
Theoretical Foundations for the Declarative

Debugging of Lazy Functional Logic Programs

Rafael Caballero, Francisco J. L�opez-Fraguas, and Mario Rodr��guez-Artalejo ?

E-mail: frafa,paco,mariog@sip.ucm.es

Departamento de Sistemas Inform�aticos y Programaci�on,
Universidad Complutense de Madrid

Abstract. The aim of this paper is to provide theoretical foundations
for the declarative debugging of wrong answers in lazy functional logic
programming. We rely on a logical framework which formalizes both the
intended meaning and the execution model of programs in a simple lan-
guage which combines the expressivity of pure Prolog and a signi�cant
subset of Haskell. As novelties w.r.t. to previous related approaches, we
deal with functional values both as arguments and as results of higher
order functions, we obtain a completely formal speci�cation of the debug-
ging method, and we extend known soundness and completeness results
for the debugging of wrong answers in logic programming to a substan-
tially more diÆcult context. A prototype implementation of a working
debugger is planned as future work.

1 Introduction

Traditional debugging techniques are not well suited for declarative program-
ming languages, because of the diÆcult-to-predict evaluation order. In the �eld
of logic programming, Shapiro [19] proposed declarative debugging (also called
algorithmic debugging), a semi-automatic technique which allows to detect bugs
on the basis of the intended meaning of the source program, disregarding op-
erational concerns. Declarative debugging of logic programs can diagnose both
wrong and missing computed answers, and it has been proved logically sound
and complete [2, 8]. Later on, declarative debugging has been adapted to other
programming paradigms, including lazy functional programming [15{17, 11, 14]
and combined functional logic programming [13, 12]. A common feature of all
these approaches is the use of a computation tree whose structure re
ects the
functional dependencies of a particular computation, abstracting away the evalu-
ation order. In [12], Lee Naish has formulated a generic debugging scheme, based
on computation trees, which covers all the declarative debugging methods cited
above as particular instances. In the case of logic programming, [12] shows that
the computation trees have a clear interpretation w.r.t. the declarative semantics
of programs. On the other hand, the computation trees proposed up to now for
the declarative debugging of lazy functional programs (or combined functional
logic programs) do not yet have a clear logical foundation.

? Work partially supported by the Spanish CICYT (project CICYT-TIC98-0445-C03-
02/97 "TREND")

The aim of this paper is to provide �rm theoretical foundations for the declara-
tive debugging of wrong answers in lazy functional logic programming. Adapting
a logical framework borrowed from [5, 4], we formalize both the declarative and
the operational semantics of programs in a simple language which combines
the expressivity of pure Prolog [20] and a signi�cant subset of Haskell [18]. Our
approach supports a simple syntactical representation of functions as values. Fol-
lowing the generic scheme from [12], we de�ne a declarative debugging method,
giving a formal characterization of computation trees as proof trees that relate
computed answers to the declarative semantics of programs. More precisely, we
formalize a procedure for building proof trees from successful computations. This
allows us to prove the logical correctness of the debugger, extending older re-
sults from the �eld of logic programming [2, 8] to a substantially more diÆcult
context. Our work is intended as a foundation for the implementation of declar-
ative debuggers for languages such as T OY [10] and Curry [7], whose execution
mechanism is based on lazy narrowing.

The paper is organized as follows. Sect. 2 presents the general debugging scheme
from [12], recalls some of the known approaches to the declarative debugging of
lazy functional and logic programs, and gives an informal motivation of our own
proposal. Sect. 3 introduces the simple functional logic language used in the rest
of the paper. In Sect. 4 the logical framework which gives a formal semantics
to this language is presented. Sect. 5 speci�es the debugging method, as well as
the formal procedure to build proof trees from successful computations. Sect. 6
concludes and points to future work.

2 Debugging with Computation Trees

The debugging scheme proposed in [12] assumes that any terminated compu-
tation can be represented as a �nite tree, called computation tree. The root of
this tree corresponds to the result of the main computation, and each node
corresponds to the result of some intermediate subcomputation. Moreover, it is
assumed that the result at each node is determined by the results of the children
nodes. Therefore, every node can be seen as the outcome of a single computation
step. The debugger works by traversing a given computation tree, looking for
erroneous nodes. Di�erent kinds of programming paradigms and/or errors need
di�erent types of trees, as well as di�erent notions of erroneous. A debugger is
called sound if all the bugs it reports do really correspond to wrong computa-
tion steps. Notice, however, that an erroneous node which has some erroneous
child does not necessarily correspond to a wrong computation step. Following
the terminology of [12], an erroneous node with no erroneous children is called
a buggy node. In order to avoid unsoundness, the debugging scheme looks only
for buggy nodes, asking questions to an oracle (generally the user) in order to
determine which nodes are erroneous. The following relation between buggy and
erroneous nodes can be easily proved:

Proposition 1 A �nite computation tree has an erroneous node i� it has a
buggy node. In particular, a �nite computation tree whose root node is erroneous
has some buggy node.

This result provides a `weak' notion of completeness for the debugging scheme
that is satisfactory in practice. Usually, actual debuggers look only for a topmost
buggy node in a computation tree whose root is erroneous. Multiple bugs can
be found by reiterated application of the debugger.

The known declarative debuggers can be understood as concrete instances of
Naish's debugging scheme. The instances of the debugging scheme needed for
diagnosing wrong and missing answers in pure Prolog are described in [12]. In
these two cases, computation trees can be formally de�ned so that they relate
answers computed by SLD resolution to the declarative semantics of programs
in a precise way. This fact allows to prove logical correctness of the debugger
[2, 8]. The existing declarative debuggers for lazy functional [15{17, 11, 14] and
functional logic programs [13, 12] have proposed di�erent, but essentially similar
notions of computation tree. Each node contains an oriented equation fa1:::an =
r corresponding to a function call which has been evaluated, together with the
returned result, and the children nodes (if any) correspond to those function
calls whose evaluation became eventually needed in order to obtain fa1:::an =
r. Moreover, the result r is displayed in the most evaluated form eventually
reached during the computation, and the same happens for each argument ai,
except in the case of the root node 1. Such a tree structure abstracts away the
actual order in which function calls occur under the lazy evaluation strategy.
A node is considered erroneous i� its oriented equation is false in the intended
interpretation of the program, and the bug indication extracted from a buggy
node is the instance of the oriented equation in the program applied at the
outermost level to evaluate the function call in that node.

To illustrate these ideas, let us consider the small program shown in Fig. 1,
written in Haskell-like, hopefully self-explanatory syntax. The data constructors
s and z represent the successor of a natural number and the natural number
zero, respectively, while : acts as an in�x binary constructor for non-empty lists
and [] is a nullary constructor for the empty list. Di�erent de�ning equations
for the same function f are labeled as f:i, with indices i � 1.

(from.1) from N ! N : from N

(take.1) take z Xs ! []

(take.2) take (s N) [] ! []

(take.3) take (s N) (X : Xs) ! X : take N Xs

Figure 1: A program example

A function call (take NXs) is intended to compute the �rst N elements of the
list Xs, while (from N) is intended to compute the in�nite list of all numbers
greater or equal than N . The de�nition of from is mistaken, because its right-
hand side should be (N : from (sN)). Due to this bug, the program can compute
take (s(s z)) (fromz) = z : z : [], which is false in the intended interpretation. A
computation tree (built according to the method suggested in [16, 13] and related

1 In order to avoid this exception, some actual debuggers assume a call to a nullary
function main at the root node.

papers) would look as shown in Fig. 2, where erroneous nodes are displayed in
boldface and the leftmost-topmost buggy node is surrounded by a double box.

take (s (s z)) (from z) = z:z:[]
��������

from z = z:z: from z

from z = z:from z

XXXXXXXX
take (s (s z)) (z:z:from z) = z:z:[]

take (s z) (z:from z) = z:[]

take z (from z) = []

Figure 2: Computation tree with oriented equations

To the best of our knowledge, no formal proofs of correctness exist for the known
lazy functional (logic) declarative debuggers, in contrast to the pleasant results
shown in [2, 8] for the logic programming case. To achieve such a proof, one
needs a suÆciently formal characterization of the relationship between compu-
tation trees and a suitable formalization of program semantics. The best at-
tempt we know to formalize computation trees for lazy functional programming
has been made in [16], using denotational semantics. However, as the authors
acknowledge, their de�nition only gives an informal characterization of the func-
tion calls whose evaluation becomes eventually demanded2. A more practical
problem with existing debuggers for lazy functional (logic) languages is related
to the presentation of the questions asked to the oracle. In principle, such ques-
tions should ask whether the oriented equations fa1:::an = r found at the tree's
nodes are valid according to the intended program meaning. In these equations,
both the argument expressions ai and the result expression r can include ar-
bitrarily complex, suspended function calls. Several solutions to this problem
have been proposed, trying to ban the o�ending closures in various ways. In
particular, Lee Naish [11] suggests the following simpli�cation procedure: to
replace unevaluated closures within the ai by fresh variables X; to replace un-
evaluated closures within r by fresh variables Y ; and to append a quanti�er
pre�x 8X 9Y in front of the new oriented equation. Applying this simpli�cation
method to Fig. 2, we obtain that the second child of the root node simpli�es
to 8Xs: take (s(s z))(z : z : Xs) = z : z : [], while the buggy node simpli�es
to 9Ys: fromz = z : Ys. Note that the simpli�ed question at the older buggy
node has become valid in the intended program meaning. Therefore, the older
buggy node is not buggy any more in the simpli�ed tree. Its parent becomes
buggy instead (and it points to the same program bug).

The example shows that Naish's simpli�cation does not preserve the semantics of
oracle questions. Moreover, a simpli�ed oracle question like 8X9Y :fa01:::a

0
n = r0

has the same meaning as ft1:::tn ! t, where the quanti�er pre�x has been
removed and ti resp. t are obtained from a0i resp. r

0 by substituting the bot-
tom symbol ? (meaning an unde�ned value) in place of the new variables X,

2 Maybe this problem has been better solved in [17], a reference we obtained from the
referees upon �nishing the paper.

Y introduced by simpli�cation. Due to the occurrences of ? in places where
suspended function calls occurred before, the meaning of ! cannot be un-
derstood as oriented equality any more. Instead, f t1:::tn ! t means that t
approximates the value of f t1:::tn, where each ti approximates the value of
the original argument expression ai. Coming back to our example, the sim-
pli�ed question 8Xs: take (s(s z)) (z : z : Xs) = z : z : [] is equivalent to
take (s(s z))(z : z : ?) ! z : z : [], while 9Ys:fromz = z : Ys is equivalent to
fromz ! z : ?.

We aim at a debugging method based on computation trees whose nodes include
statements of the form f t1:::tn ! t, where ti and t include no function calls,
but can include occurrences of the unde�ned symbol ?. Such statements will
be called basic facts in the sequel. As we have seen, basic facts have a natural
(not equational) meaning, and they help to obtain more simple oracle questions.
Moreover, there is a well developed logical framework for functional logic pro-
gramming [5, 4], based on the idea of viewing basic facts as the analogon of
atomic formulas in logic programming. Relying on a variant of this framework,
we will obtain a formal characterization of our debugging method.

3 A Simple Functional Logic Programming Language

The functional logic programming (FLP for short) paradigm [6] tries to bridge
the gap between the two main streams in declarative programming: functional
programming (FP) and logic programming (LP). For the purposes of this pa-
per, we have chosen to work with a simple variant of a known logical framework
for FLP [5, 4], which enjoys well-de�ned proof-theoretic and model-theoretic se-
mantics and has been implemented in the T OY system [10]. In this section we
present the syntax and informal semantics used for programs and goals in the
rest of the paper. Pure Prolog [20] programs and Haskell-like programs [18] can
be expressed in our language.

3.1 Preliminaries

A signature with constructors is a countable set � = DC� [FS� , where
DC� =

S
n2NDC

n
� and FS� =

S
n2N FS

n
� are disjoint sets of data constructors

and de�ned function symbols respectively, each one with an associated arity. In
the sequel the explicit mention of � is omitted. We also assume a countable set
V of variables, disjoint from �.

The set of partial expressions built up with aid of � and V will be denoted as
Exp? and de�ned as: Exp? ::=? j X j h j(e e0) with X 2 V ; h 2 �; e; e0 2
Exp?. Expressions of the form (e e0) stand for the application of e (acting as a
function) to e0 (acting as an argument). As usual, we assume that application
associates to the left and thus (e0 e1 : : : en) abbreviates ((: : : (e0 e1) : : :) en). As
explained in Sect. 2, the symbol ? (read bottom) represents an unde�ned value.
We distinguish an important kind of partial expressions called partial patterns,
denoted as Pat? and de�ned as: Pat? ::=? j X j c t1 : : : tmj f t1 : : : tm where
ti 2 Pat?; c 2 DCn; 0 � m � n and f 2 FSn; 0 � m < n. Partial patterns
represent approximations of the values of expressions. Moreover, partial patterns

of the form f t1 : : : tm with f 2 FSn and m < n serve as a convenient repre-
sentation of functions as values; see [4]. Expressions and patterns without any
occurrence of ? are called total. We write Exp and Pat for the sets of total
expressions and patterns, respectively.

Total substitutions are mappings � : V ! Pat with a unique extension �̂ :
Exp! Exp, which will be noted also as �. The set of all substitutions is denoted
as Subst. The set Subst? of all the partial substitutions � : V ! Pat? is de�ned
analogously. We write e� for the result of applying the substitution � to the
expression e. As usual, � = fX1=t1; : : : ; Xn=tng stands for the substitution that
satis�es Xi� � ti, with 1 � i � n and Y � � Y for all Y 2 VnfX1; : : : ; Xng.

3.2 Programs and Goals

In our framework programs are considered as ordered sets of de�ning rules for
function symbols. Rule order is not important for the logical meaning of a pro-
gram. Each rule has a left-hand side, a right-hand side and an optional condition.
The general shape of a de�ning rule for f 2 FSn is:
(R) f t1 : : : tn| {z }

left-hand side

! r|{z}
right-hand side

(e1 ! p1; : : : ; ek ! pk| {z }
condition

where:

(i) t1; : : : ; tn; p1; : : : ; pk; (n; k � 0) is a linear sequence of patterns, where linear
means that no variable occurs more than once in the sequence.
(ii) r; e1; : : : ; ek are expressions. They can contain extra variables that don't
appear in the left-hand side.
(iii) A variable in pi can occur in ej only if j > i (in other words: pi has no
variables in common with e1; : : : ; ei).
Conditions (i), (ii) and (iii) above are not too restrictive for programming and
technically helpful to obtain well-behaved goal-solving calculi (as the one pre-
sented in Subsection 4.3 below). Conditions ful�lling property (iii) and such
that the sequence p1; : : : ; pk; is linear will called admissible in the sequel. The
intended meaning of a rule like (R) is that a call to function f can be reduced
to r whenever the actual parameters match the patterns ti and the conditions
ej ! pj are satis�ed. In [5, 4], conditions of this kind are called approximation
statements. They are satis�ed whenever ej can be evaluated to match the pattern
pj . The basic facts f t1 : : : tn ! t mentioned in Sect. 2 are particularly simple
approximation statements. Readers familiar with [5, 4] will note that joinability
conditions e ./ e0 (written as e == e0 in T OY 's concrete syntax) are replaced by
approximation conditions e ! p in this paper. This is done in order to simplify
the presentation, while keeping expressivity enough for our present purposes.

Fig.1 in Sect.2 shows a program for the signature DC = fz=0; s=1; []=0; : =2g,
FS = ffrom=1; take=2g. It will be used as a running example in the rest of this
paper. The reader is referred to [5, 4] for more programming examples.

A goal in our setting is any admissible condition e1 ! p1; : : : ; ek ! pk. Goals
with k = 1 are called atomic. As we will see more formally in the next section,
solutions to a goal e! p are substitutions � such that p� approximates the value
of e�, according to the semantics of the current program. As in LP, a goal can
include logic variables that are bound to patterns when the goal is solved.

For instance, considering the goal take N (from X)) ! Ys for our running
example program, and the goal solving calculus presented in Subsection 4.3,
the following solutions would be computed in this order: �1 = fN=z; Ys=[]g;
�2 = fN=(s z); Ys=X : []g; and �3 = fN=s (s z); Ys=X : X : []g. Solution �3 is
incorrect w.r.t. the intended meaning of the program, which calls for debugging.
Note that the values for N and X leading to a wrong result can be found by
the execution system. In a purely FP setting, the user would have been forced
to guess them.

4 A Logical Framework for FLP

We are now ready to formalize a semantics and a goal solving calculus for the
simple FLP language described in the previous section. We will follow the ap-
proach from [5, 4], with some modi�cations needed for our present purposes.

4.1 A Semantic Calculus

The Semantic Calculus SC displayed below speci�es the meaning of our lazy
FLP programs. SC is intended to derive an approximation statement e ! t
from a given program P just in the case that t approximates the value of e, as
computed by the de�ning rules in P . In the SC inference rules, e; ei 2 Exp? are
partial expressions, ti; t; s 2 Pat? are partial patterns and h 2 �. Moreover,
the notation [P]? in rule RA stands for the set f(l ! r (C)�j(l ! r (C) 2
P; � 2 Subst?g of partial instances of the de�ning rules in P . The SC rules are:

BT Bottom: e!? RR Restricted Re
exivity: X ! X; X 2 V ar
DC Decomposition: e1 ! t1 : : : em ! tm h tm 2 Pat?

h em ! h tm

AR Argument Reduction: e1 ! t1 : : : en ! tn
f tn ! s s ak ! t ; f 2 FSn

f en ak ! t; t 6=?
RA Rule Application: C r ! s ; f tn ! r (C 2 [P]?

f tn ! s

SC is similar to the rewriting calculus GORC from [5, 4]. The main di�erence is
that the GORC rule OR for Outer Reduction has been replaced by AR and RA.
Taken together, these two rules say that a call to a function f is evaluated by
computing approximated values for the arguments, and then applying a de�ning
rule for f . This is related to the stricti�cation idea in [15, 17], which was intended
as an emulation of the innermost evaluation order, but evaluating the arguments
only as much as demanded by the rest of the computation.

The conclusion ftn ! s of RA is a basic fact that must coincide with the cor-
responding premise of AR when the two rules are combined. The older calculus
GORC did not explicitly introduce such a basic fact, which is needed for debug-
ging, as we have motivated in Sect. 2. The case k > 0 in rule AR corresponds to a
higher order function f , returning as result another function (represented by the
pattern s) which must be applied to some arguments ak. Just for convenience,
we add to the SC calculus the following variant AR0 of AR, to be used only in

the case k = 0. It can be shown that SC with AR0 is equivalent to SC without
AR0.

AR' e1 ! t1 : : : en ! tn
f tn ! t t 6=?; f 2 FSn

f en ! t

take (s (s z)) (from X) ! X:X:[]((((((((((((((

�������

hhhhhhhhhhh
(AR')

s (s z) ! s (s z)

(DC)�

from X ! X:X:?

SS
�������

(AR')

take (s (s z)) (X:X:?) ! X:X:[]

(RA)

X ! X

(RR)

from X ! X:X:?

(RA)

X: take (s z) (X:?) ! X:X:[]

S
S

 (DC)

X:from X ! X:X:?

SS
�������
(DC)

X ! X

(RR)

take (s z) (X:?) ! X:[]

S
S

��������

((((((((((((
(AR')

X ! X

(RR)

from X ! X:?

S
S

�������
(AR')

s z ! s z

(DC)�

X:? ! X:?

(DC,RR,BT)

take (s z) (X:?) ! X:[]

(RA)

X ! X

(RR)

from X ! X:?

(RA)

X:take z ? ! X:[]

S
S

�������
(DC)

X:from X ! X:?

S
S

������� (DC)

X ! X

(RR)

take z ? ! []

S
S

�����

��������
(AR')

X ! X

(RR)

from X ! ?

(BT)

z ! z

(DC)

? ! ?

(BT)

take z ? ! []

(RA)

[] ! []

(DC)

Figure 3: Proof Tree in the semantic calculus SC

We write P ` e ! t to indicate that e ! t can be deduced from P using SC.
We also de�ne a correct solution for a goal G = e ! t w.r.t. program P as any
total substitution � 2 Subst such that P ` e� ! t�. An SC derivation proving
that this is the case can be represented as a tree, which we will call a proof tree
(PT) for G�. Each node in a PT corresponds to an approximation statement
that follows from its children by means of some SC inference. For instance, the
PT from Fig. 3 shows that � = fN=s (s z); Ys=X :X : []g is a solution for the goal
takeN(from X) ! Ys w.r.t. our running example program. This is indeed a
bug symptom. The right solution, according to the program's intended meaning,
should be � = fN=s (s z); Ys=X :sX : []g.

4.2 Models

In LP the intended meaning of a program can be formalized as an intended model,
represented as a set of atomic formulas belonging to the program's Herbrand base
[2, 8]. The open Herbrand universe (i.e. the set of terms with variables) gives raise
to a more informative semantics [3]. In our FLP setting, a natural analogon to
the open Herbrand universe is the set Pat? of all the partial patterns, equipped
with the approximation ordering: t v t0 ()def. t

0 w t ()def. ; `SC t0 ! t.
Similarly, a natural analogon to the open Herbrand base is the collection of all

the basic facts f tn ! t. Therefore, we de�ne a Herbrand interpretation as a
set I of basic facts ful�lling the following three natural requirements, for all
f 2 FSn and arbitrary partial patterns t; tn:
� f tn !? 2 I.
� if f tn ! t 2 I, ti v t0i; t w t0 then f t

0

n ! t0 2 I.
� if f tn ! t 2 I, � 2 Subst then (f tn ! t)� 2 I.

This de�nition of Herbrand interpretation is simpler than the one in [5, 4], where
a more general notion of interpretation (under the name algebra) is presented.
The trade-o� for this simpler presentation is to exclude non-Herbrand interpre-
tations from our consideration. In our debugging scheme we will assume that the
intended model of a program is a Herbrand interpretation I. Herbrand interpre-
tations can be ordered by set inclusion. In our running example, the intended
interpretation contains basic facts such as from X !?, from X ! X :?,
from X ! X :sX :? or take (s(s z))(X j! :sX j! :?)! X :sX : [].

By de�nition, we say that an approximation statement e ! t is valid in I i�
e! t can be proved in the calculus SCI consisting of the SC rules BT, RR and
DC together with the rule FAI below, whose rôle is similar to the combination
of the two SC rules AR and RA:

FAI e1 ! t1 : : : en ! tn s ak ! t t pattern, t 6=?; s pattern

f en ak ! t f tn ! s 2 I

For instance, the approximation statement take (s (s z)) (fromX)! X :sX : []
is valid in the intended model of our running example program. For any basic
fact f tn ! t and any Herbrand interpretation I, it can be shown that f tn ! t
is valid in I i� f tn ! t 2 I. The denotation of e 2 Exp? in I is de�ned as the
set: [[e]]I = ft 2 Pat? j e! t valid in Ig. Given a program P without bugs, the
intended model I should be a model of P . This relies on the following de�nition
of model, which generalizes the corresponding notion from logic programming:
� I is a model for P (I j= P) i� I is a model for every program rule in P .
� I is a model for a program rule l ! r (C (I j= l ! r (C) i� for any
substitution � 2 Subst?, I satis�es l� ! r� (C�.
� I satis�es a rule instance l0 ! r0 (C 0 i� either I does not satisfy C 0 or
[[l0]]I � [[r0]]I .
� I satis�es an admissible condition C 0 i� for any e0 ! p0 2 C 0, [[e0]]I � [[p0]]I .
It can be shown that [[e0]]I � [[p0]]I i� p0 2 [[e0]]I .
A straightforward consequence of the previous de�nitions is that I j== P i� there
exists a program rule l ! r (C, � 2 Subst? and t 2 Pat? such that e� ! p�
is valid in I for any e ! p 2 C, r� ! t is valid in I, but l� ! t =2 I. Under
these conditions we say that the program rule l ! r (C is incorrect w.r.t.
the intended model I and that (l ! r (C)� is an incorrect instance of the
program rule. In our running example, the program rule fromX ! X : from X
is incorrect w.r.t. the intended model I, because X : from X ! X : X :? is
valid in I but from X ! X : X :? =2 I. By a straightforward adaptation of
results given in [5, 4], we can obtain the following relationships between programs
and models:

Proposition 2 Let P be a program and e ! t an approximation statement.
Then:
(a) If P ` e! t then e! t is valid in any Herbrand model of P .
(b) MP = ff tn ! tjP ` f tn ! tg is the least Herbrand model of P w.r.t. the
inclusion ordering.
(c) If e! t is valid in MP then P ` e! t.

According to these results, the least Herbrand model of a correct program should
be a subset of the intended model. This is not the case for our running example,
where the approximation statement take (s(s z)) (from X)! X :X : [] is valid
in MP but not in the intended model.

4.3 A Goal Solving Calculus

We next present a Goal Solving Calculus GSC which formalizes the computation
of solutions for a given goal. GSC is inspired by the lazy narrowing calculi
from [5, 4], adapted to the modi�ed language in this paper. Since we have no
joinability statements here, the rules to deal with them have been omitted. The
rules given in [4] to deal with higher order logic variables have been also omitted
for simplicity; they could be added without any diÆculty.

The GSC calculus consists of rules intended to transform a goal step by step.
Each step transforms a goal Gi�1 into a new goal Gi, yielding a substitution
�i. This is done by selecting an atomic subgoal of Gi�1 and replacing it by new
subgoals according to some GSC rule. Therefore, GSC-rules have the shape
G; e ! t; G0

�i (G;G
00; G0)�i. A GSC computation succeeds when the empty

goal (represented as 2) is reached. The composition � of all the substitutions �i
along a successful computation is called a GSC computed answer for the initial
goal.

As auxiliary notions, we need to introduce user-demanded variables and de-
manded variables. Informally, we say that a variable X is user-demanded if X
occurs in t for some atomic subgoal e! t of the initial goal, or X is introduced
by some substitution which binds another user-demanded variable. Formally, let
G0 = e1 ! t1; : : : ek ! tk be the initial goal, Gi�1 any intermediate goal,
and Gi�1
�i Gi any calculus step. Then the sets of user-demanded variables
(udvar) are de�ned in the following way:

udvar(G0) =
kS
i=1

var(ti) udvar(Gi) =
S

x2udvar(Gi�1)

var(x�i); i > 0

Let e ! t be an atomic subgoal of a goal G. By de�nition, a variable X in t is
demanded if it is either a user-demanded variable or else there is some atomic
subgoal in G of the shape: X ek ! t; k > 0, where t must be also demanded if
it is a variable. Now we can present the goal solving rules. Note that the symbol

 is used in those rules which compute no substitution.

DC Decomposition: G; h em ! h tm; G
0

 G; e1 ! t1; : : : em ! tm; G

0.

OB Output Binding: G; X ! t; G0

fX=tg (G; G

0)fX=tg, with t not a variable.

IB Input binding: G; t ! X; G0

fX=tg (G; G0)fX=tg, with t a pattern and either X

is a demanded variable or X occurs in (G; G0).

IIM Input Imitation:
G; h em ! X; G0

fX=h Xmg (G; e1 ! X1; : : : ; em ! Xm; G
0)fX=hXmg with

h em not a pattern, Xm fresh variables, h Xm a pattern, and either X is a de-
manded variable or X occurs in (G;G0).

EL Elimination: G; e! X; G0

fX=?g G; G

0

if X is not demanded and it does not appear in (G; G0).

FA Function Application: G; f en ak! t; G0

 G; e1! t1; : : : ;en! tn; C; r!S;

S ak ! t; G0 where S must be a new variable, f tn ! r (C is a variant of a
program rule, and t must be demanded if it is a variable.

The GSC rules are intended to be related to the SC rules in a way which
will become clear in Subsection 5.1. In particular, the GSC rule FA has been
modi�ed w.r.t. the analogous rule in the goal solving calculi from [5, 4], so that
it can be related to the combined application of the two SC rules AR and RA.
As we did in SC, we introduce an optimized variant FA0 of rule FA, for the
case k = 0:
FA' G; f en ! t; G0

 G; e1 ! t1; : : : ; en ! tn; C; r ! t; G0

where f tn ! r (C is a variant of a program rule and t demanded if it is a
variable.

As another di�erence w.r.t. [5, 4], where no particular selection strategy was con-
sidered, here we view goals as ordered sequences of atomic subgoals, and we adopt
a quasi-leftmost selection strategy. This means to select the leftmost atomic sub-
goal e ! t for which some GSC rule can be applied. Note that this is not
necessarily the leftmost subgoal. Subgoals e ! X , where X is a non-demanded
variable, may be not eligible at some steps. Instead, they are delayed until X
becomes demanded or disappears from the rest of the goal. This formalizes the
behaviour of shared suspensions in lazy evaluation. In particular, rule EL takes
care of detecting undemanded suspensions, whose formal characterization was
missing in previous approaches such as [16]. Below we show the �rst steps of a
GSC computation for the goal takeN (fromX) ! Ys w.r.t. our running ex-
ample program. Selected subgoals appear underlined and demanded variables X
are marked as X !. The composition of all the substitutions yields the computed
answer: � = fN=s (s z); Ys=X :X : []g (wrong in the intended model, as we have
seen already).

take N (from X) ! Ys!
(FA0) N ! s N', from X ! X':Xs', X':take N' Xs' ! Ys!

(OB); fN=sN0g from X ! X':Xs', X':take N' Xs' ! Ys!
(FA0)

X ! M, M:from M ! X':Xs', X':take N' Xs' ! Ys!
(IB)fM=Xg . . . 2

Answers computed by GSC are correct solutions in the sense de�ned in Sub-
section 4.1. This soundness result is a straightforward corollary of Proposition
3, shown in the next section. Regarding completeness, we conjecture that GSC
can compute all the answers expected by SC, under the assumption that no
application of a free logic variable as a function occurs in the program or in the
initial goal. We have not checked this conjecture, which is not important for our
present purposes. Completeness results for closely related (but more complex)
goal solving calculi are given in [5, 4].

5 Debugging Lazy Narrowing Computations

In this section we introduce an instance of Naish's general scheme [12] for debug-
ging wrong answers in our FLP language. Our computation trees will be called
the abbreviated proof tree (APTs in short). An APT is obtained in two phases:
�rst a SC proof tree PT is built from a successful GSC computation. Then the
PT is simpli�ed obtaining the APT tree. We next explain these two phases and
establish the correctness of the resulting debugger.

5.1 Obtaining Proof Trees from Successful Computations

Given any GSC successful computation G0
�1 G1
�2 : : :Gn�1
�n 2 with
computed answer � = �1 : : : �n, we build a sequence of trees T0; T1; : : : ; Tn; T as
follows:
� The only node in T0 is G0.
� For any computation step corresponding to a rule of the GSC di�erent from
FA and FA0:
G; e! t; G0

| {z }
Gi�1

�i (G;G
00; G0)�i| {z }
Gi

the tree Ti is built from Ti�1�i by including as

children of the leaf (e! t)�i in Ti�1�i all the atomic goals in G00�i.
� For any computation step corresponding to rule FA of the GSC:
G; f en ak ! t; G0

 G; e1 ! t1; : : : ; en ! tn; C; r ! S; S ak ! t; G0

the tree Ti is built by 'expanding' the leaf f enak ! t of Ti�1 as shown in the
diagram below. Analogously for the case of the simpli�cation of FA, i.e. rule
FA0, a similar diagram can be depicted.

f en am ! t�������
e1 ! t1 : : : en ! tn

: : : �
�
@
@
f tn ! S
��

C
HH
r! S

XXXXXXX
S am ! t

(FA)

f en ! t
�����

e1 ! t1 : : : en ! tn

: : :
PPPPP

f tn ! t
��

C
HH
r! t

(FA')

� Finally, the last tree T is obtained from Tn by repeatedly applying the SC
rule DC to its leaves, until no further application of this rule is possible.

For instance, the PT of Fig. 3 can be obtained from the GSC computation
whose �rst steps have been shown in Subsection 4.3. The next result guarantees
that the tree T constructed mechanically in this way is indeed a PT showing
that the computed answer is a correct solution.

Proposition 3 The tree T described above is a PT for goal G0�.
Proof Sketch. By induction on the number of goal solving steps, showing that
the algorithm associates a valid SC step to each GSC rule. This correspondence
is:

GSC rule DC OB IB IIM EL FA FA'
SC rule DC - - DC BT AR+RA AR'+RA

Rules IB and OB only apply a substitution and therefore do not correspond to
an SC inference step. Therefore, the internal nodes of each tree Ti obtained by
the algorithm correspond to valid SC inferences. Moreover, it can be shown that

the leaves of each Ti either can be proved by repeatedly applying the SC rules
DC, BT and RR or occur in Gi. This means that once the empty goal is reached
the tree Tn can be completed as indicated to build the �nal PT. Note that each
boxed node in the �nal PT corresponds to an application of the SC rule RA with
an associated program rule instance, which comes from some original program
rule variant, a�ected by the computed answer �.

5.2 Simplifying Proof Trees

The second phase obtains the APT from the PT by removing all the nodes
which do not include non-trivial boxed facts, excepting the root. More precisely,
let T be the PT for a given goal G. The APT T 0 of G can be de�ned recursively
as follows:
� The root of T 0 is the root of T .
� Given any node N in T 0 the children of N in T 0 are the closest descendants of
N in T that are boxed basic facts f tn ! t with t 6=?.
� Attached to any boxed fact in the APT , an implicit reference to an associated
program rule instance is kept. This information is available in the PT .

The idea behind this simpli�cation is that all the removed nodes correspond
either to unevaluated function calls (i.e. undemanded suspensions) or to correct
computation steps, as they do not rely on the application of any program rule.
To complete an instance of Naish's debugging scheme [12], we still have to de-
�ne a criterion to determine erroneous nodes, and a method to extract a bug
indication from an erroneous node. These de�nitions are the following:
� Given an APT , we consider as erroneous those nodes which contain an approx-
imation statement not valid in the intended model. Note that, with the possible
exception of the root node, all the nodes in an APT include basic facts. This
simpli�es the questions asked to the oracle (usually the user).
� For any buggy node N in the APT , the debugger will show its associated
instance of program rule as incorrect.

take (s (s z)) (from X) ! X:X:[]
��������

from X ! X:X:?

from X ! X:?

XXXXXXXX
take (s (s z)) (X:X:?) ! X:X:[]

take (s z) (X:?) ! X:[]

take z ? ! []

Figure 5: APT corresponding to the PT of Fig. 3

Fig. 5 shows the APT corresponding to the PT of Fig. 3. Erroneous nodes
are displayed in bold letters, and the only buggy node appears surrounded by
a double box. The relation between this tree and the computation trees used
in previous approaches [15{17,11, 14, 13] has been already discussed in Sect. 2.
Assuming a debugger that traverses the tree in preorder looking for a topmost
buggy node (see [12] for a discussion about di�erent search strategies when
looking for buggy nodes in computation trees), a debugging session could be:

from X ! X:X:?? no

from X ! X:?? yes

Rule 'from.1' has the incorrect instance 'from X ! X:from X'

5.3 Soundness and Completeness of the debugger
Now we are in a position to prove the logical correctness of our debugger:

Theorem

(a) Soundness. For every buggy node detected by the debugger, the associated
program rule is incorrect w.r.t. the intended model.
(b) Completeness. For every computed answer which is wrong in the intended
model, the debugger �nds some buggy node.
Proof Sketch
(a) Due to the construction of the APT , every buggy node corresponds to the
application of some instance of a program rule R. The node (corresponding to
R's left hand side) is erroneous, while its children (corresponding to R's right
hand side and conditions) are not. Using these facts and the relation between
APT s and PT s, it can be shown that R is incorrect w.r.t. the intended model.
(b) Assuming a wrong computed answer, the root of the APT is not valid in the
intended model, and a buggy node must exist because of Proposition 1.

6 Conclusions and Future Work

We have proposed theoretical foundations for the declarative debugging of wrong
answers in a simple but suÆciently expressive lazy functional logic language.
As in other known debuggers for lazy functional [15{17, 11, 14] and functional
logic languages [13, 12], we rely on the generic debugging scheme from [12]. As
a novelty, we have obtained a formal characterization of computation trees as
abbreviated proof trees that relate computed answers to the declarative seman-
tics of programs. Our characterization relies on a formal speci�cation of both
the declarative and the operational semantics, using approximation statements
rather than equations. Thanks to this framework, we have obtained a proof of
logical correctness for the debugger, extending older results from the logic pro-
gramming �eld to a more complex context. To our best knowledge, no previous
work in the lazy functional (logic) �eld has provided a formalization of compu-
tation trees precise enough to prove correctness of the debugger. As additional
advantages, our framework helps to simplify oracle questions and supports a
convenient representation of functions as values.

As future work we plan an extension of our current proposal, supporting the
declarative debugging of both wrong and missing answers. This will require two
di�erent kinds of computation trees, as well as suitable extensions of our logical
framework to deal with negative information. We also plan to implement the
resulting debugging tools within the T OY system [10], which uses a demand
driven narrowing strategy [9, 1] for goal solving. To formalize the generation of
computation trees for T OY , we plan to modify the goal solving calculus, so
that the demand driven strategy and other language features are taken into
account. To implement the generation of computation trees, we plan to follow a
transformational approach, adapting techniques described in [16, 14].

Acknowledgement

We are grateful to the anonymous referees for their constructive remarks.

References

1. S. Antoy, R. Echahed, M. Hanus. A Needed Narrowing Strategy. 21st ACM Symp.
on Principles of Programming Languages, Portland, ACM Press, pp. 268{279, 1994.

2. G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E.Y.

Shapiro's Method. The Journal of Logic Programming 4(3), pp. 177{198, 1987.
3. M. Falaschi, G. Levi, M. Martelli, C. Palamidessi. A Model-theoretic Reconstruc-

tion of the Operational Semantics of Logic Programs. Information and Computa-
tion 102(1). pp. 86-113, 1993.

4. J.C. Gonz�alez-Moreno, M.T. Hortal�a-Gonz�alez, M. Rodr��guez-Artalejo. A Higher

Order Rewriting Logic for Functional Logic Programming. Procs. of ICLP'97, The
MIT Press, pp. 153{167, 1997.

5. J.C. Gonz�alez-Moreno, M.T. Hortal�a-Gonz�alez, F.J. L�opez-Fraguas, M. Rodr��guez-
Artalejo. An Approach to Declarative Programming Based on a Rewriting Logic,
Journal of Logic Programming 40(1), pp. 47{87, 1999.

6. M. Hanus. The Integration of Functions into Logic Programming: A Survey. J. of
Logic Programming 19-20, special issue \Ten Years of Logic Programming", pp.
583{628, 1994.

7. M. Hanus (ed.), Curry: an Integrated Functional Logic Language, Version 0.7,
February 2, 2000. Available at http://www.informatik.uni-kiel.de/~curry/.

8. J. W. Lloyd. Declarative Error Diagnosis. New Generation Computing 5(2), pp.
133{154, 1987.

9. R. Loogen, F.J. L�opez-Fraguas, M. Rodr��guez-Artalejo. A Demand Driven Com-

putation Strategy for Lazy Narrowing. Procs. of PLILP'93, Springer LNCS 714, pp.
184{200, 1993.

10. F.J. L�opez-Fraguas, J. S�anchez-Hern�andez. T OY: A Multiparadigm Declarative

System, in Proc. RTA'99, Springer LNCS 1631, pp 244{247, 1999. Available at
http://titan.sip.ucm.es/toy.

11. L.Naish. Declarative dDebugging of Lazy Functional Programs. Australian Com-
puter Science Communications, 15(1), pp. 287{294, 1993.

12. L. Naish. A Declarative Debugging Scheme. J. of Functional and Logic Program-
ming, 1997-3.

13. L. Naish, T. Barbour. A Declarative Debugger for a Logical-Functional Language.
In Graham Forsyth and Moonis Ali, eds. Eight International Conference on Indus-
trial and Engineering Applications of Arti�cial Intelligence and Expert Systems -
Invited and additional papers, Vol. 2, pp. 91{99, 1995. DSTO General Document
51.

14. L. Naish, T. Barbour. Towards a Portable Lazy Functional Declarative Debugger.
Australian Computer Science Communications, 18(1), pp. 401{408, 1996.

15. H. Nilsson, P. Fritzson. Algorithmic Debugging of Lazy Funcional Languages. The
Journal of Functional Programming, 4(3), pp. 337-370, 1994.

16. H. Nilsson, J. Sparud. The Evaluation Dependence Tree as a Basis for Lazy Func-

tional Debugging. Automated Software Engineering, 4(2), pp. 121-150, 1997.
17. H. Nilsson. Declarative Debugging for Lazy Functional Languages. Ph.D. Thesis.

Dissertation No. 530. Univ. Link�oping, Sweden. 1998.
18. J. Peterson, K. Hammond (eds.), Report on the Programming Language Haskell

98, A Non-strict, Purely Functional Language, 1 February 1999.
19. E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, Cambridge, Mass.,

1982.
20. L. Sterling, E. Shapiro. The Art of Prolog. The MIT Press, 1986.

