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Abstract. Stimulated by concerns of software certi�cation especially
as it relates to mobile code, formal structures such as speci�cations and
proofs are beginning to play an explicit role in computing. In represent-
ing and manipulating such structures, an approach is needed that pays
attention to the binding operation that is present in them. The language
�Prolog provides programming support for a higher-order treatment of
abstract syntax that is especially suited to this task. This support is
realized by enhancing the traditional strength of logic programming in
the metalanguage realm with an ability for dealing directly with binding
structure. This paper identi�es the features of �Prolog that endow it
with such a capability, illustrates their use and and describes methods
for their implementation. Also discussed is a new realization of �Prolog
called Teyjus that incorporates the implementation ideas presented.

1 Introduction

The language �Prolog is based on the higher-order theory of hereditary Har-
rop formulas that embodies a rich interpretation of the abstract idea of logic
programming [18]. Through a systematic exploitation of features present in the
underlying logic, this language realizes several capabilities at the programming
level such as ones for typing, scoping over names and procedure de�nitions, rep-
resenting and manipulating complex formal structures, modularly constructing
code and higher-order programming. Our interest in this paper is in one speci�c
facet of �Prolog: its role as a metalanguage.

The manipulation of symbolic expressions has been of longstanding inter-
est and some of the earliest computational tasks to have been considered and
systematically addressed have, in fact, concerned the realization of reasoning
processes, the processing of human languages and the compilation and inter-
pretation of programming languages. The calculations involved in these cases
are typically metalinguistic and syntactic in nature and a careful study of their
structure has produced a universally accepted set of concepts and tools relevant
to this form of computing. An important component in this collection is the



idea of abstract syntax that moves away from concrete presentation and focuses
instead on the essential relationships between the constituent parts of symbolic
constructs. A complementary development has been that of languages that pro-
vide programming support for computing with abstract syntax. These languages,
which include Lisp, ML and Prolog amongst them, contain mechanisms that sim-
plify the representation, construction and deconstruction of abstract syntax and
that permit the implicit management of space relative to such manipulations.
E�ort has also been invested in implementing these languages eÆciently, thereby
making them practical vehicles for realizing complex symbolic systems.

One may wonder against this backdrop if anything new really needs to be
added to the capabilities already available for symbolic computation. The an-
swer to this question revolves around the treatment of scope and binding. Many
symbolic objects whose manipulation is of interest involve forms of these opera-
tions in their structure in addition to the compositionality that is traditionally
treated in abstract syntax. This is true, for instance, of quanti�ed formulas that
are considered within reasoning systems and of procedures with arguments that
are of interest to programming language compilers. The conventional approach
in these cases has been to use auxiliary mechanisms to avoid explicit reference
to binding in representation. Thus, reasoning systems eliminate quanti�ers from
formulas through a preprocessing phase and compilers utilize symbol tables to
create binding environments when these are needed in the analysis of programs.
While such methods have been successful in the past, there is now an increas-
ing interest in formal constructs with sophisticated and diverse forms of scope
whose uniform treatment requires a reection of the binding operation into ab-
stract syntax itself. The desire to reason in systems di�erent from classical logic
provides one example of this kind. The elimination of quanti�ers may either not
be possible or desirable in many of these cases, requiring them to be explic-
itly represented and dynamically treated by the reasoning process. In a similar
vein, motivated by the proof-carrying-code approach to software certi�cation
[29], attention has been paid to the representation of proofs. The discharge of
assumptions and the treatment of genericity are intrinsic to these formal struc-
tures and a convenient method for representing such operations involves the use
of binding constructs that range over their subparts. As a �nal example, relation-
ships between declarations and uses are an important part of program structure
and a formal treatment of these in representation can inuence new approaches
to program analysis and transformation.

Driven by considerations such as these, much e�ort has recently been de-
voted to developing an explicit treatment of binding in syntax representation,
culminating in what has come to be known as higher-order abstract syntax [31].
The main novelty of �Prolog as a metalanguage lies in the support it o�ers
for this new approach to encoding syntactic objects. It realizes this support by
enriching a conventional logic programming language in three essential ways.
First, it replaces �rst-order terms|the data structures of a logic programming
language|by the terms of a typed lambda calculus. Attendant on these lambda
terms is a notion of equality given by the �-, �- and �-conversion rules. The main



di�erence in representational power between �rst-order terms and lambda terms
is that the latter are capable of also capturing binding structure in a logically
precise way. Thus, this enhancement in term structure endows �Prolog with a
means for representing higher-order abstract syntax. Second, �Prolog uses a uni-
�cation operation that builds in the extended notion of equality accompanying
lambda terms. This change provides the language with a destructuring opera-
tion that can utilize information about binding structure. Finally, the language
incorporates two new kinds of goals, these being expressions of the form 8xG
and D => G, in which G is a goal and D is a conjunction of clauses.1 A goal of
the form 8xG is solved by replacing all free occurrences of x in G with a new
constant and then solving the result and a goal of the form D => G is solved
by enhancing the existing program with the clauses in D and then attempting
to solve G. Thus, at a programming level, the new forms of goals, which are re-
ferred to as generic and augment, respectively, provide mechanisms for scoping
over names and code. As we shall see presently, these scoping abilities can be
used to realize recursion over binding structure.

Our objective in this paper is to show that the new features present in �Prolog
can simplify the programming of syntax manipulations and that they can be
implemented with suÆcient eÆciency to be practical tools in this realm. Towards
this end, we �rst motivate the programming uses of these features and then
discuss the problems and approaches to realizing them in an actual system. The
ideas we discuss here have been used in a recent implementation of �Prolog
called Teyjus [25] that we also briey describe. We assume a basic familiarity
with lambda calculus notions and logic programming languages and the methods
for implementing them that are embedded, for instance, in the Warren Abstract
Machine (WAM) [35]. Further, in keeping with the expository nature of the
paper, we favor an informal style of presentation; all the desired formality can
be found in references that are cited at relevant places.

2 Higher-Order Abstract Syntax in �Prolog

A common refrain in symbolic computation is to focus on the essential func-
tional structure of objects. This is true, for instance, of systems that manipulate
programs. Thus, a compiler or interpreter that manipulates an expression of the
form if B then T else E must recognize that this expression denotes a condi-
tional involving three constituents: B, T and E. Similarly, a theorem prover that

1 To recall terminology, a goal is what appears in the body of a procedure or as a
top level query and is conventionally formed from atomic goals via conjunction, dis-
junction and existential quanti�cation. Clauses correspond to procedure de�nitions.
While a free variable in a clause is usually assumed to be implicitly universally quan-
ti�ed at the head of the clause, there is ambiguity about the scope and force of such
quanti�cation when the clause appears in an expression of the form D => G. �Prolog
interprets the scope in this case to be the entire expression of which D => G itself
may only be a part, and it bases the force on whether this expression is a goal or a
clause. All other interpretations need to be indicated through explicit quanti�cation.



encounters the formula P ^Q, must realize that this is one representing the con-
junction of P and Q. Conversely, assuming that we are not interested in issues
of presentation, these are the only properties that needs to be recognized and
represented in each case. The `abstract syntax' of these expressions may there-
fore be captured by the expressions cond(B,T,E) and and(P,Q), where cond and
and are suitably chosen function symbols or constructors.

Another important idea in syntax based computations is that of structural
operational semantics that advocates the description of computational content
through rules that operate on abstract syntax. For example, using � as an in�x
notation for the evaluation relation, the operational meaning of a conditional
expression can be described through the rules

B � true T � V

cond(B; T;E)� V

B � false E � V

cond(B; T;E)� V

Similarly, assuming that � �! F represents the judgement that F follows from
a set of assumptions � , the logical content of a conjunction can be captured in
the rule

� �! P � �! Q

� �! and(P;Q)

Rules such as these can be used in combination with some control regimen
determining their order of application to actually evaluate programs or to realize
reasoning processes.

The appropriateness of a logic programming language for symbolic compu-
tation arises from the fact that it provides natural expression to both abstract
syntax and rule based speci�cations. Thus, expressions of the form cond(B,T,E)
and and(P,Q) are directly representable in such a language, being �rst-order
terms. Depending on what they are being matched with, the uni�cation oper-
ation relative to these terms provides a means for constructing, deconstructing
or recognizing patterns in abstract syntax. Structural operational rules translate
directly to program clauses. The evaluation rules for conditional expressions can,
for instance, be represented by the clauses

eval(cond(B,T,E),V) :- eval(B,true), eval(T,V).
eval(cond(B,T,E),V) :- eval(B,false), eval(E,V).

Using these rules to realize interpretation may require capturing additional con-
trol information, but this can be done through the usual programming devices.

2.1 The Explicit Representation of Binding

Many syntactic objects involve a form of binding and it may sometimes be nec-
essary to reect this explicitly in their representation. Binding structure can be



represented only in an approximate manner using conventional abstract syntax
or �rst order terms. For example, consider the formula 8xP (x). This formula
may be represented by the expression all(x; P (x)). However, this representa-
tion misses important characteristics of quanti�cation. Thus, the equivalence of
8xP (x) and 8yP (y) is not immediately present in the `�rst-order' rendition and
has to be built in through auxiliary processes. In a related sense, suppose it is
necessary to instantiate the outer quanti�er in the formula 8x9yP (x; y) with
the term t(y). The renaming required in carrying out this operation has to be
explicitly programmed under the indicated representation.

The availability of lambda terms in �Prolog provides a di�erent method for
dealing with these issues. A binding operator has two di�erent characteristics:
it determines a scope and it identi�es a particular kind of term. In �Prolog,
the latter role may be captured by a suitably chosen constructor while the ef-
fect of scope may be reected into a (metalanguage) abstraction. This form of
representation is one of the main components of the higher-order approach to
abstract syntax. Using this approach, the formula 8xP (x) might be rendered
into the term (all �x(P x)), where all is a constructor chosen to represent the
predicative force of the universal quanti�er; we employ an in�x, curried notation
for application here and below as is customary for higher-order languages, but
the correspondence to the �rst-order syntax should be evident. Similarly, the
program fragment

lambda (x) if (x = 0) then (x - 2) else (2 * x)

in a Lisp-like language might be represented by the term

(abs �x(cond (eq x 0) (minus x 2) (times 2 x)))

where abs is a constructor that identi�es an object language abstraction and eq,
plus,minus, 0, and 2 are constructors corresponding to the relevant programming
language primitives. As a �nal, more involve example, consider the following code
in a functional programming language:

fact m n = if (m = 0) then n else (fact (m - 1) (m * n))

This code identi�es fact as a function of two arguments that is de�ned through
a �xed point construction. Towards making this structure explicit, the given
program fragment may be rewritten as

fact = (�xpt (f) (lambda (m) lambda (n)
if (m = 0) then n else (f (m - 1) (m * n))))

assuming that �xpt represents a binding operator akin to lambda. Now, using the
constructor �x to represent this operator and app to represent object language
application, the expression that is identi�ed with fact may be rendered into the
following �Prolog term:2

2 We are taking liberties with �Prolog syntax here: the language employs a di�erent
notation for abstraction and all expressions in it are typed. In a more precise presen-



(�x �f(abs �m(abs �n
(cond (eq m 0) n (app (app f (minus m 1)) (times m n)))))).

The higher-order abstract syntax representation of binding structure solves
the problems that were discussed relative to the �rst-order encoding. The formu-
las 8xP (x) and 8yP (y) translate to (all �x(P x)) and (all �y(P y)), but these
are really the same terms by virtue of the understanding of �-conversion present
in the metalanguage. Similarly, the instantiation of the quanti�er in a formula
represented by (all P) with the term represented by t is given simply by (P t);
the correct substitution, with all the necessary renaming operations, is realized
from this through the �-conversion rule. The real power of this approach arises
from the fact that the same principles apply to many other situations where
binding is present. The encoding of programs, for instance, manifests an insen-
sitivity to the names of function arguments by virtue of the same �-conversion
rule. Alternatively, consider the task of evaluating functional programs. Using
the notation F[f:=T] to depict the logically correct substitution of T for f in F,
one of the rules relevant to this is the following:

F[f:=(�xpt (f) F)] � V
(�xpt (f) F) � V

This rule can be encoded in the following �Prolog clause:

(eval (�x F) V) :- (eval (F (�x F)) V).

The required substitution is, once again, realized via the �-conversion rule.

2.2 Structure Analysis using Higher-Order Uni�cation

Another useful property of the higher-order abstract syntax representation is
that the uni�cation operation over it provides for sophisticated forms of struc-
ture analysis. This observation has been used previously by Huet and Lang in
recognizing program properties [9]. Consider, for example, the term

(�x �f(abs �m(abs �n
(cond (C m n) (T m n) (app (app f (E1 m n)) (E2 m n))))))

in which the symbols C, T, E1 and E2 represent variables that may be instan-
tiated to obtain terms that correspond to actual programs. Thus, the program
term corresponding to fact is obtained from this term through the substitution
of �m�n(eq m 0), �m�n n, �m�n(minus m 1) and �m�n(times m n) for these
respective variables. However, the logic places a restriction on what constitute
correct instantiations: these cannot be carried out by terms that contain variables
that get bound by the abstractions pertaining to f, m or n. Any dependencies in
the subparts governed by C, T, E1 and E2 on the enclosing abstractions must,

tation the user would, for instance, identify a new sort tm to correspond to program
terms and �x and abs would be given the types (tm ! tm) ! tm. We elide these
aspects for paucity of space, referring the reader to, e.g., [24] for such details.



therefore, be realized through the arguments of these variables. As a consequence
of this requirement, the abstracted variable f must appear in exactly one place
in any program term that matches with the `template' being considered|as the
head of the right arm of the conditional. It is easy to see that any program that
corresponds to such a term must be tail recursive. The displayed term functions,
in this sense, as a recognizer for tail recursive programs.

Unfortunately, the template displayed is very limited in its applicability: any
program it matches with must have a conditional as a body, must not contain
nested conditionals, must have no recursive calls in the left branch of the con-
ditional and must have a right branch that consists entirely of a recursive call.
There are programs that violate all these requirements while still being tail re-
cursive. A more important observation is that the limitation is inherent in any
recognition scheme that uses templates alone: since conditionals can be arbitrar-
ily nested, no �nite collection of templates can be provided that recognize all
tail recursive programs and only these. However, there is a recursive description
of the relevant class of program terms that can be captured in a �nite set of
program clauses. In particular, consider the following, assuming that symbols
beginning with uppercase letters denote instantiatable variables:

1. A program is tail recursive if it contains no recursive calls and its represen-
tation can be recognized by the term (�x �f(abs �m(abs �n(H m n)))).

2. A program that consists solely of a recursive call with possibly modi�ed
arguments is also tail-recursive and its representation must match with the
term (�x �f(abs �m(abs �n(app (app f (E1 m n)) (E2 m n))))).

3. Finally, a program is tail-recursive if its body consists of a conditional in
which there is no recursive call in the test and whose left and right branches
themselves satisfy the requirements of tail-recursiveness. The representation
of only such a program uni�es with the term

(�x �f(abs �m(abs �n(cond (C m n) (T f m n) (E f m n)))))

and in a way such that, under the instantiations determined for T and E,

(�x �f(abs �m(abs �n(T f m n)))) and (�x �f(abs �m(abs �n(E f m n))))

represent tail-recursive programs.

These observations provide a complete characterization of the criterion for tail
recursiveness under consideration, and they translate immediately into the fol-
lowing �Prolog program:

(tailrec (�x �f(abs �m(abs �n(H m n))))).
(tailrec (�x �f(abs �m(abs �n(app (app f (E1 m n)) (E2 m n)))))).
(tailrec (�x �f(abs �m(abs �n(cond (C m n) (T f m n) (E f m n)))))) :-

(tailrec (�x �f(abs �m(abs �n(T f m n))))),
(tailrec (�x �f(abs �m(abs �n(E f m n))))).

Given a program term Prog, we can determine whether or not this represents a
tail recursive program through a query of the form



?- tailrec Prog.

Higher-order uni�cation will play an important computational role in this recog-
nition task. In particular, this operation will determine which of the terms in the
heads of the clauses matches an incoming program term and, in the case of the
last clause, will also aid in destructuring and subsequently constructing terms
needed in the recursive calls.

2.3 Recursion over Binding Structure

The program for recognizing tail recursiveness just discussed has an obvious
defect: it is applicable only to binary recursive functions. A question to ask is
if we can write a program to carry out such a recognition over arbitrary arity
functions. Templates are not going to be very useful in this task since these must
already anticipate the number of arguments for the function in their structure.
A general solution to the problem must instead embody a systematic method
for descending under the abstraction corresponding to each function argument;
this method can then be applied as many times as is needed in any particular
instance before conducting an analysis over the function body.

The scoping primitives present in �Prolog provide a means for realizing the
necessary recursion over binding structure. The overall computation may, in fact,
be structured as follows: The expression that has to be dealt with at the outset
has the form (�x �fF). The objective in this case is to ensure that the free
occurrences of f in F are all of a properly restricted kind. Such a check can be
carried out by introducing a new constant c, annotating this constant so that
it can be easily identi�ed later, replacing all free occurrences of f in F with c
and analyzing the resulting structure. A generic goal can be used to introduce
the needed constant, its annotation can be realized by using an augment goal to
make a special predicate true of this constant and substitution can be realized
by application. At the next step, the expression encountered is of the form (abs
�xB). The objective now is to analyze B, noting that x may appear freely within
this structure. Towards this end, a new constant may be temporarily added
to the signature of the object language, the free occurrences of x in B may
be replaced with this constant and the resulting term may be further examined.
These computations can, once again, be realized using a generic and an augment
goal and function application. After a few repetitions of this step, the `body' of
the function would be reached. This is essentially a �rst-order structure the
needed recursive analysis over which can be speci�ed through Horn clauses.

Assuming a de�nition for the predicate term that allows it to recognize terms
corresponding to programs in the object language, the ideas just described trans-
late into the following �Prolog program:

(tailrec (�x M)) :- 8f((recfn f) => (trfn (M f))).
(trfn (abs R)) :- 8x((term x) => (trfn (R x))).
(trfn B) :- (trbody B).
(trbody (cond C M N)) :- (term C), (trbody M), (trbody N).



(trbody M) :- (recfn M).
(trbody (app M N)) :- (trbody M), (term N).

The computation resulting from a use of the above clauses actually mimics the
way the recognition task would have been structured had a conventional abstract
syntax representation been used. In such a case, it would still be necessary to
traverse the body of the function de�nition, checking the apparent uses of recur-
sion. The advantage with the higher-order abstract syntax style of programming
is that tedious bookkeeping steps|such as recording the function name and iden-
tifying its free occurrences|receive a simple and logically precise treatment. The
practical use of this approach depends, of course, on how eÆciently the features
supporting it can be realized. In the computation being considered, for exam-
ple, several substitutions are performed over the function body by forming and
contracting beta redexes. Carrying out these substitutions eagerly will result in
several walks over the body of the function. Acceptable eÆciency is dependent
on mechanisms for delaying these substitutions so that they can performed in
the same walk that analyzes the function body.

The ideas that we have discussed in this section are quite general in their ap-
plicability and they have, amongst other things, been used in encoding computa-
tions that arise in theorem proving and manipulation of proofs [2, 6], type check-
ing [13] and the speci�cation of programming language semantics [7]. Moreover,
the features that support these ideas have also been widely exploited relative
to the metalanguage Elf [30] and its successor Twelf [32]. Thus, the program-
ming bene�ts of these features seem to be signi�cant, making questions of their
implementability important ones to address.

3 Implementation Issues and Their Resolution

The computational model underlying �Prolog shares many features with the one
used for Prolog: the goal to be solved at intermediate stages typically consists
of a sequence of simpler ones, there may be choices in clauses to use in solv-
ing atomic goals and uni�cation provides the basis for matching an atomic goal
with the head of a clause. Logic programming implementations embody mecha-
nisms for dealing with all these aspects: sequential goal structure is realized with
structure sharing using environment records and pointers to continuation code,
a stack of choice point records is used to succinctly record alternative paths that
may be followed on backtracking, the static information present in clause heads
is used to compile signi�cant parts of the uni�cation computation and an under-
standing of how data may become redundant is used to manage the allocation
and reclamation of space. Much of this methodology is applicable to �Prolog as
well. However, there are di�erences in detail. Considering only the features of
the language presently of interest, terms with a richer structure have to be rep-
resented, a more sophisticated uni�cation computation has to be realized and
di�erent signatures and programs may be relevant to the solution of distinct
atomic goals. We discuss the new concerns that arise from these aspects below
and outline approaches to their proper treatment within the broader framework.



3.1 Representation of Lambda Terms

The usual requirement of a representation for lambda terms is that this support
the operation of �-reduction eÆciently. Our special use of these as data structures
raises additional concerns. Since it may be necessary to compare or destructure
terms during execution, their intensions must be easy to access at run-time.
At a logical level, two terms are considered to be equal if they di�er only in
the names of bound variables. The underlying representation must, therefore,
support the rapid determination of �-convertibility. With respect to �-reduction,
it is desirable to be able to perform substitutions arising from this operation
lazily and also to be able to combine several such substitutions so that they can
be performed in the same walk over term structure. Functional programming
language implementations embody a simple solution to this problem, and also
to questions of �-convertibility, but one that gives up an ability that is important
in our context: that of examining structure within abstraction contexts.

Explicit substitution notations for lambda calculi that build on the de Bruijn
method for eliminating bound variable names provide the conceptual basis for
an adequate treatment of these representational questions. A popular version of
such a notation is the ��-calculus [1]. Our implementation of �Prolog uses a
di�erent version called the suspension notation [21, 28] that we believe is better
suited to actual implementation. There are three categories of expressions in this
notation that are referred to as terms, environments and environment terms and
are given by the following syntax rules:

hTermi ::= hConsi j hV ari j #hIndexi j (hTermi hTermi) j
(�hTermi) j [[hTermi; hNati; hNati; hEnvi]]

hEnvi ::= nil j hETermi :: hEnvi
hETermi ::= @hNati j (hTermi; hNati)

In these rules, hConsi and hV ari represent constructors and instantiatable vari-
ables, hIndexi is the category of positive numbers and hNati is the category
of natural numbers. Terms correspond to lambda terms. In keeping with the
de Bruijn scheme, #i corresponds to a variable bound by the ith abstraction
looking back from the occurrence. The expression [[t; ol; nl; e]], referred to as a
suspension, constitutes a new form of terms that encodes a term with a `sus-
pended' substitution: intuitively, this corresponds to the term t whose �rst ol
variables have to be substituted for in the way determined by e and whose re-
maining bound variables have to be renumbered to reect the fact that t used
to appear within ol abstractions but now appears within nl of them. Nominally,
the elements of an environment either indicate the retention of an abstraction
or are terms generated by a contraction. However, to encode the renumbering of
indices needed during substitution, these are annotated by a relevant abstraction
level.

In addition to the syntactic expressions, the suspension notation includes a
collection of rewrite rule schemata whose purpose is to simulate �-reduction.
These schemata are presented in Figure 1. Of these, the ones labelled (�s) and
(�0

s
) generate the substitutions corresponding to the �-contraction rule on de



(�s) ((�t1) t2)! [[t1; 1; 0; (t2; 0) :: nil]]

(�0

s
) ((�[[t1; ol + 1; nl + 1;@nl :: e]]) t2)! [[t1; ol+ 1; nl; (t2; nl) :: e]]

(r1) [[c; ol; nl; e]]! c, provided c is a constant.

(r2) [[x; ol; nl; e]]! x, provided x is a free variable.

(r3) [[#i; 0; nl; nil]]! #(i+ nl).

(r4) [[#1; ol; nl;@l :: e]]! #(nl � l).

(r5) [[#1; ol; nl; (t; l) :: e]]! [[t; 0; nl � l; nil]].

(r6) [[#i; ol; nl; et :: e]]! [[#(i� 1); ol� 1; nl; e]]; provided i > 1.

(r7) [[(t1 t2); ol; nl; e]]! ([[t1; ol; nl; e]] [[t2; ol; nl; e]]).

(r8) [[(�t); ol; nl; e]]! (�[[t; ol + 1; nl + 1;@nl :: e]]).

Fig. 1. Rule schemata for rewriting terms in the suspension notation

Bruijn terms and the rules (r1)-(r8), referred to as the reading rules, serve to
actually carry out these substitutions. The (�0

s
) schema has a special place in the

calculus: it is the only one that makes possible the combination of substitutions
arising from di�erent �-contractions.

Uni�cation and other comparison operations on terms require these to be
�rst reduced to head-normal forms, i.e. to terms that have the structure

(� : : : (�(: : : (h t1) : : : tm)) : : :)

where h, called the head of the term, is a constant, a de Bruijn index or an
instantiatable variable. By exploiting the atomic nature of the rules in Figure 1,
it is possible to describe a stack based procedure to realize reduction to such a
form [20] and to embed this procedure and its use naturally into the structure of
a logic programming implementation [23]. Furthermore, the rewriting order can
be arranged so as to exploit the (�0

s
) schema to combine all the substitutions that

need to be performed on a term into a single environment. Following this course
has measurable advantages: in preliminary studies we have observed bene�ts in
time from following this course as opposed to never using the (�0

s
) schema that

range from 25% to 500% over the entire computation.
We mention a few other salient issues relating to term representation. One of

these relates to the internal encoding of applications. With reference to the head-
normal form just displayed, there is a choice between representing the subterm
under the abstractions asm iterations of applications as the curried presentation
indicates or as one application with m arguments. There are practical advan-
tages to the latter: access to the head, with which most structure examination
begins, is immediate, the arguments, over which operations have to typically be
iterated, are available as a vector and a close parallel to the WAM representation
can be used for �rst-order terms. Our implementation of �Prolog therefore uses
this representation. In the realization of reduction, there is a choice between de-
structive, graph-based, rewriting and a copying based one. The former seems to
be conservative in both space and time and can be realized using a value trail-



ing mechanism within a WAM-like scheme. Finally, the terms in the suspension
notation can be annotated in a way that indicates whether or not substitutions
generated by contracting external �-redexes can a�ect them. These annotations
can permit reading steps to be carried out trivially in certain cases, leading also
to a conservation of space and, possibly, a greater sharing in graph-based reduc-
tion. Bene�ts such as these have been noted to be signi�cant in practice [3], a
fact con�rmed also by our early studies using the Teyjus system.

3.2 Supporting Higher-Order Uni�cation

The framework for organizing the uni�cation computation relating to lambda
terms is given by a procedure due to Huet [8].3 This procedure considers a
set of pairs of terms of the same type with the objective of making the two
terms in each pair identical; the set is called a disagreement set and each pair in
it is a disagreement pair. Progress towards a solution is made by the repeated
application of two di�erent kinds of steps, both of which are based on the normal
forms of the terms in a chosen disagreement pair. Referring to a term as exible if
the head of its head-normal form is an instantiatable variable and rigid otherwise,
the �rst kind of step is one that simpli�es a pair of rigid-rigid terms. In particular,
if the normal forms of these terms are

(� : : : (�(: : : (h1 t1) : : : tm)) : : :) and (� : : : (�(: : : (h2 s1) : : : sn)) : : :),

where the abstractions at the front have been arranged to be of equal length
possibly by using the �-conversion rule, the simpli�cation step concludes that
no uni�ers exist if h1 and h2 are distinct and replaces the pair with the pairs
ht1; s1i,. . . , htm; smi otherwise; we note that if h1 and h2 are identical, typing
constraints that we have left implicit up to this point dictate that n = m. The
second kind of step deals with a exible-rigid disagreement pair and it posits
a �nite set of substitutions for the variable at the head of the normal form
of the exible term that might be tried towards unifying the two terms. All
substitutions must be tried for completeness, leading to a uni�cation process
that in general has a branching character.

A useful special case of the application of the simpli�cation step is the one
where there are no abstractions at the front of the normal forms of the terms in
the disagreement pair. In this situation, this step is similar to the term simpli-
�cation carried out in �rst-order uni�cation. Further, when one of the terms is
known ahead of time, the repeated application of the step to the pair and, subse-
quently, to the pairs of subterms it produces can actually be compiled. Finally, if
the instantiatable variables within terms appear not as the heads of applications
but, rather, as leaves, the simpli�cation process either indicates non-uni�ability
or produces a disagreement set in which at least one element or each pair is a
variable. A generalization of the occurs-check procedure of �rst-order uni�cation

3 Huet's original procedure pertains to unifying the simply typed lambda terms that
are used in �Prolog. However, its structure has been utilized for unifying lambda
terms with other typing regimens as well.



usually succeeds in the latter case in determining non-uni�ability or in �nding
a most general uni�er. The empirical study in [14] concludes that a large per-
centage of the terms encountered in a �Prolog-like language �t the `�rst-order'
description just considered. Uni�cation of these terms can be treated eÆciently
and deterministically and it is important to reect this into an implementation.

There are other situations in which determinism in uni�cation can be rec-
ognized and exploited and many of these are embedded in the Teyjus system.
However, a full treatment of higher-order uni�cation has to eventually contend
with branching and structures are needed to realize a depth-�rst, backtracking
based search. The information that is needed for trying a di�erent substitution
for a exible-rigid disagreement pair at a later time can be divided into two parts.
One part corresponds to resetting program state to a point prior to making a
choice in substitution; in a WAM-oriented model, this includes the values in
the argument registers, the program pointer and the continuation pointer. The
other part contains information for generating as yet untried substitutions and,
if these are unsuccessful, for �nding earlier backtracking possibilities. The com-
putation model that is used in �Prolog attempts to solve uni�cation problems
as completely as is possible before returning to goal simpli�cation. In light of
this, the state component of backtracking information will likely be common to
more than one uni�cation branch point. A representation and processing scheme
can be designed that takes advantage of this situation to create only one record
of the state information that is subsequently shared between all the relevant
branch point records.

The disagreement set representing a uni�cation problem consists in certain
situations of only exible-exible pairs. While solutions can be proposed for such
problems, this cannot be done without signi�cant redundancy. The most prudent
course, therefore, is to treat such sets as constraints on the solution process that
are to be resolved when they get more re�ned. An explicit representation of
disagreement sets is necessary for realizing this strategy. The following factors
a�ect the design of a satisfactory representation for this purpose:

1. Disagreement sets change incrementally: they change when substitutions are
made for variables, but these typically a�ect only a few pairs. For this reason,
in representing a newly generated set it would be best if unchanged portions
of the old set were reused.

2. Backtracking may require a return to a disagreement set that was in exis-
tence at some earlier computation point. For eÆciency reasons, it should be
possible to achieve such a reinstatement rapidly.

Both requirements can be met by using a heap-based doubly linked list repre-
sentation for the set. The removal of a pair from this list can be realized by mod-
ifying pointers in the elements that appear before and after it. For backtracking
purposes, it suÆces to trail a pointer to the pair. To minimize bookkeeping, the
addition of new pairs as a result of simpli�cation must be done conservatively.
Structures that may be used to support this are described in [23].



3.3 Realizing Generic Goals

The treatment of generic goals on the surface appears to be quite simple: when-
ever such a goal is encountered, we simply generate a new constant, instantiate
the goal with this and solve the resulting goal using the usual logic program-
ming mechanisms. The problem, however, is that scope restrictions have also to
be honored. To understand the speci�c issues, consider the situation in which the
program consists of the single clause 8x(p x x) and the desire is to solve the goal
9y8z(p y z). Using the usual treatment of existential goals in logic programming
and the suggested one for generic goals, the given goal reduces to one of the
form (p Y c) where c is a new constant and Y is an instantiatable variable. The
attempt to solve this atomic goal must now take recourse to matching it with
the program clause. If the usual notion of uni�cation is used for this purpose,
success will result with Y being bound to c. The problem is that this success is
not legitimate since the binding for Y allows the new constant to escape out of
its scope. Uni�cation must therefore be constrained to prevent such solutions.

The usual logical method for capturing restrictions arising out of quanti�er
scope is to instantiate universal quanti�ers not with new constants but with
Skolem functions of the existential quanti�ers whose scope they appear within;
occurs-check in uni�cation then prevents illegal bindings of the sort just dis-
cussed. There is a dual to Skolemization called raising [16] that applies to higher-
order logics and this has, in fact, been used in some �Prolog implementations.
Unfortunately, the logic underlying �Prolog is such that the needed Skolem func-
tions (and their duals) cannot be statically determined [19, 34], requiring lists of
existential variables to be carried around and used in constructing the needed
functions at runtime. Such a scheme is diÆcult to implement at a low level and
certainly cannot be embedded well in an abstract machine.

There is, however, an alternative way to view the instantiation restrictions
[19] that does admit an elegant implementation. The central idea is to think of
the term universe as being constructed in levels, each new level being determined
by a generic goal that is dynamically encountered. Thus, suppose we are given
the goal 9x8y(p (f x) a y) and that our signature initially consists of only the
constructors f and a. The collection of terms at the �rst level consists of only
those that can be built using f and a. Processing the existential quanti�er in
the given goal reduces it one of the form 8y(p (f X) a y), where X is a new
instantiatable variable. Treating the generic goal now introduces a new constant
c and transforms the goal to be solved into (p (f X) a c). However, c and
all the terms that contain it belong to the second level in the term universe.
Furthermore, X can only be instantiated with terms belonging to the �rst level.
A way to encode these constraints is to label constants and variables with level
numbers. For a constant, this denotes the stage at which it enters the term
universe. For a variable, the label determines the level by which a term must be
in the universe for it to constitute a legal instantiation.

An implementation of this scheme amounts to the following. A designated
universe level is associated with each computation point and is maintained in a
special register. A generic goal increments this register on entry and decrements



it on exit; special instructions can realize these e�ects in a compilation model.
Constants and variables that result from generic and existential goals are labelled
with the existing universe level at their point of creation. These labels are used
whenever a variable needs to be bound during uni�cation. At this time, an
occurs-check process ensures that the binding is consummated only if no constant
in the instantiation term has a higher label value than that of the variable. The
same process also modi�es the label on variables in the term to have a value no
higher than that on the one being instantiated. This is needed to ensure that
re�nements to the instantiation term also respect the relevant constraints.

3.4 Realizing Augment Goals

Augment goals have the e�ect of parameterizing the solution of each goal in a
sequence by a program. In a sequential implementation, this parameterization
can be realized by modifying a central program as computation proceeds. Note
that the program may have to change not only as a result of commencing or
completing an augment goal, but also as a result of backtracking. From the
perspective of eÆcient implementation, the following are important: Programs
should have succinct descriptions that can be recorded easily in choice points.
The addition of code upon entering an augment goal should be rapid as also
the removal of code. Access to procedure de�nitions operative at any point in
computation should be fast. Finally, compilation of predicate de�nitions that
appear in augment goals should be possible.

We outline here the scheme developed in [22] for realizing all these require-
ments. The essence of this scheme is in viewing a program as a composite of
compiled code and a layered access function to this code, with each augment
goal causing a new layer to be added to an existing access function. Thus, con-
sider a goal of the form (C1^ : : :^Cn) � G where, for 1 � i � n, Ci is a program
clause with no free variables; this is not the most general situation that needs to
be treated, and we will discuss the fully general case shortly. This goal requires
the clauses C1; : : : ; Cn to be added to (the front of) the program before an at-
tempt is made to solve G. Now, these clauses can be treated as an independent
program fragment and compiled as such. Let us suppose that the clauses de�ne
the predicates p1; : : : ; pr. Compilation then produces a segment of code with r

entry points, each indexed by the name of a predicate. In addition, we require
compilation to generate a procedure that we call find code that performs the
following function: given a predicate name, it returns the appropriate entry point
in the code segment if the name is one of p1; : : : ; pr and fails otherwise.4 The
execution of the augment goal results in a new access function that behaves as
follows. Given a predicate name, find code is invoked with it. If this function
succeeds, then the code location that it produces is the desired result. Otherwise
the code location is determined by using the access function in existence earlier.

4 In the Teyjus implementation, find code amounts to pointers to a generic search
function and a hash-table or a binary search tree.



The described method for enhancing program context is incomplete in one
respect: rather than constituting completely new de�nitions, the clauses provided
for p1; : : : ; pr may be adding to existing de�nitions for some of these predicates.
Given this, compilation must produce code for each of these predicates that,
instead of failing eventually, looks for code for the predicate using the access
function existing earlier. Assuming that the last lookup occurs more than once,
its e�ect may be precomputed. In particular, we may associate a vector of size
r with the augment goal, the ith entry of which corresponds to the predicate pi.
One of the actions to be performed on entering the augment goal is then that of
using the existing access function with each of the predicates to place pointers
to the relevant entry points into this vector.

In a WAM-like implementation, the layered access function can be realized
through a structure called an implication point record that is allocated on the
local stack and that stores the following items:

1. a pointer to an enclosing implication point record representing the previous
access function,

2. the find code procedure for the antecedent of the augment goal,
3. a positive integer r indicating the number of predicates de�ned by the pro-

gram clauses in the antecedent, and
4. a vector of size r that indicates the next clause to try for each of the predi-

cates de�ned in the antecedent of the augment goal.

The program context at any stage is completely characterized by a pointer to an
implication point record that may be stored in a specially designated program
register. The goal (C1 ^ : : : ^ Cn) � G may be compiled into code of the form

push impl point t

f Compiled code for G g
pop impl point

where push impl point and pop impl point are special instructions that realize
the beginning and ending actions of an augment goal and t is the address of a
statically created table that stores the find code function for this augment goal
and also the numbers and names of the predicates de�ned. The push impl point

instruction uses its table parameter and the program register to create a new im-
plication point record in an entirely obvious way. The pop impl point instruction
restores the old program context by using the pointer to the enclosing implication
point record stored in the one currently pointed to by the program register.

The scheme that we have discussed provides for a particularly simple real-
ization of backtracking behavior as it concerns program context. Since this is
given at any point by the contents of the program register, saving these contents
in a choice point record at the time of its creation and retaining implication
point records embedded under choice points ensures the availability of all the
information that is needed for context switching.

The structure we have assumed for augment goals up to this point embodies
a simpli�cation. In the most general case, a goal of the form (C1 ^ : : :^Cn) � G



may appear within the scope of universal quanti�ers and the Cis may contain
free, non-local, variables. Non-local variables can be treated by viewing a pro-
gram clause as a combination of compiled code and a binding environment|in
e�ect, as a closure|in the scheme described and leaving other details unchanged.
Universal quanti�cation over procedure names can lead to two di�erent improve-
ments. First, it may be possible to translate calls to such procedures from within
G into a transfer of control to a �xed address rather than to one that is deter-
mined dynamically by the procedure find code. Second, the de�nitions of such
procedures within (C1 ^ : : :^Cn) cannot be extended, leading to a determinism
that can be exploited in compiling these de�nitions and obviating entries for
such procedures in the next clause vector stored in implication points.

4 The Teyjus System

The full �Prolog language includes a typing regimen [26], facilities for conven-
tional higher-order programming [24] and a modules notion for structuring large
programs [17] in addition to the features considered in this paper. A curious as-
pect about the types in the language is that they inuence computations. They
must, therefore, be present during execution and eÆcient methods are needed
for constructing and carrying them around. In work not discussed here, we have
addressed the implementation problems that arise from these other features [10,
23, 27] and have incorporated all our ideas into a virtual machine for �Prolog.

An implementation of �Prolog based on our ideas envisages four software
subsystems: a compiler, a loader, an emulator for the virtual machine and a user
interface. The function of the compiler is to process any given module of �Prolog
code, to certify its internal consistency and to ensure that it satis�es a promise
determined by an associated signature and, �nally, to translate it into a byte
code form consisting of a `header' part relevant to realizing module interactions
and a `body' containing sequences of instructions that can be run on the virtual
machine. The purpose of the loader is to read in byte code �les for modules, to
resolve names and absolute addresses using the information in the header parts
of these �les and to eventually produce a structure consisting of a block of code
together with information for linking this code into a program context when
needed. The emulator provides the capability of executing such code after it has
been linked. Finally, the user interface allows for a exibility in the compilation,
loading and use of modules in an interactive session.

The Teyjus system embodies all the above components and comprises about
50,000 lines of C code. The functionality outlined above is realized in its entirety
in a development environment. Also supported is the use of the compiler on the
one hand and the loader and emulator on the other in standalone mode. The
system architecture actually makes byte code �les fully portable. Thus, �Prolog
modules can be distributed in byte code form, to be executed later using only the
loader/emulator. The source code for the system and associated documentation
is available from the URL http://teyjus.cs.umn.edu/.



5 Conclusion

We have discussed the use and implementation of features of �Prolog that pro-
vide support for a higher-order approach to abstract syntax. We believe that
there are many promising applications for these features, an observation that is
accentuated by the extensive use that has been made recently of �Prolog and the
related language Twelf in prototyping experiments related to the proof-carrying
code paradigm. The research we have described here also encompasses issues that
are of broad interest to logic programming: matters related to typing, modular
development of code and richer notions of equality between terms are important
to other interpretations of this paradigm as well and the implementation ideas
that we have developed should �nd applicability in these contexts.

Considerable work remains to be done relative to the Teyjus system. Many
design choices have been made with little empirical guidance in this �rst imple-
mentation and it is important now to understand their practical implications and
to re�ne them as needed. One category of choices concerns the representation of
lambda terms. Explicit substitution notations provide only a framework for this
and an actual realization has to address many additional issues such as sharing
and optimality in reduction [11, 12], the extent of laziness and destructive ver-
sus non-destructive realization. Another possibility not discussed at all here is
that of lifting higher-order uni�cation directly to such a notation [5]. Doing this
simpli�es the construction and application of substitutions but also necessitates
bookkeeping steps that may be diÆcult to realize well in a virtual machine. The
Teyjus system provides a means to study the pragmatic impact of such choices,
a matter often downplayed in theoretical studies related to the lambda calculus.
Along another direction, it appears important to improve on the module system
and its realization so that it o�ers stronger support for separate compilation,
permits dynamic linking and can be used as a basis for interfacing with foreign
code. Another issue relates to garbage collection. The memory management built
into a WAM-like implementation has its limitations and these are especially ex-
posed by our use of the heap in carrying out �-reductions in the Teyjus system.
An auxiliary system therefore needs to be designed to reclaim disused space.
A �nal question concerns the kind of support to provide for higher-order uni�-
cation. The present realization of this operation uses a branching search but it
may be possible to �nesse this, using the ideas in [15] as is done in the Twelf
system. Following this course has the additional advantage that the use of types
can be limited to compile-time checking, leading to a signi�cant simpli�cation
of the virtual machine structure.

We are addressing these and other related questions in ongoing research. We
also mention here that �Prolog has received other implementations, one of these
being the Prolog/Mali system [4, 33]. Preliminary experiments with this system
indicate a complementary behavior to that of Teyjus, with the former being more
adept in the treatment of �rst-order computations and the latter with that of
higher-order abstract syntax. This matter needs to be understood better and,
where possible, the ideas in Prolog/Mali need to be exploited towards enhanced
overall performance.
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