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Abstract. We study the connection between algorithmic techniques for
symbolic model checking [ACJT96,FS98,AJ99], and declarative and op-
erational aspects of linear logic programming [And92,AP90]. Speci�cally,
we show that the construction used to decide veri�cation problems for
Timed Petri Nets [AJ99] can be used to de�ne a new �xpoint semantics
for the fragment of linear logic called LO [AP90]. The �xpoint semantics
is based on an e�ective TP operator. As an alternative to traditional top-
down approaches [And92,AP90,APC93], the e�ective �xpoint operator
can be used to de�ne a bottom-up evaluation procedure for �rst-order
linear logic programs.

1 Introduction

Since its introduction in [Gir87], linear logic has been understood as a frame-
work to reason about concurrent computations. Several researcher have in fact
observed the existence of natural connections between linear logic and the theory
of Petri Nets, see e.g., [Cer95,Kan94,MM91]. In this work we will investigate this
connection focusing on the relations between algorithmic techniques used for the
analysis of Petri Nets and provability in fragments of linear logic. The fragment
we consider in this paper is called LO [AP90]. LO was originally introduced as a
theoretical foundation for extensions of logic programming languages [And92]. As
we will show next, LO programs enjoy a simple operational reading that makes
clear the connection between provability in linear logic and veri�cation methods
in Petri Nets. Let us illustrate these ideas with the help of some examples.

Petri Nets in Propositional Linear Logic. Following [MM91], a Petri Net
can be represented as a multiset-rewriting system over a �nite alphabet p; q; r; : : :
of place names. Among several possible ways, multiset rewrite rules can be ex-
pressed in linear logic using the connectives
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............ (multiplicative disjunction), and
Æ� (reversed linear implication). Multiplicative disjunction plays the role of mul-
tiset constructor, whereas linear implication can be used to de�ne rewriting rules.
Both connectives are allowed in the fragment LO. For instance, as shown in
[Cer95] the LO clause
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can be viewed as a Petri Net transition that removes a token from places p and
q and puts two tokens in place p, one in q, and one in t. Being a �rst-order
language and thanks to the presence of other connectives, LO supports more
sophisticated speci�cations than Petri Nets. For instance, Andreoli and Pareschi
used LO clauses with occurrences of
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............ and & (additive conjunction) in their
body to express what they called external and internal concurrency [AP90].

In our previous work [BDM00], we have de�ned an e�ective procedure to
evaluate bottom-up LO propositional programs. Our construction is based on
the backward reachability algorithm of [ACJT96] used to decide the so called
control state reachability problem of Petri Nets (i.e. the problem of deciding if
a given set of con�gurations are reachable from an initial one). The algorithm
of [ACJT96] works as follows. Starting from a set of target states, the algorithm
computes symbolically the transitive closure of the predecessor relation of the
Petri Net taken into consideration (predecessor relation=transition relation read
backwards). The algorithm is used to check safety properties: if the algorithm is
executed starting from the set of unsafe states, the corresponding safety property
holds if and only if the initial marking is not in the resulting �xpoint.

In order to illustrate the connection between backward reachability for Petri
Nets and provability in LO, we �rst observe that LO clauses like
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plays the same role that facts (unit clauses) do in logic programming. In fact,
when applied in a resolution step, they generate instances of the LO axiom
associated to the connective > (one of the logic constants of linear logic). Now,
suppose we represent a Petri Net via an LO program P and the set of target
states using a collection of LO facts T . Then, the set of logical consequences
of the LO program P [ T will represent the set markings that are backward
reachable from the target states. The algorithm we presented in [BDM00] is
based on this idea, and it extends the backward reachability algorithm for Petri
Nets of [ACJT96] to the more general case of propositional LO programs. This
connection can be extended to more sophisticated classes of Petri Nets, as we
discuss next.

Timed Petri Nets in First-Order Linear Logic. In Timed Petri Nets
[AJ99], each token carries along its age. Furthermore, transitions are guarded
by conditions over the age of tokens. To model the age of each token we can
lift the speci�cation in linear logic from the propositional to the �rst-order case.
Basically, we can use an atomic formula p(n) to model a token in place p with
age n. For instance, the �rst-order linear logic rule (where for convenience, we
use : : : 2 c to denote a constrained formula in the style of Constraint Logic
Programming [JM94])

p(X)
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............. p(Y ) Æ� r(Z) 2 X � 1; Y � 2; Z � 1

can be read as a discrete transition of the Timed Petri Nets of [AJ99] that
removes a token from place p if its age is less equal than 1, a token from place p



if and only if its age is greater or equal than 2, and adds a token with age greater
or equal than 1 to place r. The previous clause can be seen as a compact way
for expressing an in�nite set of clauses (one for every evaluation of the variables
which satis�es the constraints).

Recent results [ACJT96,AJ99] show that the control state reachability prob-
lem, under suitable hypothesis, is still decidable for Timed Petri Nets. The prob-
lem can be solved using the backward reachability algorithm of [ACJT96] in com-
bination with a symbolic representation of sets of global states of Timed Petri
Net via the so called existential regions [AJ99]. Now, can we exploit the results
of [AJ99] for �rst-order (or even better, constrained) LO programs?

Our Contribution. In this paper we will show that it is possible to extend
the parallel between the results on Petri Nets and provability in propositional
LO, to new results relating Timed Petri Nets and provability in �rst-order LO.
Speci�cally, we de�ne a bottom-up �xpoint semantics for �rst-order LO pro-
grams (actually, we will consider the more general case of LO programs with
constraints) using a generalization of the backward reachability algorithm for
Timed Petri Nets of [AJ99]. Our procedure is a generalization in the following
sense: we abstract away from the speci�c domain of Timed Petri Nets (e.g. where
constraints are the clock constraint of [AJ99]); we handle the entire class of �rst-
order LO programs (i.e. with nested occurrences of
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clauses). The resulting �xpoint semantics is based on an e�ective �xpoint opera-
tor and on a symbolic and �nite representation of potentially in�nite collections
of �rst-order provable LO (atomic) goals. The termination of the �xpoint com-
putation cannot be guaranteed in general, �rst-order LO programs are in fact
Turing complete. As a consequence of the results in [AJ99,AN00], for a class of
�rst-order LO programs that includes the discrete component of the Timed Petri
Nets of [AJ99] the �xpoint semantics can be computed in �nitely many steps.

Besides the relationships with Petri Nets, the new �xpoint semantics for �rst-
order LO programs represents an interesting alternative to the traditional top-
down semantics for linear logic programs studied in the literature [And92,AP90].
Our construction gives in fact an e�ective (though not complete) algorithm for
the bottom-up evaluation of LO programs. Thus, also from the point-of-view of
logic programming, we extend the applicability of our previous work [BDM00]
(that was restricted to the propositional case) towards more interesting classes
of linear logic programs.

Plan of the paper. After introducing some notations in Section 2, in Section 3
we present the language LO [AP90] enriched with constraints. In Section 4, we
briey review the approach we followed in [BDM00], and we extend it to the �rst-
order case. In Section 5 we discuss the connection between LO �xpoint semantics
and the reachability algorithm for Timed Petri Nets presented in [AJ99]. Finally,
we discuss related work and conclusions in Sections 6 and 7. The proofs of all
results are in the extended version of the paper [BDM00a].



2 Preliminaries and Notation

In this paper we will consider �rst-order linear logic languages built upon a sig-
nature � comprising a �nite set of term constructors, a �nite set of predicate
symbols, and a denumerable set of variable symbols. We will denote term con-
structors by a; b; : : : ; f; g; : : :, predicate symbols by p; q; r; : : :, and variables by
X;Y; Z; : : :. The set of (possibly non ground) atoms over � will be denoted A� .
We will use A;B; C; : : : to denote multisets of (possibly non ground) atoms.
We denote a multiset A with (possibly duplicated) elements A1; : : : ; An by
fA1; : : : ; Ang or simply A1; : : : ; An if this notation is not ambiguous. A mul-
tiset A is uniquely determined by a �nite map Occ from A� to the set of
natural numbers, such that OccA(A) is the number of occurrences of A in A.
The multiset inclusion relation 4 is de�ned as follows: A 4 B i� OccA(A) �
OccB(A) for everyA. The emptymultiset is denoted � and is such that Occ�(A) =
0 for every A (clearly, � 4 A for any A). The multiset union A;B (written
A+ B when `,' is ambiguous) of A and B is such that OccA;B(A) = OccA(A) +
OccB(A) for every A. The multiset di�erence A n B is such that OccAnB(A) =
max(0; OccA(A) � OccB(A)) for every A. Finally, we de�ne an operation � to
compute the least upper bound of two multisets with respect to 4. Namely, A�B
is such that OccA�B(A) = max(OccA(A); OccB(A)) for every A.

In the rest of the paper we will use �;�; : : : to denote multisets of possibly
compound formulas. Given two multisets � and �, � 4 � indicates multiset
inclusion and �;� multiset union, as before, and �; fGg is written simply �;G.
In the following, we will refer to a multiset of goal-formulas as a context. Given
a linear disjunction of atomic formulas H = A1
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............ An, we also introduce
the notation bH to denote the multiset A1; : : : ; An.

3 The Language LO Enriched with Constraints

LO [AP90] is a logic programming language based on a fragment of linear logic
de�ned over the linear connectives Æ�, & ,
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a �rst-order formulation of LO using constraints. We will use constraints as a
means to represent concisely collections of ground program clauses de�ned over
a parametric interpretation domain.

Constraints. Let V be a denumerable set of variables. In this paper a constraint
is a conjunction (in the `classical' sense) of atomic predicates c1 ^ : : : ^ cn,
where ci has variables from V . The interpretation domain D of the constraints is
�xed a priori. As an example, linear arithmetic constraints are conjunctions of
inequalities of the form k1X1+ : : :+knXn op k, where ki is an integer constant,
Xi is a variable that ranges over integer (real) numbers for all i : 1; : : : ; n, op
is one operator taken from �;�; <;>;=, and k is an integer constant (e.g.,
2X+3X � 1 ^ X � 0 ^ Y � 0). An evaluation is an assignment � which maps
variables in V to values in D. We denote the result of applying an evaluation �
to a constraint c by �(c). A solution for a constraint c is an evaluation � such



that �(c) is true. Note that values assigned to variables which do not appear
in c can be disregarded. For instance, any evaluation which maps X to 0:5,
Y to 2 and Z to 1:7 is a solution for the constraint (over the real numbers)
X � 1 ^ Y � 2 ^ Z � 1. We call Sol(c) the set of solutions of c. In this paper
we will always consider a constraint language with equality, so that t1 = t2 is
always de�ned for any expression t1; t2. This property ensures that it is always
possible to express uni�cation constraints. Given two constraints c1 and c2, we
de�ne

c1 entails c2 if and only if Sol(c1) � Sol(c2)

(e.g. X = 2 entails X � 2). In this paper we will limit ourselves to consider
domains in which the relation entails is decidable, and there are two constraints
true and false such that c entails true, and false entails c for any c.

Multisets Uni�ers. Let A = p1(x1); : : : ; pn(xn) and B = q1(y1); : : : ; qn(yn)
be two multisets of atomic formulas such that xi and yi are vectors of variables
(distinct from each other) for i : 1; : : : ; n. If pi = qi (and they have the same
arity) for i : 1; : : : ; n, then the two multisets are uni�able. The resulting uni�er
will be the constraint x1 = y1 ^ : : : ^ xn = yn. Since the order of atoms inside
a multiset does not count, there can be more than one way for two multisets
to be uni�ed. In the following, we will use the notation A = B to denote one
constraint which is non-deterministically selected from the set of uni�ers of A
and B. If there are no permutations of one of the two multisets such that the
previous conditions are satis�ed, then A = B will denote the constraint false.
Finally, in case n = 0 we have the constraint � = � which stands for true.

LO Programs. We �rst de�ne a goal formula via the following grammar.

G ::= G
..
..
........
..
.
......
.
.....
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. G j G & G j p(x) j >:

Here x is a vector of variables from the set V. An LO program with constraints
consists of a set of universally quanti�ed formulas having the following form:
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where n � 1, Ai = pi(xi) for i : 1; : : : ; n, and xi is a vector of variables in V ,
G is a goal formula, and c is a constraint whose scope extends over the whole
implication A1
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terms occur in c. For instance, using constraints we would write the �rst-order
LO clause p(f(X)) Æ� q(X) as p(Y ) Æ� q(X) 2 Y = f(X). Given a constrained
expression F 2 c (F can be a clause, a goal, a multiset of atoms, etc.) we de�ne

Gnd(F 2 c) = f�(F ) j � 2 Sol(c)g:

We say that A 2 Gnd(F 2 c) is an instance of F 2 c. The de�nition can be
extended to sets of expressions in the canonical way. Thus, given a program
P , Gnd(P ) denotes the set of all instances of clauses in P . Furthermore, note
that a G-formula by itself is not very interesting, whereas constrained goals like
p(X) & q(Y ) 2 X �Y � 1 are the counterpart of the goals of Constraint Logic
Programming [JM94].
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P ) G1; � P ) G2; �

P ) G1&G2; �
& r

P ) G;A

P ) bH;A

bc provided H Æ� G 2 Gnd(P )

Fig. 1. Proof system for LO.

Example 1. Let C = p(X;Y )
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constraints over the term algebra fa; f(a); : : :g, then p(f(a); a)
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Top-down Ground Semantics. We de�ne the top-down operational semantics
of LO with constraints using the uniform (goal-driven) proof system of [AP90],
presented in Fig. 1. As said at the beginning of this section, we introduce con-
straints just as a convenient means to represent sets of ground clauses, therefore
the proof system of [AP90] is suÆcient for our purposes. In Fig.1, P is a set of im-
plicational clauses, A denotes a multiset of atomic formulas, whereas � denotes
a multiset of G-formulas. A sequent is provable if all branches of its proof tree
terminate with instances of the >r axiom. The proof system of Fig. 1 is a spe-
cialization of more general uniform proof systems for linear logic like Andreoli's
focusing proofs [And92], and Forum [Mil96]. The rule bc denotes a backchaining
(resolution) step. Note that bc can be executed only if the right-hand side of the
current LO sequent consists of atomic formulas. Thus, LO clauses behave like
multiset rewriting rules. LO clauses having the form H Æ� > 2 c, where c is a
satis�able constraint, play the same role as the unit clauses of Horn programs. In
fact, a backchaining step over these clauses succeeds independently of the current
context. This observation shows that the weakening rule is admissible in LO,
i.e., if P ) � is provable, then P ) �0 is provable for any � 4 �0. Finally, the
success set or operational semantics of a (ground) LO program P is de�ned as

O(P ) = fA j A is a ground multiset and P ) A is provableg:

Remark 1 (Interpretation of constraints and 2 in Linear Logic.). At least in
principle, it seems possible to model constrained LO clauses inside linear logic
itself. For this purpose, however, we need fragments larger than LO. In presence
of the connective 
, the constrained LO formula

H Æ�G 2 c1 ^ : : : ^ cn

could be represented as the linear logic formula

H Æ� (G 
 (c1 
 : : :
 cn));

while provability of constraint formulas could be expressed using a specialized
(linear logic) theory.



Bottom-Up Ground Semantics. In [BDM00], we have de�ned a ground
�xpoint semantics based on a new �xpoint operator TP for LO programs. We
recall here the main ideas (see [BDM00] for the details). Given a �nite alphabet
of propositional atoms (symbols), the (ground) Herbrand base BP is de�ned as

BP = fA j A is a ground multiset of atoms in Pg:

We say that I � BP is a Herbrand interpretation. Herbrand interpretations form
a complete lattice wrt set inclusion. Satis�ability of a context (i.e. a multiset of
goals) � in a given interpretation I , is de�ned via the judgment I j= �[A].
Let us assume that I is a set of provable multisets. Then, the output A of the
judgment I j= �[A] is any multiset of resources such that �+A is provable.

De�nition 1 (Ground Satis�ability). Let I � BP , then j= is de�ned as
follows:

I j= >;A[A0] for any ground multiset A0;

I j= A[A0] if A+A0 2 I ;

I j= G1
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............. G2; �[A] if I j= G1; G2; �[A];

I j= G1 &G2; �[A] if I j= G1; �[A] and I j= G2; �[A]:

Given a program P , the operator TP for constrained LO programs is de�ned as
follows:

TP (I) = f bH +A j H Æ�G 2 Gnd(P ); I j= G[A]g:

The �xpoint semantics, de�ned as the least �xpoint of TP , is sound and complete
with respect to the operational semantics, as stated in the following theorem.

Theorem 1 ([BDM00]). For every LO program P , O(P ) = lfp(TP ).

4 Towards an E�ective Non-ground Semantics

The bottom-up ground semantics for �rst-order LO is not e�ective for two dif-
ferent reasons: there might be possibly in�nite instantiations of a constrained
LO clause (this makes the condition H Æ� G 2 Gnd(P ) not e�ective); there
are in�nitely many output contexts in a satis�ability judgment (this makes the
computation of I j= � [A] not e�ective). In [BDM00], we have shown how to
circumvent the second problem in the propositional case.

Propositional Case. By exploiting the fact that weakening is admissible in
LO, in [BDM00] we noted that a provable multiset A can be used to implicitly
represent the set of provable multisets Up(A) = fB j A 4 Bg where 4 is multiset
inclusion, i.e., Up(A) is the ideal generated by A wrt 4. As in the ground se-
mantics, interpretations are still collections of multisets, however the denotation
of an interpretation I becomes now [[I ]] =

S
A2I Up(A). Since multiset inclusion

is a well-quasi ordering [ACJT96], the termination of the �xpoint computation
is guaranteed by choosing the following pointwise ordering of interpretations:

I v J i� 8 A 2 I 9 B 2 J B 4 A:



Note that, A 4 B implies Up(B) � Up(A), whereas I v J implies [[I ]] � [[J ]].
The property of being a well-quasi order can be lifted from 4 to v. Based on
this observation, it is possible to de�ne an e�ective operator whose �xpoint
is computable in �nitely many steps (see [BDM00] for its de�nition). In the
following section we will lift these ideas to �rst-order programs.

First-Order Case. In view of our main goal (the de�nition of an e�ective
�xpoint semantics for �rst order LO), we �rst de�ne a new notion of Herbrand
interpretation based on the notion of constrained multiset. Constrained multisets
will be our symbolic representation of sets of ground multisets. A constrained
multiset A 2 c is a multiset of atomic formulas A whose free variables are
constrained by c, e.g., like p(X); q(Y ) 2 X � Y (Note that the whole multiset
is in the scope of the constraint). Variables which appear in c but not in A are
implicitly considered existentially quanti�ed, i.e. for instance p(X); q(Y ) 2 X �
Y ^ Y = Z is logically equivalent to p(X); q(Y ) 2 9Z:(X � Y ^Y = Z). In the
following. we will useM;N; : : : to denote constrained multisets. Now, we extend
the ideas used in the propositional case as follows. A constrained multiset M
de�ned as A 2 c will represent the collection of provable goals that satisfy at
least the constraint (wrt the multiset component A and the constraint part c)
imposed by M. Formally,

[[A 2 c]] = Up(Gnd(A 2 c));

the denotations are de�ned by taking �rst all instances of A 2 c, and then (as in
the propositional case) taking their upward closure wrt 4. As an example, the
denotation (over the real numbers) ofM = (p(X); q(Y )2X � Y ) contains both
fp(1); q(0)g and fp(1); q(0); q(9)g, since they both satisfy at least the constraint
in M. We are now ready to de�ne the new notion of interpretation.

De�nition 2 (Extended Herbrand Base and Interpretations). The ex-
tended base is de�ned as BP = f A 2 c j A is a multiset of atoms p(x), c is a
constraint g. I � BP is called extended Herbrand interpretation and

[[I ]] =
[

(A 2 c)2I

[[A 2 c]]:

De�nition 3 (Lattice of Interpretations). The lattice hI ;vi of extended
Herbrand interpretations is de�ned as follows:

{ I = P(BP )= ' where I ' J if and only if [[I ]] = [[J ]];
{ [I ]' v [J ]' if and only if [[I ]] � [[J ]];
{ the bottom element is the empty set ;, the top element is the '-equivalence

class of the singleton f(� 2 true)g;
{ the least upper bound I t J is the '-equivalence class of I [ J .

The equivalence ' allows us to reason modulo redundancies. For the sake of sim-
plicity, in the rest of the paper we will identify an interpretation I with its class
[I ]'. In the following, we will lift the �xpoint semantics from the propositional
to the �rst-order case using the new notion of interpretation. To this aim, we
will �rst need an e�ective notion of satis�ability wrt an interpretation.



4.1 E�ective Satis�ability Test

To decide if a given constrained goal G 2 c is satis�able in the extended interpre-
tation I , we must extend the judgments used in the propositional case in order
to handle the constraint components. Since G may contain nested occurrences
of connectives, it might be necessary to decompose G into a multiset of atoms
A and then match A against I . The last step may introduce new bindings for
the variables in G. We must return these bindings in form of constraints, since
they will be used when incorporated in the backward application of a clause
H Æ� G (e.g., whenever H and G share common variables). For this purpose,
we introduce the new judgment

I  G [C ; c]

whereG is a constrained goal (later extended to a constrained multiset of goals),
C is the output multiset (as in the propositional case) and c is the output con-
straint. The judgment I  G [C ; c] should return in C a representation of all
possible multisets which, added to G, make it provable (under the constraint c).
Based on the previous intuition, we will formally de�ne the satis�ability relation
as follows. In the following the notation G;� 2 c must be read as (G;�) 2 c.

De�nition 4 (Non-ground Satis�ability Relation ). Let I 2 I, then 
is de�ned as follows:

all I  >;A 2 c [� ; c];

par I  G1
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............ G2; � 2 c [C ; c0] if and only if I  G1; G2; � 2 c [C ; c0];

mult I  A 2 c [C ; c0] if and only if there exists a renamed copy B 2 d
of an element of I, B0 4 B, and A0 4 A such that
c0 � B0 = A0 ^ c ^ d is satis�able, and C = B n B0;

with I  G1&G2; � 2 c [ C ; c0] if and only if I  G1; � 2 c [ C1 ; c1],
I  G2; � 2 c [ C2 ; c2], and there exist C01 4 C1, C

0
2 4 C2, such that

c0 � C01 = C02 ^ c1 ^ c2 is satis�able, and C = C1 + (C2 n C
0
2).

The above de�nition is entirely algorithmic. Given an interpretation and a con-
strained goal G (a multiset of goals, in general), the set fhC; ci j I  G [C ; c]g
is always �nite. Rules par and all should be clear. In rule with, given the
output context C1 2 c1 and C2 2 c2 for the two conjuncts, the output context
for G1&G2 is obtained by merging in all possible ways sub-multisets of C1 and
C2 that are uni�able. Rule mult is for goals consisting of a constrained multiset
A 2 c of atomic formulas. If A contains a sub-multiset uni�able with a sub-
multiset B0 of an element B of I , B n B0 is the minimal context to be added to
A.

Example 2. Consider a language over the term universe fa; f(a); : : :g, let G be
the goal (q(X)
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............ r(Y )) & s(Z) 2 Z = a, and I be the interpretation consisting
of the two constrained multisets

M1 � t(U1; V1); q(W1) 2 U1 = f(Q1) ^W1 = a;
M2 � t(U2; V2); s(W2) 2 V2 = f(Q2) ^W2 = a:



Using the with rule, we have to compute C1; C2; c1; c2 such that I  q(X)
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r(Y ) 2 Z = a [C1 ; c1] and I  s(Z) 2 Z = a [C2 ; c2]. For the �rst conjunct
and using the par rule, we have that I  q(X)
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............. r(Y ) 2 Z = a [C1 ; c1] i�
I  q(X); r(Y ) 2 Z = a [C1 ; c1]. By mult rule, applied to M1 2 I , we have
that C1 = t(U1; V1) and c1 � X = W1 ^W1 = a ^ Z = a ^ U1 = f(Q1). For
the second conjunct and using the mult rule applied to M2 2 I , we have that
C2 = t(U2; V2) and c2 � Z = W2 ^ Z = a ^W2 = a ^ V2 = f(Q2). Therefore
by de�nition of the with rule, if we unify t(U1; V1) and t(U2; V2), we have that

I  G [t(U1; V1) ; U1 = U2 ^ V1 = V2 ^ c1 ^ c2]:

More concisely, by renaming the variables, we get I  G [t(U; V ) ; X = a^Z =
a ^ U = f(Q) ^ V = f(Q0)]. We also have, by choosing empty sub-multisets in
with rule, that

I  G [t(U1; V1); t(U2; V2) ; c1 ^ c2]:

More concisely, by renaming the variables, we get I  G [t(U; V ); t(U 0; V 0) ; X =
a ^ Z = a ^ U = f(Q) ^ V 0 = f(Q0)].

4.2 E�ective Fixpoint Semantics

Based on the previous de�nitions, we can de�ne a fully symbolic �xpoint operator
SP for LO programs with constraints. The operator SP transforms extended
interpretations in extended interpretations as follows.

De�nition 5 (Fixpoint Operator SP ). Given an LO program P , and I 2 I,

SP (I) = f bH + C 2 c0) j 9 (H Æ�G 2 c) variant of a
clause in P s.t. I  G 2 c [C ; c0] g

Proposition 1. SP is monotonic and continuous over the lattice hI ;vi.

Then, we have the following results.

Proposition 2. Let P be a constrained LO program, and I 2 I. Then, [[SP (I)]] =
TGnd(P )([[I ]]).

Corollary 1. [[lfp(SP )]] = lfp(TGnd(P )).

Let SymbF (P ) = lfp(SP ). Then, we have the following main Theorem.

Theorem 2 (Soundness and Completeness). Given a constrained LO pro-
gram P , OGnd(P ) = [[SymbF (P )]].

Though a single application of the operator SP is e�ective, in general it might
be impossible to compute the �xpoint of SP (�rst-order LO programs are Turing
complete). We can make a similar observation for the non-ground operator SP
of Constraint Logic Programming [JM94].



Example 3. Consider the clause p(X)
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............ r(Y )) & s(Z) 2 Z = a,
and the interpretation I of Example 2. LetG = (q(X)
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............ r(Y )) & s(Z) 2 Z = a.
From Example 2, we know that I  G [t(U; V ) ; X = a^Z = a^U = f(Q)^V =
f(Q0)] and I  G [t(U; V ); t(U 0; V 0) ; X = a ^Z = a ^ U = f(Q) ^ V 0 = f(Q0)].
Thus, we get that SP (I) contains

p(X); p(Z); t(U; V ) 2 X = a ^ Z = a ^ U = f(Q) ^ V = f(Q0);
p(X); p(Z); t(U; V ); t(U 0; V 0) 2 X = a ^ Z = a ^ U = f(Q) ^ V 0 = f(Q0):

As particular instances, we have that SP (I) includes (representations of) the
multisets p(a); p(a); t(f(a); f(a)) and p(a); p(a); t(f(a); a); t(a; f(a)). This exam-
ple shows the importance of maintaining all constraints generated during an
evaluation of a judgment (e.g. X = a in the �rst case). In fact, the scope of
these constraints extends over the atoms in the head of clauses (e.g. p(X)).

5 Relationship with Timed Petri Nets

We will illustrate the main ideas of the connection between our �xpoint seman-
tics and the framework of [AJ99] to decide reachability problems for Timed Petri
Nets. As explained in the introduction, Timed Petri Nets (TPNs) are in�nite-
state networks where tokens move from place to place (place=node of the net)
carrying along their age. TPN transitions have two possible forms. Discrete tran-
sitions specify how tokens move around the network, whereas timed transitions
simply increase the age of every token in the network. The results of [AJ99] are
based on a symbolic representation of potentially in�nite sets of TPN con�gura-
tions (i.e. tokens with their age) via existential regions. An existential region is
a formula having the following form

9x1 : : :9xn: P (x1; :::; xn) and c(x1; :::; xn)

whose meaning is as follows: there exist at least n distinct tokens distributed in
the network as described by formula P and whose ages satisfy the constraint c.
The formula P is a conjunction of constraints of the form xj 2 pi, whose meaning
is the token xj is in place pi. In the interpretation domain existentially quanti-
�ed variables are required to denote distinct values. The constraint c is a clock
constraint [AJ99], i.e., a conjunction of atomic predicates like xi�xj � k (where
k is an integer constant), which expresses a bound on the di�erence between the
clock values of di�erent tokens. More simple constraints like xi � k or xi � k,
which limit the clock value of a single token, can be seen as subcases of the
previous class of constraints. An existential region � denotes an upward closed
set of TPN con�gurations (i.e. those satisfying at least the constraints in �).
Based on this construction, the algorithm of [AJ99] solves the following type of
reachability problems.

Control state reachability: given an initial con�guration I0 and an existential
region �, is it possible to reach a con�guration in (the denotation of) �
starting from (an instance of) I0?



The algorithm works as follows. It computes the e�ect of applying backwards the
transitions of the TPN starting from �, until it reaches a �xpoint F . As a last
step, it checks if [[I0]]\[[F ]] = ;. The termination of the algorithm is guaranteed by
the following properties: existential regions are well-quasi ordered [AJ99,AN00];
the class of existential regions is closed under backward applications of TPN
transitions, i.e., if we apply backwards TPN transitions to a set of existential
regions we still obtain a set of existential regions. Instead of entering in more
details in the TPN formalism, we immediately show how the discrete components
of TPNs can be modeled via LO programs.

TPNs as First-Order Linear Logic Theories. First of all, a token in place
p and age n can be represented as the atomic predicate p(n). Thus, discrete
transitions can be represented via LO clauses of the form:

p1(X1)
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where pi; qj are place names andXi; Yj are variables associated to the ages, and c
is a constraint over the age of tokens. Speci�cally, c speci�es the constraint under
which the tokens can be removed from p1; : : : ; pn, and the new constraint on the
ages of the tokens added to q1; : : : ; qm. Timed transitions cannot be represented
directly in LO. This encoding can be done via a meta-rule

P ) p1(X1 + Æ); : : : ; pn(Xn + Æ)

P ) p1(X1); : : : ; pn(Xn)
T ime (Æ � 0)

whose de�nition in Linear Logic (e.g. in Forum [Mil96]) requires giving a family
of clauses, using the constant 1 to ensure that the age of every token in the
network is incremented as a result of a timed transition. In contrast with >,
1 succeeds only in the empty context. The semantics for LO presented here
could be extended, similarly to what done in the propositional case [BDM00], to
include the constant 1. Anyway, as far as the application to TPNs is concerned,
in [AJ99] the authors show how to compute e�ectively the backward application
of timed transitions (i.e. our meta-rule) on a given existential region. We skip
therefore a detailed discussion about encoding timed transitions in LO. We can
use the ideas of [AJ99] provided we �nd a counterpart of existential regions in the
LO setting, and provided we can �nd a way to connect a backward reachability
step with the LO operational semantics.

Existential Regions as Constrained Multisets. Existential regions can be
naturally represented as constrained multisets having the following form:

p1(X1); : : : ; pn(Xn) 2 c

where c is a constraint. In fact, the denotation [[A 2 c]] of a constrained multiset
A 2 c, captures precisely the intended meaning of the existential regions of
[AJ99]. As an example, [[p(X); q(Y ) 2 0 � X � Y � 1]] = ffp(1); q(0)g; fp(1);
q(0); q(3:6)g; : : :g:



Backward Reachability = Bottom-Up Evaluation. At this point, it should
be clear that computing the e�ect of a backward application of the transitions of
a TPNN coincides with computing an application of the SPN operator associated
to the LO program PN encodingN . In order to start up the bottom-up evaluation
from the set of con�gurations represented by the target existential region �, we
simply have to add the clause: p1(X1)
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............. pm(Xm) Æ� > 2 c where
� = 9x1; : : : xm: x1 2 p1 and : : : and xm 2 pm and c. Through this encoding,
we automatically inherit from [AJ99] the following property.

Theorem 3. Let N be a TPN, � an existential region, and PN be their encoding
in LO enriched with the meta-rule for timed transitions. Then, SymbF (PN) is
computable in �nitely many steps.

Besides the basic multiset rewriting mechanism, the linear logic language LO
provides other connectives that add further expressiveness to the operational
reading of speci�cations. For instance, we give some hints about using the addi-
tive conjunction & to specify an operation to hierarchically compose TPNs. If
we think about TPNs as representing the execution of some kind of protocol, the
rule p(X) Æ� p1(X1) & p2(X2) 2 c could be seen as the speci�cation that the
protocol p will start (at the time speci�ed by c) two sub-protocols that must suc-
ceed in order for p to succeed. The subsystems p1 and p2 will run independently.
Since clock constraints are closed under conjunctions, the result of Theorem 3
can be extended in order to include LO programs with conjunction as the one
in the previous example.

6 Related Works

To our knowledge, our work is the �rst attempt to connect algorithmic techniques
used in symbolic model checking with declarative and operational aspects of
linear logic programming. In [BDM00], we have considered the relation between
propositional LO and Petri Nets. In this paper we have extended the connection
to �rst-order LO programs and more general notions of Petri Nets.

In [HW98], Harland and Winiko� present an abstract deductive system for
bottom-up evaluation of linear logic programs. The left introduction plus weak-
ening and cut rules are used to compute the logical consequences of a given
formula. Though the framework is given for a more general fragment than LO,
it does not provide for an e�ective procedure to evaluate programs.

Finally, in [Cer95] Cervesato shows how to encode Petri Nets in LO, Lolli and
Forum exploiting the di�erent features of these languages; whereas in [APC93],
Andreoli, Pareschi and Castagnetti de�ne an improved top-down strategy for
propositional LO based on the Karp-Miller's coverability tree of Petri Nets, i.e.,
a forward exploration with accelerations.

7 Conclusions and Future Work

In this paper we have investigated the connections between techniques used
for symbolic model checking of in�nite-state systems [ACJT96,AJ99,FS98] and



provability for �rst-order linear logic programs [AP90]. We have generalized the
construction used in [AJ99] to decide veri�cation problems for Timed Petri Nets
in order to build an e�ective �xpoint semantics for �rst-order LO programs. Ad
hoc notions like the existential regions of [AJ99] �nd a natural counterpart as
elements of the non-ground interpretations of LO programs, a notion inspired by
the more advanced semantics of Constraint Logic Programming [GDL95,JM94].
Furthermore, we have shown that the algorithms used for (Timed) Petri Nets
can be extended in order to capture the richer speci�cation language LO.

The main interest of the new semantics is that it gives us a way to evaluate
bottom-up �rst-order LO programs, i.e., an alternative operational semantics
that could be useful to study new applications of linear logic programming (as
discussed in [HW98]). For this reason, we think it would be important to extend
our method to other linear logic languages like Lolli [HM94] and Forum [Mil96].

The work presented in this paper can also be a source of further investiga-
tions concerning the analysis of programs and the development of new observable
semantics. In particular, the semantics could be extended in order to cope with
observables like the non ground success set and computed answer substitutions
[FLMP93] of LO programs. To this aim, we plan to formulate the constraint-
based semantics presented here using a more traditional approach based on sub-
stitutions and most general uni�ers. While the constraint-based formulation was
particularly suitable to study the connection with TPNs, a formulation based
on substitutions could be useful for extending traditional program analysis tech-
niques to linear logic programs.
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