lfy;xgfxg [t"fxg][s[t]] � (]x x)[f]4x=y; (]x]2x)=xg][s[t]]

� (x (]x]2x))[fz=xg]

� z ((]x]2x)#fxg)

� z (x]x):

(See also the example below the de�nition of the substitution in seciton 3.)
The reduction is compatible with substitution.

Theorem 2. If a
�
!��" b, then a[s]

�
!��" b[s].

The following theorems will establish the purity of our calculus.

Theorem 3 (Subject Reduction). If � ` a : A and a!��" b, then � ` b : A
for some � � � .

Theorem 4 (Con
uence). !��" on ��"-terms is con
uent.

Proof. The proof is a straightforward extension of that for �", and we omit the
details here. 2

We remark that from the con
uence of ��", we see that the operations of hole
�lling and �-reduction always commute, since in ��", hole �lling is computed
by reducing a term of the form (�X: a)(�E: b).

We next prove that ��" is a conservative extension of the simply typed
lambda calculus ��. For this purpose, we embed the ��-terms in the ��"-terms.
A ��-term is a ��"-term such that its typing derivation uses the (axiom), ()I),
()E) rules only, and all the variables used in the (axiom) rule are pure variables.
The �- and �-conversions over �� terms are de�ned as usual.

Theorem 5 (Conservativity). Let a and b be ��-terms. We have a
�
!�� b in

�� if and only if a
�
!��" b

0 and b �� b0 for some term b0 in ��".

Proof. (Only-if part) easily follows from the fact that the �-conversion can be
simulated by the �"-reduction rules up to the �-equivalence.

(If-part) can be proved in the same way as in [15], which uses the translation
from �"-terms to ��-terms. 2

Theorem 6 (Strong Normalizability). If � ` a : A, then a is strongly nor-

malizable.

Proof. We can prove this theorem in the same way as the strongly normalizability
theorem of �" [15], because we can treat the cases of (abs) and (absapp) similarly
to the cases of (fun) and (funapp). 2

6 Conclusion

We have introduced a simply typed �-calculus which has both contexts and
environments as �rst-class values. We have shown that our calculus, ��", is a
conservative extension of the simply typed ��-calculus, enjoys subject reduction
property, is con
uent and strongly normalizing. Thus we have shown that our
language is pure in the sense of [15] and also we have realized our hope, which we
stated in the conclusion of [15], to design a pure language that has both contexts
and environments as �rst-class values. To the best of our knowledge, ��" is the
�rst such language.

We have also introduced a new method of de�ning substitution which is
conceptually simpler than traditional methods. We think that our method is also
suitable for representing terms and computing substitutions on the computer.

We conclude the paper by comparing our calculus with some related works.
The style of the presentation of our paper is very close to that of Hashimoto-
Ohori [7]. Both our calculus and the calculus presented in [7] are simply typed
calculi which include simply typed ��-calculus as their subcalculus. The system
in [7] enjoys subject reduction property and is con
uent. However, neither con-
servativity over simply typed ��-calculus nor strong normalizability are shown
in the paper. Therefore, it is not known whether their system is pure in our
sense4. Also, their calculus has severe restrictions in that (i) each context may
have at most one hole in it, and (ii) as we have explained in section 1, the appli-
cation of the �-reduction is allowed only when the �-redex has no hole in it. Our
calculus does not have such restrictions and �-reduction and hole-�lling always
commute.

Dami's calculus �N [5] is a very simple and powerful calculus with named
variables. It is possible to represent both contexts and hole-�lling in �N . How-
ever, this is done by a translation of �� calculus into �N . Therefore, it is hard to
read the translated terms as contexts. On the other hand, Mason [9] introduces
a system with �rst-class contexts in which contexts are directly represented as
terms in his calculus. However, he de�nes hole-�lling as a meta-level operation.

4 Sakurada [12] proved the strong normalizability of Hashimoto-Ohori's calculus by
interpreting it in �".

It is therefore not possible to compute hole-�lling within his system. Unlike these
systems, in ��", contexts are directly representable as terms of ��", and we can
compute hole-�lling within ��".

Sands [13] uses Pitts' [11] de�nition of contexts and shows that hole-�lling
commutes with many relations on terms including �-equivalence. Pitts de�nes
contexts by representing holes by (higher-order) function variables where each
function variable has a �xed arity, and by representing hole-�lling by substitution
of a meta-abstraction for a function variable. For example, the term

�x: (�y: x+X
�
fx=x; y=yg)3

in ��" can be expressed by

�x: (�y: x+ �(x; y))3

where � is a binary function variable, and the substitution

f�fx; yg: x+ y=Xg

in ��" can be expressed by

[(x; y)(x + y)=�]:

As can be seen by this example, Pitts' representation of contexts is structurally
similar to ours, but the statuses of contexts are quite di�erent. That is, Pitts'
contexts are meta-level objects outside the object language (� calculus in case of
the above example) and our contexts are internal objects of our language ��".
Because of this meta-level status of Pitts' contexts, Sands [13] could successfully
attach contexts to many languages and could prove that hole-�lling commutes
with many rules in a uniform way. In contrast to this, we have been interested
in internalizing such meta-level objects as contexts and environments so that we
can enrich �-calculus to a more powerful programming language.

References

1. Barendregt, H. P., The Lambda Calculus, Its Syntax and Semantics, North-Holland,
1981.

2. Bloo, R. and Rose, K.H., Preservation of Strong Normalization in Named
Lambda Calculi with Explicit Substitution and Garbage Collection, Proceed-
ings of CSN'95 (Computer Science in Netherlands), van Vliet J.C. (ed.), 1995.
(ftp://ftp.diku.dk/diku/semantics/papers/D-246.ps)

3. Bognar, M. and de Vrijer, R., A calculus of lambda calculus contexts, available at:
http://www.cs.vu.nl/~mirna/new.ps.gz.

4. de Bruijn, D. G., Lambda Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theo-
rem, Indag. Math. 34, pp. 381-392, 1972.

5. Dami, L., A Lambda-Calculus for Dynamic Binding, pp. 201-231, Theoretical Com-
puter Science 192, 1998.

6. Fiore, M., Plotkin, G., and Turi, D., Abstract Syntax and Variable Binding (Ex-
tended Abstract), Proc. 14th Symposium on Logic in Computer Science, pp. 193-
202, 1999.

7. Hashimoto, M. and Ohori, A., A typed context calculus, Preprint RIMS-1098, Res.
Inst. for Math. Sci., Kyoto Univ., 1996, Journal version is to appear in Theoretical
Computer Science.

8. Lee, S.-R., and D. P. Friedman, Enriching the Lambda Calculus with Contexts:
Toward a Theory of Incremental Program Construction, ACM SIGPLAN Notices,
Proc. International Conference on Functional Programming, pp. 239-250, 1996.

9. Mason, I., Computing with Contexts, Higher-Order and Symbolic Computation 12,
pp. 171-201, 1999.

10. Melli�es, P.-A., Typed �-calculi with explicit substitutions may not terminate,
Typed Lambda Calculi and Applications, Lecture Notes in Computer Science 902,
pp. 328-349, 1995.

11. Pitts, A.M., Some notes on inductive and co-inductive techniques in the semantics
of functional programs, Notes Series BRICS-NS-94-5, Department of Computer
Science, University of Aarhus, 1994.

12. Sakurada, H., An interpretation of a context calculus in an environment calculus,
Master Thesis, Dept. of Information Science, Kyoto Univ., 1999 (in Japanese).

13. Sands, D., Computing with Contexts - a simple approach, Proc. Higher-Order
Operational Techniques in Semantics, HOOTS II, 16 pages, Electronic Notes in
Theoretical Computer Science 10, 1998.

14. Sato, M., Theory of Symbolic Expressions, II, Publ. of Res. Inst. for Math. Sci.,
Kyoto Univ., 21, pp. 455-540, 1985.

15. Sato, M., Sakurai T., and Burstall, R., Explicit Environments, Typed Lambda
Calculi and Applications, Lecture Notes in Computer Science 1581, pp. 340-354,
1999.

16. Talcott, C., A Theory of binding structures and applications to rewriting, Theo-
retical Computer Science 112:1, pp. 99-143, 1993.

