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Abstract. The use of types to deal with access capabilities of program entities is becoming
increasingly popular.
In concurrent logic programming, the first attempt was made in Moded Flat GHC in 1990,
which gave polarity structures (modes) to every variable occurrence and every predicate argu-
ment. Strong moding turned out to play fundamental rôles in programming, implementation
and the in-depth understanding of constraint-based concurrent computation.
The moding principle guarantees that each variable is written only once and encourages
capability-conscious programming. Furthermore, it gives less generic modes to programs that
discard or duplicate data, thus providing the view of “data as resources.” A simple linearity
system built upon the mode system distinguishes variables read only once from those read pos-
sibly many times, enabling compile-time garbage collection. Compared to linear types studied
in other programming paradigms, the primary issue in constraint-based concurrency has been
to deal with logical variables and highly non-strict data structures they induce.
In this paper, we put our resource-consciousness one step forward and consider a class of
‘ecological’ programs which recycle or return all the resources given to them while allowing
concurrent reading of data structures via controlled aliasing. This completely recyclic subset
enforces us to think more about resources, but the resulting programs enjoy high symmetry
which we believe has more than aesthetic implications to our programming practice in general.
The type system supporting recyclic concurrent programming gives a [−1, +1] capability to
each occurrence of variable and function symbols (constructors), where positive/negative val-
ues mean read/write capabilities, respectively, and fractions mean non-exclusive read/write
paths. The capabilities are intended to be statically checked or reconstructed so that one can
tell the polarity and exclusiveness of each piece of information handled by concurrent pro-
cesses. The capability type system refines and integrates the mode system and the linearity
system for Moded Flat GHC. Its arithmetic formulation contributes to the simplicity.
The execution of a recyclic program proceeds so that every variable has zero-sum capability
and the resources (i.e., constructors weighted by their capabilities) a process absorbs match
the resources it emits. Constructors accessed by a process with an exclusive read capability
can be reused for other purposes.
The first half of this paper is devoted to a tutorial introduction to constraint-based concurrency
in the hope that it will encourage cross-fertilization of different concurrency formalisms.

1 Introduction – Constraint-Based Concurrency

The raison d’être and the challenge of symbolic languages are to construct highly sophisticated
software which would be too complicated or unmanageable if written in other languages.

Concurrent logic programming was born in early 1980’s from the process interpretation of logic
programs [47] and forms one of many interesting subfields addressed by the logic programming
paradigm [45].

The prominent feature of concurrent logic programming is that it exploits the power of logical,
single-assignment variables and data structures – exactly those of first-order logic – to achieve various
forms of communication.

Essentially, a logical variable is a communication channel that can be used for output at most once
(hence single-assignment) and for non-destructive input zero or more times. The two well-established
operations, unification and matching (also called one-way unification), are used for output and
? The original version of this paper appeared in Proc. Fourth Int. Symp. on Theoretical Aspects of Computer
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input. Thanks to the single-assignment property, the set of all unification operations that have been
performed determines the current binding environment of the universe, which is called a (monotonic)
store (of equality constraints) in concurrent constraint programming (CCP) [28] that generalizes
concurrent logic programming. The store records what messages have been sent to what channels
and what channels has been fused together.

In CCP, variable bindings are generalized to constraints, unification is generalized to the tell of
a constraint to the store, and matching is generalized to the ask of a constraint from the store. The
ask operation checks if the current store logically entails certain information on a variable.

Constraint-based communication embodied by concurrent logic programming languages has the
following characteristics:

1. Asynchronous. In most concurrent logic languages, tell is an independent process that does not
occur as a prefix of another process as in ask. This form of tell is sometimes called eventual
tell and is a standard mechanism of information sending. (We do not discuss the other, prefixed
form, atomic tell, in this paper.) Since eventual tell simply adds a new constraint to the store,
the store can become inconsistent when an attempt is made to equate a variable to two different
values. This can be avoided by using a non-standard type system, called a mode system [41],
that controls the number of write capabilities of each variable in the system. The advocation of
eventual tell apparently motivated Honda and Tokoro’s asynchronous π-calculus [15].

2. Polyadic. Concurrent logic programming incorporated (rather than devised) well-understood
built-in data structuring mechanisms and operations. Messages can be polyadic at no extra cost
on the formalism; it does not bother us to encode numbers, tuples, lists, and so on, from scratch.
The single-assignment property of logical variables does not allow one to use it for repetitive
communication, but streams – which are just another name of lists in our setting – can readily
be used for representing a sequence of messages incrementally sent from a process to another.

3. Mobile. A process1 (say P ) can dynamically create another process (say P ′) and a fresh logical
variable (say v) with which to communicate with P ′. Although process themselves are not first-
class, logical variables are first-class and its occurrences (other than the one ‘plugged’ to P ′) can
be freely passed from P to other processes using another channel. The logical variable connected
to a process acts as an object identity (or more precisely, channel identity because a process can
respond to more than one channel) and the language construct does not allow a third process
to forge the identity.
When P creates two occurrences of the variable v and sends one of them to another process
(say Q), v becomes a private channel between P ′ and Q that cannot be monitored by any other
process unless P ′ or Q passes it to somebody else. This corresponds to scope extrusion in the
π-calculus.
Another form of reconfiguration happens when a process fuses two logical variables connected
to the outside. The fusion makes sense when one of the variables can be read (input capability)
and the other can be written (output capability), in which case the effect of fusing is implicit
delegation of messages. Again, the process that fused two logical variables loses access to them
unless it retains a copy of them. As will be discussed later, our type systems have dealt with
read/write capabilities of logical variables and the number of access paths (occurrences) of each
variable.
Although not as widely recognized as it used to be, Concurrent Prolog [30] designed in early
1980s was the first simple high-level language that featured channel mobility in the sense of the
π-calculus. When the author proposed Guarded Horn Clauses (GHC) [36] [37] as a simplification
of Concurrent Prolog and PARLOG [8], the principal design constraint was to retain channel
mobility and evolving process structures [32], because GHC was supposed to be the basis of
KL1 [39], a language in which to describe operating systems of the Parallel Inference Machines
as well as various knowledge-based systems.

4. Non-strict. Logical variables provide us with the paradigm of computing with partial information.
Interesting programming idioms including short-circuits, difference lists and messages with reply
boxes, as well as channel mobility, all exploit the power of partially instantiated data structures.

1 We regard a process as an entity that is implemented as a multiset S of goals and communicates with
other processes by generating and observing constraints on variables not local to S.
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Some historical remarks would be appropriate here.
Concurrent logic programming was a field of active research throughout the 1980’s, when a

number of concurrent logic languages were proposed and the language constructs were tested through
a number of implementations and applications [31]. The synchronization primitive, now known as
ask based on logical entailment, was inspired independently around 1984 by at least three research
groups, which suggests the stability of the idea [32].

Although concurrent logic languages achieved their flexibility with an extremely small number of
language constructs, the fact that they were targeted to programming rather than reasoning about
concurrent systems lead to little cross-fertilization with later research on mobile processes.

CCP was proposed in late 1980s as a unified theory underlying concurrent logic languages. It
helped high-level understanding of constraint-based concurrency, but the study of constraint-based
communication at a concrete level and the design of type systems and static analyses call for a fixed
constraint system – most typically that of (concurrent) logic programming known as the Herbrand
system – to work with.

2 The Essence of Constraint-Based Communication

2.1 The Language

To further investigate constraint-based communication, let us consider a concrete language, a subset
of Flat GHC [38] whose syntax is given in Fig. 1.

(program) P ::= set of R’s (1)

(program clause) R ::= A :- | B (2)

(body) B ::= multiset of G’s (3)

(goal) G ::= T1 = T2 | A (4)

(non-unification atom) A ::= p(T1, . . . ,Tn), p 6= ‘=’ (5)

(term) T ::= (as in first-order logic) (6)

(goal clause) Q ::= :- B (7)

(program clause, alternative) R ::= !∀(A .B) (2′)

(goal clause, alternative) Q ::= B,P (7′)

Fig. 1. The simplified syntax of Flat GHC

For simplicity, the syntax given in Fig. 1 omits guard goals from (2), which correspond to
conditions in conditional rewrite rules. We use the traditional rule-based syntax rather than the
expression-based one because it facilitates our analysis. The alternative syntax (2′) (7′) indicates
that a program clause, namely a rewrite rule of goals, could be regarded as a replicated process
that accepts a message A and spawns B, where the universal closure ∀ means that a variable either
occurs in A and will be connected to the outside or occurs only in B as local channels. In this
formulation, the program is made to reside in a goal clause.

2.2 Operational Semantics

The reduction semantics of GHC deals with the rewriting of goal clauses.
A configuration is a triple,

〈
B, C, P

〉
, where B is a multiset of goals, C a multiset of equations

(denoting equality constraints) that represents the store, and P a set of program clauses. A compu-
tation under a program P starts with the initial configuration

〈
B0, ∅, P

〉
, where B0 is the body of

the given goal clause.
We have three rules given in Fig. 2. In the rules, F |= G means that G is a logical consequence

of F . VF denotes the set of all variables occurring in a syntactic entity F . ∀VF (F ) and ∃VF (F ) are
abbreviated to ∀(F ) and ∃(F ), respectively. E denotes the standard syntactic equality theory over
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〈
B1, C, P

〉
−→

〈
B′

1, C
′, P

〉
〈
B1 ∪B2, C, P

〉
−→

〈
B′

1 ∪B2, C′, P
〉 (i)

〈
{t1 = t2}, C, P

〉
−→

〈
∅, C ∪ {t1 = t2}, P

〉 (ii)

〈
{b}, C, {h:- | B} ∪ P

〉
−→

〈
B, C ∪ {b =h}, {h:- | B} ∪ P

〉
(
E |= ∀

(
C ⇒ ∃Vh(b =h)

)
and Vh,B ∩ Vb,C = ∅

)
(iii)

Fig. 2. The reduction semantics of GHC

1. ∀
(
¬(f(X1, . . . , Xm) = g(Y1, . . . , Yn))

)
, for all pairs f , g of distinct constructors (including constants)

2. ∀
(
¬(t = X)

)
, for each term t other than and containing X

3. ∀
(
X = X

)
4. ∀

(
f(X1, . . . , Xm) = f(Y1, . . . , Ym) ⇒ ∧m

i=1
(Xi = Yi)

)
, for each m-ary constructor f

5. ∀
(∧m

i=1
(Xi = Yi) ⇒ f(X1, . . . , Xm) = f(Y1, . . . , Ym)

)
, for each m-ary constructor f

6. ∀
(
X = Y⇒ Y = X

)
7. ∀

(
X = Y ∧ Y = Z⇒ X = Z

)

Fig. 3. Clark’s equality theory E , in clausal form

finite terms and atomic formulas defined in Fig. 3. The second condition of Fig. 3, characterizing
the finiteness of terms, is known as the occur check.

In Fig. 2, Rule (i) expresses concurrent reduction of a multiset of goals. Rule (ii) says that a
unification goal simply publishes (or posts) a constraint to the current store. Rule (iii) deals with
the reduction of a non-unification goal b to B using a clause h :- | B, which is enabled when the
publication of b =h will not constrain the variables in b. This means that the head unification is
effectively restricted to matching. The second side condition guarantees that the guarded clause has
been renamed using fresh variables. An immediate consequence of Rules (i)–(iii) is that the store
grows monotonically and the reduction of b using a clause h:- | B remains enabled once it becomes
enabled.

Sometimes it’s more convenient to treat reduction in a traditional way as rewriting of goal
clauses. The goal clause corresponding to a configuration

〈
B, C, P

〉
is :- Bθ, where θ is the most

general unifier (mgu) of the set C of constraints. This substitution-based formulation is closer to
actual implementation, but an advantage of the constraint-based formulation is that it can represent
inconsistent stores, while mgu’s can represent consistent stores only.

Yet another formulation may omit the second component, C, of a configuration together with
Rule (ii) that simply moves an unguarded unification goal to the separate store. In this case, the
current store is understood to comprise all the unguarded unification goals in B. However, we think
it makes sense to distinguish between the three entities, namely definitions (code), processes, and
the store.

2.3 Relation to Name-Based Concurrency

How can the constraint-based concurrency defined above relates to name-based concurrency?
First of all, predicate names can be thought of as global channel names if we regard the reduction

of a non-unification goal (predicate name followed by arguments) as message sending to predicate
definition. However, we don’t regard this as a crucially important observation. We would rather
forget this correspondence and focus on other symbols, namely variables and constructors.

Variables are local names that can be used as communication channels. Instead of sending a
message along a channel, the the message is written to the channel itself and the receiver can
asynchronously read the channel’s value. For instance, let S be shared by processes P and Q (but
nobody else) and suppose P sends a message S=[read(X)|S’]. The message sends two subchannels,
one a reply box X for the request read, and the other a continuation for subsequent communication.
Then the goal in Q that owns S, say q(S), can read the message using a clause head q([read(A)|B]),



Resource-Passing Concurrent Programming 5

identifying A with X and B with S’ at the same time.2 Alternatively, the identification of variables
can be dispensed with by appropriately choosing an α-converted variant of the clause.

There is rather small difference between message passing of the asynchronous π-calculus and
message passing by unification, as long as only one process holds a write capability and use it once.
These conditions can be statically checked in well-moded concurrent logic programs [41] and in the
π-calculus with a linear type system [19]. When two processes communicate repeatedly, constraint-
based concurrency uses streams because one fresh logical variable must be prepared for each message
passing, while in the linear π-calculus the same channel could be recycled as suggested in [19]. When
two client processes communicate with a single server in constraint-based concurrency, an arbitration
process should be explicitly created. A stream merger is a typical arbiter for repetitive multi-client
communication:

merge([],Ys,Zs) :- | Zs=Ys.
merge(Xs,[],Zs) :- | Zs=Xs.
merge([A|Xs],Ys,Zs0) :- | Zs0=[A|Zs], merge(Xs,Ys,Zs).
merge(Xs,[A|Ys],Zs0) :- | Zs0=[A|Zs], merge(Xs,Ys,Zs).

In contrast, in name-based concurrency (without linearity), arbitration is built in the communi-
cation rule

a(y).Q | ab −→ Q{b/y}
which chooses one of available outputs (forming a multiset of messages) on the channel a.

The difference in the semantics of input is much larger between the two formalisms. While ask
is an non-destructive input, input in name-based concurrency destructively consumes a message,
which is one of the sources of nondeterminism in the absence of choice operators. In constraint-
based concurrency, non-destructiveness of ask is used to model one-way multicasting or data sharing
naturally. At the same time, by using a linearity system, we can guarantee that only one process
holds a read capability of a logical variable [46], in which case ask can destroy a message it has
received, as will be discussed in detail in this paper.

One feature of constraint-based concurrency included into name-based concurrency only recently
by the Fusion calculus [48] is that two channels can be fused into a single channel.

2.4 Locality in Global Store

The notion of shared, global store provided by CCP must be understood with care. Unlike conven-
tional shared-memory multiprocessing, constraint store of CCP is highly structured and localized.
All channels in constraint-based concurrency are created as local variables most of which are shared
by two or a small community of processes, and a process can access them only when they are
explicitly passed as (part of) messages or by fusing.

The only names understood globally are

1. predicate symbols used as the names of recursive programs, and
2. function symbols (constructors) for composing messages, streams, and data structures, and so

on.

Although predicate symbols could be considered as channels, they are channels to classes rather
than to objects. Constructors are best considered as non-channel names. They have various rôles as
above, but cannot be used for sending messages through them. They can be examined by matching
(ask) but cannot be equated with other constructors under strong moding.

3 I/O Mode Analysis

3.1 Motivation

By early 1990’s, hundreds of thousands of lines of GHC/KL1 code were written inside and outside
the Fifth Generation Computer Project [32]. The applications include an operating system for the
2 In the syntax advocated by CCP, one should first ask ∃A, B(q(S) = q([read(A)|B])) (or equivalently,
∃A, B(S = [read(A)|B])) first and then tell q(S) = q([read(A)|B]).
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Parallel Inference Machine (PIMOS) [6], a parallel theorem prover (MGTP) that discovered a new
fact in finite algebra [10]. genetic information processing, and so on.

People found the communication and synchronization mechanisms of GHC/KL1 very natural.
Bugs due to concurrency were rather infrequent3 and people learned to model their problems in an
object-based manner using concurrent processes and streams. At the same time, writing efficient
parallel programs turned out to be a separate and much harder issue than writing correct concurrent
programs.

By late 1980’s, we had found that logical variables in concurrent logic languages were normally
used for cooperative rather than competitive communication. Because the language and the model
based on eventual tell provided no mechanism to cope with the inconsistency of a store (except for
exception handers of KL1) and an inconsistent store allows any constraint to be read out, it was
the responsibility of the programmers to keep the store consistent. Although shared logical variables
were sometimes used for n-to-n signalling, in which two or more processes could write the same
value to the same variable, for most applications it seemed desirable to provide syntactic control of
interference so that the consistency of the store could be guaranteed statically. Obviously, a store
remains consistent if only one process is allowed to have a write capability of each variable, as long
as we ignore the occur check condition (Sect. 2.2).

The mode system4 of Moded Flat GHC [41][43] was designed to establish this property while
retaining the flexibility of constraint-based communication as much as possible. Furthermore, we
can benefit very much from strong moding, as we do from strong typing in many other languages:

1. It helps programmers understand their programs better.
2. It detects a certain kind of program errors at compile-time. In fact, the Kima system we have

developed [2][3] goes two steps forward: it locates, and then automatically corrects, simple pro-
gram errors using constraint-based mode and type analyses. The technique used in Kima is very
general and could be deployed in other typed languages as well.

3. It establishes some fundamental properties statically (Sect. 3.5):
(a) well-moded programs do not collapse the store.
(b) all variables are guaranteed to become ground terms upon termination.

4. It provides basic information for program optimization such as
(a) elimination of various runtime checks,
(b) (much) simpler distributed unification, and
(c) message-oriented implementation [41][40].

3.2 The Mode System

The purpose of our mode system is to assign polarity structures (modes) to every predicate argument
and (accordingly) every variable occurrence in a configuration, so that each part of data structures
will be determined cooperatively, namely by exactly one process that owned a write capability. If
more than one process owned a write capability to determine some part a structure, the commu-
nication would be competitive rather than cooperative. If no process owned a write capability, the
communication would be neither cooperative or competitive, because the readers would never get a
value.

Since variables may be bound to complex data structures in the course of computation whose
exact shapes are not known beforehand, a polarity structure reconstructed by the mode system
should tell the polarity structures of all possible data structures the program may create and
read. To this end, a mode is defined as a function from the set of paths specifying positions in
data structures occurring in goals, denoted PAtom , to the set {in, out }. Paths here are strings of
〈symbol, argument-position〉 pairs in order to be able to specify positions in data structures that are
yet to be formed.

3 Most bugs were due to higher-level design problems that often arose in, for example, programs dealing
with circular process structures concurrently.

4 Modes have sometimes been called directional types. In any case modes are (non-standard) types that
deal with read/write capabilities.
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Formally, the sets of paths for specifying positions in terms and atomic formulas are defined,
respectively, using disjoint union as:

PTerm = (
∑

f∈Fun

Nf )∗ , PAtom = (
∑

p∈Pred

Np)× PTerm ,

where Fun and Pred are the sets of constructors and predicate symbols, respectively, and Nf and
Np are the sets of positive integers up to and including the arities of f and p, respectively.

3.3 Mode Analysis

Mode analysis tries to find a mode m : PAtom → {in, out } under which every piece of communication
will be performed cooperatively. Such a mode is called a well-moding. A well-moding is computed
by constraint solving. Constructors in a program/goal clause will impose constraints on the possible
polarities of the paths at which they occur. Variable symbols may constrain the polarities not only
of the paths at which they occur but of any positions below those paths. The set of all these mode
constraints syntactically imposed by the symbols or the symbol occurrences in a program does not
necessarily define a unique mode because the constraints are usually not strong enough to define
one. Instead it defines a ‘principal’ mode that can best be expressed as a mode graph, as we will see
in Section 3.6.

Mode constraints imposed by a clause h :- | B, where B are multisets of atomic formulae, are
summarized in Fig. 4. Here, Var denotes the set of variable symbols, and ã(p) denotes a symbol
occurring at p in an atomic formula a. When p does not lead to a symbol in a, ã(p) returns ⊥. A
submode of m at p, denoted m/p, is a function (from PTerm to {in, out}) such that (m/p)(q) = m(pq).
IN and OUT are constant submodes that always return in or out, respectively. An overline, “ ”,
inverts the polarity of a mode, a submode, or a mode value.

(HF) ∀p ∈ PAtom

(
h̃(p) ∈ Fun ⇒ m(p) = in

)
(if the symbol at p in h is a constructor, m(p) = in)

(HV) ∀p ∈ PAtom

(
h̃(p) ∈Var ∧ ∃p′ 6=p

(
h̃(p) = h̃(p′)

)
⇒ m/p = IN

)
(if the symbol at p in h is a variable occurring elsewhere in h, then m/p = IN)

(BU) ∀k > 0 ∀t1, t2 ∈ Term
(
(t1 =k t2) ∈B ⇒ m/〈=k, 1〉 = m/〈=k, 2〉

)
(the two arguments of a unification body goal have complementary submodes)

(BF) ∀p ∈ PAtom∀a ∈B
(
ã(p) ∈ Fun ⇒ m(p) = in

)
(if the symbol at p in a body goal is a constructor, m(p) = in)

(BV) Let v ∈ Var occur n (≥ 1) times in h and B at p1, . . . , pn, of which the occurrences in h are at
p1, . . . , pk (k ≥ 0). Then

{R
(
{m/p1, . . . , m/pn}

)
, k = 0;

R
(
{m/p1, m/pk+1, . . . , m/pn}

)
, k > 0;

where R is a ‘cooperativeness’ relation:

R(S)
def
= ∀q ∈ PTerm ∃s ∈ S

(
s(q) = out ∧ ∀s′ ∈ S\{s}

(
s′(q) = in

))

Fig. 4. Mode constraints imposed by a clause h:- | B

For goal clauses, Rules (BU), (BF) and (BV) are applicable.
Note that Rule (BV) ignores the second and the subsequent occurrences of v in h. The occurrences

of v that are not ignored are called channel occurrences. Note also that s can depend on q in the
definition of R. Intuitively, Rule (BV) means that each constructor occurring in a possible instance
of v will be determined by exactly one of the channel occurrences of v.

Unification body goals, dealt with by Rule (BU), are polymorphic in the sense that different
goals are allowed to have different modes. To deal with polymorphism, we give each unification
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body goal a unique number. Polymorphism can be incorporated to other predicates as well [43], but
we do not discuss it here.

3.4 Moding Principles

What are the principles behind these moding rules?
In concurrent logic programming, a process implemented by a multiset of goals can be considered

an information processing device with inlets and outlets of constraints that we call terminals. A vari-
able is a one-to-n (n ≥ 0) communication channel connecting its occurrences, and each occurrence
of a variable is considered to be plugged into one of the terminals of a goal.

We say that a variable is linear when it has exactly two occurrences in a goal clause. Similarly,
a variable in a program clause is said to be linear when it has exactly two channel occurrences in
the clause.

A variable occurring both in the head and in the body of a program clause is considered a
channel that connects a goal (which the head matches) and its subgoals. A constructor is considered
an unconnected plug that acts as the source or the absorber of atomic information, depending on
whether it occurs in the body or the head. While channels and terminals of electric devices usually
have array structures, those in our setting have nested structures. That is, a variable that connects
the terminals at p1, . . . , pn also connects the terminals at p1q, . . . , pnq, for all q ∈ PTerm . Linear
variables are used as cables for one-to-one communication, while nonlinear variables are used as hubs
for one-to-many communication.

A terminal of a goal always has its counterpart. The counterpart of a terminal at p on the caller
side of a non-unification goal is the one at the same path on the callee side, and the counterpart of
a terminal at 〈=k, 1〉q in the first argument of a unification goal is the one at 〈=k, 2〉q in the second
argument. Reduction of a goal is considered the removal of the pairs of corresponding terminals
whose connection has been established.

The mode constraints are concerned with the direction of information flow (1) in channels and
(2) at terminals. The two underlying principles are:

1. When a channel connects n terminals of which at most one is in the head, exactly one of the
terminals is the outlet of information and the others are inlets.

2. Of the two corresponding terminals of a goal, exactly one is the outlet of information and the
other is an inlet.

Rule (BV) comes from Principle 1. An input (output) occurrence of a variable in the head of a
clause is considered an outlet (inlet) of information from inside the clause, respectively, and this is
why we invert the mode of the clause head in Rule (BV). Rule (BV) takes into account only one
of the occurrences of v in the head. Multiple occurrences of the same variable in the head are for
equality checking before reduction, and the only thing that matters after reduction is whether the
variable occurs also in the body and conveys information to the body goals.

Rules (HF) and (HV) come from Principle 2. When some clause may examine the value of the
path p in a non-unification goal, m(p) should be constrained to in because the examination is done
at the outlet of information on the callee side of a goal. The strong constraint imposed by Rule
(HV) is due to the semantics of Flat GHC: when a variable occurs twice or more in a clause head,
these occurrences must receive identical terms from the caller.

Rule (BU) is exactly the application of Principle 2 to unification body goals. Any value fed
through some path 〈=k, i〉q in one of its arguments will come out through the corresponding path
〈=k, 3− i〉q in the other argument.

Rule (BF) also comes from Principle 2. A non-variable symbol on the caller side of a goal must
appear only at the inlet of information, because the information will go out from the corresponding
outlet.

The relation R enjoys the following properties:

R({s}) ⇔ s = OUT (1)

R({s1, s2}
) ⇔ s1 = s2 (2)

R({IN } ∪ S
) ⇔ R(

S
)

(3)
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R({OUT } ∪ S
) ⇔ ∀s′ ∈ S

(
s′ = IN

)
(4)

R({s, s} ∪ S
) ⇔ s = IN ∧R(

S
)

(5)

R({s, s} ∪ S
) ⇔ ∀s′ ∈ S

(
s′ = IN

)
(6)

R({s} ∪ S1

) ∧R({s} ∪ S2

) ⇒ R(
S1 ∪ S2

)
(7)

R(⋃
1≤i≤n{si}

) ⇒ R(⋃
1≤i≤n{si/q}), q ∈ PTerm (8)

Proofs are all straightforward. Property (7) is reminiscent of Robinson’s resolution principle.
Properties (1) and (2) say that Rule (BV) becomes much simpler when the variable v has at

most two channel occurrences. When it has exactly two channel occurrences at p1 and p2. Rule (BV)
is equivalent to m/p1 = m/p2 or m/p1 = m/p2, depending on whether one of the occurrences is in
the head or the both occur in the body. When v has only one channel occurrence at p, Rule (BV)
is equivalent to m/p = IN or m/p = OUT, depending on whether the occurrence is in the head or
the body.

3.5 Properties of Well-Moded Programs

The three important properties of well-moding are as follows:

1. Let m be a well-moding of a clause R, and let t1 =k t2 be a unification (body) goal in R. Then
there exists an i such that (i) m(〈=k, i〉) = out and (ii) ti is a variable.
This means a unification body goal is effectively assignment to an variable with a write capability.

2. (Subject Reduction) Let m be a well-moding of a program P and a goal clause Q. Suppose Q
is reduced by one step into a goal clause Q′ (in the substitution-based formulation (Sect. 2.2)),
where the reduced goal g∈Q is not a unification goal that unifies a variable with itself or a term
containing the variable. Then m is a well-moding of P and Q′ as well.
As a corollary, well-moded programs keep store consistent as long as the reductions obey the
above condition on the reduced goal, which is called the extended occur-check condition.

3. (Groundness) Let m be a well-moding of a program P and a goal clause Q. Assume Q has
been reduced to an empty multiset of goals under the extended occur-check condition. Then, in
that execution, a unification goal of the form v =k t such that m(〈=k, 1〉) = out, or a unification
goal of the form t =k v such that m(〈=k, 2〉) = out, must have been executed, for any variable v
occurring in Q.
As a corollary, the product of all substitutions generated by unification body goals maps all the
variables in Q to ground (variable-free) terms.

3.6 Mode Graphs and Principal Modes

It turns out that most of the mode constraints are either of the six forms: (i) m(p) = in, (ii)
m(p) = out, (iii) m/p = IN, (iv) m/p = OUT, (v) m/p1 = m/p2, or (vi) m/p1 = m/p2. We call
(i)–(iv) unary constraints and (v)–(vi) binary constraints.

A set of binary and unary mode constraints can be represented as a feature graph (feature
structures with cycles), called a mode graph, in which

1. paths represent paths in PAtom ,
2. nodes may have mode values determined by unary constraints,
3. arcs may have “negative signs” that invert the interpretation of the mode values beyond those

arcs, and
4. binary constraints are represented by the sharing of nodes.

Figure 5 is the mode graph of the merge program. An arc of a mode graph represents the pair of
a predicate/constructor (abbreviated to its initial in the figures) and an argument position. A dot
“.” stands for the list constructor. The pair exactly corresponds to a feature of a feature graph. A
sequence of features forms a path both in the sense of our mode system and in the graph-theoretic
sense.

A node is possibly labeled with a mode value (in shown as “↓”, or out shown as “↑”) to which
any paths p1, p2, . . . terminating with that node are constrained, or with a constant submode (IN
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<m,1> <m,2> <m,3>

< . ,1> < . ,2>

Fig. 5. Mode graph of the merge program

shown as “↓” with a grounding sign (as in Fig. 7), or OUT) to which the submodes m/p1, m/p2,
. . . are constrained.

An arc is either a negative arc (bulleted in the figures) or a positive arc. When a path passes
an odd number of negative arcs, that path is said to be inverted, and the mode value of the path is
understood to be inverted. Thus the number of bulleted arcs on a path determines the polarity of
the path.

A binary constraint of the form m/p1 = m/p2 or m/p1 = m/p2 is represented by a shared node
with two (or more) incoming paths with possibly different polarities. When the polarities of the two
incoming paths are different, the shared node stands for complementary submodes; otherwise the
node stands for identical submodes.

Figure 5 has a node, under the arc labeled 〈., 1〉, that expresses no constraints at all. It was
created to express binary constraints, but all its parent nodes were later merged into a single node
by other constraints.

All these ideas have been implemented in the mode analyzer for KL1 program, klint v2 [44],
which can output a text version of the mode graph as in Fig. 5.

As another example, consider a program that simply unifies its arguments:

p(X,Y) :- | X = Y.

The program forms a mode graph shown in Fig. 6. This graph can be viewed as the principal mode
of the predicate p, which represents many possible particular modes satisfying the constraint m/〈p,
1〉 = m/〈p, 2〉. In general, the principal mode of a well-moded program, represented as a mode graph,
is uniquely determined, as long as all the mode constraints imposed by the program are unary or
binary.

<p,1> <p,2>

Fig. 6. Mode graph of the unify program

Constraints imposed by the rule (BV) may be non-binary. Non-binary constraints are imposed by
nonlinear variables, and cannot be represented as mode graphs by themselves. However, by delaying
them, most of them are reduced to unary/binary ones by other constraints. In this case they can be
represented in mode graphs, and the programs that imposed them have unique principal modes (as
long as they are well-moded). Theoretically, some non-binary constraints may remain unreduced,
whose satisfiability must be checked eventually.

When some constraints remain non-binary after solving all unary or binary constraints, klint v2
assumes that nonlinear variables involved are used for one-way multicasting rather than bidirectional
communication. Thus, if a nonlinear variable occurs at p and m(p) is known to be in or out, klint
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v2 imposes a stronger constraint m/p = IN or m/p = OUT, respectively. This means that a mode
graph computed by klint v2 is not always ‘principal’, but the strengthening of constraints reduces
most non-binary constraints to unary ones. Our observation is that virtually all nonlinear variables
have been used for one-way multicasting and the strengthening causes no problem in practice.

The union (i.e., conjunction) of two sets of constraints can be computed efficiently as unification
over feature graphs. For instance, adding a new constraint m/p1 = m/p2 causes the subgraph
rooted at p1 and the subgraph rooted at p2 to be unified. A good news is that an efficient unification
algorithm for feature graphs has been established [1].

Figure 7 shows the mode graph of a quicksort program using difference lists. The second and the
third clause of part checks the principal constructor of A and X using guard goals, so the moding
rule of variables occurring in guard goals (not stated in this paper) constrains m(〈part, 1〉) and
m(〈part, 2〉〈., 1〉) to in. The head and the tail of a difference list, namely the second and the third
arguments of qsort, are constrained to have complementary submodes.

qsort([], Ys0,Ys ) :- | Ys=Ys0.

qsort([X|Xs],Ys0,Ys3) :- |

part(X,Xs,S,L), qsort(S,Ys0,[X|Ys2]), qsort(L,Ys2,Ys3).

part(_,[], S, L ) :- | S=[], L=[].

part(A,[X|Xs],S0,L ) :- A>=X | S0=[X|S], part(A,Xs,S,L).

part(A,[X|Xs],S, L0) :- A< X | L0=[X|L], part(A,Xs,S,L).

<q,1> <q,2> <q,3> <p,1> <p,2> <p,3>
<p,4>

< . ,1>
< . ,2>

< . ,2>

< . ,1>

Fig. 7. A quicksort program and its mode graph

4 Linearity Analysis

4.1 Motivation and Observation

The mode system guarantees the uniqueness of write capability of each variable in a runtime config-
uration. Furthermore, although it does not impose any constraint on the number of read capabilities
(occurrences), it imposes less generic, stronger mode constraints on programs that may discard
or duplicate data. The modes of the paths where singleton variables (one-to-zero communication
channels) may occur are constrained to IN or OUT, and paths of nonlinear variables (one-to-many
communication channels) may very well be constrained to IN or OUT. Thus the mode system
effectively prefers programs that do not discard or duplicate data by giving them weaker mode
constraints, providing the view of “data as resources” to some extent.

Our experiences with Prolog and concurrent logic programming show that surprisingly many
variables in Prolog and concurrent logic programs are linear. For instance, all the variables in the
merge program (Fig. 5) are linear, and all but one of the variables in qsort (Fig. 7) are linear. This
indicates that the majority of communication is one-to-one and deserves special attention.
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As a non-toy example, we examined the mode constraint solver of klint v2, which comprised 190
KL1 clauses [43]. Those clauses imposed 1392 constraints by Rule (BV), one for each variable in the
program, of which more than 90% were of the form m/p1 = m/p2 (1074) or m/p1 = m/p2 (183).
Thus we can say that the clauses are highly linear. Furthermore, all of the 42 non-binary constraints
were reduced to unary or binary constraints using other unary or binary constraints. Actually they
were reduced to 6 constraints of the form m/p1 = m/p2 and 72 constraints of the form m/p = IN.
This means that nonlinear variables were all used under simple, one-way communication protocols.

4.2 The Linearity System

The purpose of linearity analysis [46] is to statically analyze exactly where nonlinear variables and
shared data structures may occur – in which predicates, in which arguments, and in which part of
the data structures carried by those arguments. This complements mode analysis in the sense that
it is concerned with the number of read capabilities.

To distinguish between non-shared and shared data structures in a reduction semantics without
the notion of pointers, we consider giving a linearity annotation 1 or ω to every occurrence of a
constructor f appearing in (initial or reduced) goal clauses and body goals in program clauses.5

The annotations appear as f1 or fω in the theoretical framework, though the purpose of linearity
analysis is to reason about the annotations and compile them away so that the program can be
executed without having to maintain linearity annotations at run time.

Intuitively, the principal constructor of a structure possibly referenced by more than one pointer
must have the annotation ω, while a structure always pointed to by only one pointer in its lifetime
can have the annotation 1. Another view of the annotation is that it models a one-bit reference
counter that is not decremented once it reaches ω.

The annotations must observe the following closure condition: If the principal constructor of a
term has the annotation ω, all constructors occurring in the term must have the annotation ω. In
contrast, a term with the principal constructor annotated as 1 can contain a constructor with either
annotation, which means that a subterm of a non-shared term may possibly be shared.

Given linearity annotations, the operational semantics is extended to handle them so that they
may remain consistent with the above intuitive meaning.

1. The annotations of constructors in program clauses and initial goal clauses are given according
to how the structures they represent are implemented. For instance, consider the following goal
clause:

:- p([1,2,3,4,5],X), q([1,2,3,4,5],X).

If the implementation chooses to create a single instance of the list [1,2,3,4,5] and let the
two goals share them, the constructors (there are 11 of them including []) must be given ω. If
two instances of the list are created and given to p and q, either annotation is compatible with
the implementation.

2. Suppose a substitution θ = {v1← t1, . . . , vn← tn} is applied upon one-step reduction from Q to
Q′.
(a) When vi is nonlinear, the substitution instantiates more than one occurrence of vi to ti and

makes ti shared. Accordingly, all subterms of ti become shared as well. So, prior to rewriting
the occurrences of vi by ti, we change all the annotations of the constructors constituting ti
to ω.

(b) When vi is linear, θ does not increase the number of references to ti. So we rewrite vi by ti
without changing the annotations in ti.

As in mode analysis, the linearity of a (well-moded) program can be characterized using a lin-
earity function, a mapping from PAtom to the binary codomain {nonshared, shared }, which satisfies
the closure condition

∀p ∈ PAtom∀q ∈ PTerm

(
λ(p) = shared ⇒ λ(pq) = shared

)
.

The purpose of linearity analysis is to reconstruct a linearity function (say λ) that satisfies all
linearity constraints imposed by each program clause and a goal clause :- B, which are shown in
Fig. 8. The klint v2 system reconstructs linearity as well as mode information.
5 The notation is after related work [19, 35] on different computational models.
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(BFλ) If a function symbol fω occurs at the path p in B, then λ(p) = shared.
(LVλ) If a linear variable occurs both at p1 and p2, then

∀q ∈ PTerm

(
m(p1q) = in ∧ λ(p1q) = shared ⇒ λ(p2q) = shared

)
(if p1 is a head path);

∀q ∈ PTerm

(
m(p1q) = out ∧ λ(p1q) = shared ⇒ λ(p2q) = shared

)
(if p1 is a body path).

(NVλ) If a nonlinear variable occurs at p, then
∀q ∈ PTerm

(
m(pq) = out ⇒ λ(pq) = shared

)
(if p is a head path);

∀q ∈ PTerm

(
m(pq) = in ⇒ λ(pq) = shared

)
(if p is a body path).

(BUλ) For a unification body goal =k, ∀q ∈ PTerm

(
λ(〈=k, 1〉q) = λ(〈=k, 2〉q)

)
.

Fig. 8. Linearity constraints imposed by a clause h:- | B

As expected, the linearity system enjoys the subject reduction theorem:

– Suppose λ satisfies the linearity constraints of a program P and a goal clause Q, and Q is
reduced in one step to Q′ under the extended occur-check condition. Then λ satisfies the linearity
constraints of Q′ as well.

An immediate consequence of the subject reduction theorem is that a constructor with ω cannot
appear at p such that λ(p) = nonshared. The (sole) reader of the data structure at a nonshared path
can safely discard the top-level structure after accessing its elements. One feature of our linearity
system is that it can appropriately handle data structures whose sharing properties change (from
nonshared to shared) in their lifetime, allowing update-in-place of not yet shared data structures.

There is one subtle point in this optimization. The optimization is completely safe for built-
in data types such as numeric or character arrays that allow only instantiated data to be stored.
However, when a structure is implemented so that its field may itself represent an uninstantiated
logical variable, the structure cannot be recycled until the variable is instantiated (through an
internal pointer to the variable) and read. Most implementations of Prolog and concurrent logic
languages (including KLIC [7]) represent structures this way for efficiency reasons, in which case local
reuse requires strictness analysis, namely the analysis of instantiation states of variables, in addition
to linearity analysis. The implementation of KL1 on the Parallel Inference Machine disallowed
internal pointers to feature local reuse based on the 1-bit reference counting technique [5].

5 From Linearity to Strict Linearity

5.1 Polarizing Constructors

We already saw that most if not all variables in concurrent logic languages are linear variables. To
start another observation, consider the following insertion sort program:

sort([], S) :- | S=[].
sort([X|L0],S) :- | sort(L0,S0), insert(X,S0,S).
insert(X,[], R) :- | R=[X].
insert(X,[Y|L], R) :- X=<Y | R=[X,Y|L].
insert(X,[Y|L0],R) :- X>Y | R=[Y|L], insert(X,L0,L).

Here again, all the variables are linear (we do not count the occurrences in guard goals when consid-
ering linearity). However, an even more striking fact is that, by slight modification, all constructors
(including constants) can be made to occur exactly twice as well:

sort([], S) :- | S=[].
sort([X|L0],S) :- | sort(L0,S0), insert([X|S0],S).
insert([X], R) :- | R=[X].
insert([X,Y|L], R) :- X=<Y | R=[X,Y|L].
insert([X,Y|L0],R) :- X>Y | R=[Y|L], insert([X|L0],L).
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This suggests that the notion of linearity could be extended to cover constructors as well. We
call it strict linearity. A linear variable is a dipole with two occurrences with opposite polarities.
Likewise, a linear constructor is a dipole with two occurrences with opposite polarities, one in the
head and the other in the body of a clause. The two occurrences of a linear constructor can be
regarded as two polarized instances of the same constructor.

If all the constructors are linear in program clauses as in the second version of sort, all deallo-
cated cells can be reused locally to allocate new cells without accessing a non-local free list. That
is, as long as the input list is not shared, the program can construct the final result by reorganizing
input cells and without generating any garbage cells or allocating new cells from non-local storage.

5.2 Strict Linearity

We say that a program clause is strictly linear if all the variables have exactly two channel occur-
rences in the clause and all the constructors have exactly two occurrences, one in the head and the
other in the body.

The above definition does not require that predicate symbols occur exactly twice. If this is en-
forced, all body goals can inherit its goal record (that records the argument of goals) from the parent
and the program can run with a fixed space, but we must have a means to terminate tail recursion,
as will be discussed in Sect. 5.3. Although strictly linear programs still require allocation and deal-
location of goal records, goal records are inherently non-shared and much more manageable than
heap-allocated data. So strict linearity is a significant step toward resource-conscious programming.

Let me give another example.

append([], Y,Z ) :- | Z=Y.
append([A|X],Y,Z0) :- | Z0=[A|Z], append(X,Y,Z).

The base case receives an empty list but does not use it. A short value such as [] could be
regarded as a zero-resource value, but we prefer to consider n-ary constructors to convey n+1 units
in general, in which case the program recovers strict linearity using an extra argument:

append([], Y,Z, U) :- | Z=Y, U=[].
append([A|X],Y,Z0,U) :- | Z0=[A|Z], append(X,Y,Z,U).

Note that the first version of append can be thought of as a slice of the second version.

5.3 Void: The Zero-Capability Symbol

All the examples above are transformational processes. It is much less clear how one can program re-
active, server-type processes that respond to streams of requests in a strictly linear setting. Consider
the following stack server:

stack([], D ) :- | true.
stack([push(X)|S],D ) :- | stack(S,[X|D]).
stack([pop(X)|S], [Y|D]) :- | X=Y, stack(S,D).

One way to recover the strict linearity of this program is:

stack([](Z), D) :- | Z=[](D).
stack([push([X|*],Y)|S],D) :- | Y=[push(*,*)|*], stack(S,[X|D]).
stack([pop(X,Z)|S], [Y|D]) :- | X=[Y|*], Z=[pop(*,*)|*], stack(S,D).

Note that an empty list, which can be regarded as an “end-of-transaction” message to a process,
has been changed to a unary constructor conveying a reply box, through which the current “deposit”
will be returned. Upon receiving a message, the server immediately returns the resource used by the
client to send the message. In a physical mail metaphor, cons cells can be compared to envelopes
and push and pop messages can be compared to cover letters, which real-world servers often fail to
find a nice way of recycling.
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Observe that we need to extend the language with a special symbol, *, to indicate void positions
of structures. A void position will be given zero capability so that no read or write to the position
will take place.

What is the resource aspect of variable occurrences and the void symbol? We assume that each
variable occurrence uses one unit and one void symbol uses one unit. Furthermore, we assume that a
non-variable term is always pointed to from a variable occurrence and an argument of a non-variable
term or a goal always points to a variable occurrence. This canonical representation is not always
space-optimal, but makes resource counting simple and uniform.

It is not difficult to see that the strictly linear versions of append and stack do not allocate or
deallocate resources for variable occurrences and voids during tail-recursive iteration.

An interesting aspect of the void construct is that it could be used to recover the linearity of
predicate symbols by allowing multi-head clauses as in Constraint Handling Rules [12]. For instance,
sort in Sect. 5.1 could be rewritten as

sort([], S) :- | S=[], sort(*.*).
sort([X|L0],S), insert(*,*) :- | sort(L0,S0), insert([X|S0],S).

where the goals with void arguments could be considered as free, inactive goals waiting for habitants.
The first clause makes the current goal inactive, while the second clause explicitly says that it requires
one free insert goal for the reduction of sort([X|L0],S). However, in this paper we assume that
these free goals are implicit.

Some readers will enjoy the symmetry of strictly linear programs, while others may find it
cumbersome and want compilers to reconstruct strict linear versions of their programs automatically.
In any case, strictly linear programs are completely recyclic and are a step towards small-footprint
symbolic computation with highly predictable behavior.

One natural question is how to write programs whose output size is essentially larger than the
input size. An obvious solution is to require the initial process to pass a necessary number of cells
obtained from the runtime library. This will work well as long as the output size is predictable.
Some programs may have the output size that is essentially the same as the input size but may
require more resource to represent intermediate results. We have two solutions to this. One is to
let the initial process provide all necessary resource. The other is to require that the input size and
the output size be balanced for each process spawned during computation, but allow a subprocess
to use (and then return) more resource than that received from the parent process. The notion of
strict linearity has to be relaxed somewhat to enable the latter alternative.

5.4 Constant-Time Property of Strictly Linear Programs

The cost of the primitive operations of strictly linear concurrent logic programs are highly predictable
despite their non-strict data structures.

The primitive operations of concurrent logic programs are:

1. spawning of new non-unification goals (including tail-recursive ones),
2. termination of a non-unification goal (upon reduction with a base-case clause),
3. ask or term matching, which may involve

(a) synchronization, namely suspension and resumption of the process, and
(b) pointer dereferencing, and

4. tell, namely execution of a unification body goal, which may involve pointer dereferencing.

On a single-processor environment, spawning and termination of a goal involves (de)allocation of
a fixed-size goal record and manipulation of a goal queue, which can both be regarded as constant-
time operations.

Synchronization involves the hooking and unhooking of goals on an uninstantiated variable, but
in a linear setting, the number of goals hooked on each variable is at most one.

The cost of dereferencing reflects the length of the chain of pointers formed by unification. Due
to the flexibility logical variables bring in the way of data structure formation, even in sequential
Prolog it is possible to create an arbitrarily long chain of pointers between variables.

In a linear setting, however, every uninstantiated variable has exactly two occurrences. We can
represent it using two cells that form a size-two cycle by pointing to each other. Then the unification
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of two linear variables, say v1 and v2, which consumes one v1 and one v2 by the unification goal
itself, can be implemented by letting the other occurrence of v1 and the other occurrence of v2 point
to each other. This keeps the size-two property of uninstantiated linear variables unchanged. The
writing to a linear variable v, which consumes one occurrence of v, dereferences the pointer to reach
the other occurrence of v and instantiate it. The reader of v dereferences it exactly once to access
its value.

6 Allowing Concurrent Access within Strict Linearity

Strict linearity can be checked by slightly extending the mode and linearity systems described
earlier. However, rather than doing so, we consider extending the framework to allow concurrent
access to shared resource. There are two reasonable ways of manipulating resource such as large
arrays concurrently.

One is to give different processes exclusive (i.e., non-shared) read/write capabilities to different
parts of a data structure. This is easily achieved by (i) splitting a non-shared structure, (ii) letting
each process work on its own fragment and return results by update-in-place, and (iii) joining the
results into one. For instance, parallel quicksort of an array has been implemented this way using
optimized versions of KLIC’s vectors [25]. Concurrent manipulation of this type fits nicely within
the present framework of mode and linearity systems because no part of an array becomes shared.

On the other hand, some applications require concurrent accesses with non-exclusive, read capa-
bility to the whole of a data structure to allow concurrent table lookup and so on. When the accesses
can be sequentialized, the structure with an exclusive capability can be returned finally either

1. by letting each process receive and return an exclusive capability one after another or
2. by guaranteeing the sequentiality of accesses by other language constructs (let, guard, etc.) as

in [49] and [18].

However, these solutions cannot be used when we need to run the readers concurrently or in parallel.
Our goal is to allow some process (say P ) to collect all released non-exclusive capabilities so that P
may restore an exclusive capability and update it in place.

For this purpose, we refine the {in, out } capability domain of the mode system to a continuous
domain [−1, +1]. As in the mode system, the capability is attached to all paths. Let κ be the
capability of the principal constructor of some occurrence of a variable in a configuration. Then

1. κ = −1 means ‘exclusive write’,
2. −1 < κ < 0 means ‘non-exclusive write’,
3. κ = 0 means no capability,
4. 0 < κ < 1 means ‘non-exclusive read’, and
5. κ = +1 means ‘exclusive read’.

This is a refinement of the mode system in the sense that out corresponds to −1 and in corresponds
to (0, +1]. This is also a refinement of the linearity system in the sense that nonshared corresponds
to ±1 and shared corresponds to (0,+1].

Then, what meaning should we give to the (−1, 0] cases? Suppose a read process receives an
exclusive read capability to access X0 and split the capability to two non-exclusive capabilities using
the following clause:

read(X0,X) :- | read1(X0,X1), read2(X0,X2), join(X1,X2,X).

The capability X0 conveys can be written as a function 1, a constant function such that 1(p) = +1
for all p ∈ PAtom . We don’t care how much of the 1 capability goes to read1 but just require that
the capabilities of the two X0’s sum up to 1. Different paths in one of the split occurrences of X0
may convey different capabilities. Also, we assume that the capabilities given to read1 and read2
are returned with the opposite polarity through X1 and X2. Logically, X1 and X2 will become the
same as X0. Then, join process defined as

join(A,A,B) :- | B = A.
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checks if the first two arguments are indeed aliases and then returns it through the third argument.
Note the interesting use of a nonlinear head. The capability constraint for the join program is that
the capabilities of the three arguments must sum up to a constant function 0.

Now the X returned by join is guaranteed to convey the 1 (exclusive write) capability that
complements the capability received through X0.

7 Operational Semantics with Capability Counting

In the linearity analysis described earlier, the operational semantics was augmented with a linearity
annotation 1 or ω given to every occurrence of a constructor f appearing in (initial or reduced)
goal clauses. Here, we replace the annotation with a capability annotation κ (0 < κ ≤ 1). κ = 1
(exclusive) corresponds to the 1 annotation meaning ‘non-shared’, while κ < 1 (non-exclusive) refines
(the reciprocal of) ω. Again, the annotations are to reason about capabilities statically and are to
be compiled away.

The annotations must observe the following closure condition: If the principal constructor of a
term has a non-exclusive capability, all constructors occurring in the term must have non-exclusive
capabilities as well. In contrast, a term with an exclusive principal constructor can contain a con-
structor with any capability.

The operational semantics is extended to handle annotations so that they may remain consis-
tent with the above intuitive meaning. However, before doing so, let us consider how we can start
computation within a strictly linear framework. The goal clause

:- sort([3,1,4,1,5,9],X).

is not an ideal form to work with because variables and constructors are monopoles. Instead, we
consider a strictly linear version of the goal clause

main([3,1,4,1,5,9],X) :- | sort([3,1,4,1,5,9],X).

in which the head complements the resources in the body. The head declares the resources necessary
to initiate computation and the resources to be returned to the environment. The reduction semantics
works on the body goal as before, except that the unification goal to instantiate X remains intact.
Then the above clause will be reduced to

main([3,1,4,1,5,9],X) :- | X = [1,1,3,4,5,9].

which can be thought of as a normal form in our polarized setting.
Hereafter, we assume that an initial goal clause is complemented by a head to make it strictly

linear.

1. All the constructors in the body of an initial goal clause are given the annotation 1. This could
be relaxed as we did in giving the linearity annotations (Sect. 4) to represent initially shared
data, but without loss of generality we can assume that initial data are non-shared.

2. Suppose a substitution θ = {v1← t1, . . . , vn← tn} is applied upon one-step reduction from Q to
Q′.
(a) When vi is nonlinear,6 the substitution instantiates more than one occurrence of vi to ti

and makes ti shared. Accordingly, all the subterms of ti become shared as well. So, prior
to rewriting the occurrences of vi by ti, we change all the annotations of the constructors
constituting ti as follows: Let fκ be a constructor in ti and ti is about to be copied to m
places (this happens when vi occurs m + 1 times in the goal clause). Then κ is split into
κ1, . . . , κm, where κ1 + . . .+κm = κ, κj > 0 (1 ≤ j ≤ m), and the κj ’s are mutually different
and not used previously as capabilities.

(b) When vi is linear, θ does not increase the number of references to ti. So we rewrite vi by ti
without changing the annotations in ti.

Furthermore, to deal with capability polymorphism described later, we index the predicate sym-
bols of the goals in an initial goal clause with 1, 2, and so on. The indices are in fact singleton
sequences of natural numbers which will be extended in each reduction. That is, when reducing a
non-unification goal bs (s being the index) to spawn b1, . . . , bn using Rule (iii) of Fig. 2, the new
goals are indexed as b1

s.1, . . . , bn
s.n.

6 The term ‘sublinear’ might be more appropriate than nonlinear here.
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(BUc) ∀s∀t1, t2 ∈ Term
(
(t1 =s t2) ∈B ⇒ c/〈 =s, 1〉+ c/〈 =s, 2〉 = 0

)
(the arguments of a unification body goal have complementary capabilities)

(BVc) Let v ∈ Var occur n (≥ 1) times in h and B at p1, . . . , pn, of which the occurrences in h are at
p1, . . . , pk (k ≥ 0). Then
1. −c/p1 − . . .− c/pk + c/pk+1 + . . . + c/pn = 0 (Kirchhoff’s Current Law)

2. if k = 0 and n > 2 then R
(
{c/p1, . . . , c/pn}

)

3. if k ≥ 1 and n− k ≥ 2 then R
(
{c/p1, c/pk+1, . . . , c/pn}

)
where R is a ‘cooperativeness’ relation:

R(S)
def
= ∃s ∈ S

(
s < 0 ∧ ∀s′ ∈ S\{s}

(
s′ > 0

))

(HVc) ∀p ∈ PAtom

(
h̃(p) ∈Var ∧ ∃p′ 6=p

(
h̃(p) = h̃(p′)

)
⇒ c/p > 0

)
(if the symbol at p in h is a variable occurring elsewhere in h, then c/p > 0)

(HFc) ∀p ∈ PAtom

(
h̃(p) ∈ Fun ⇒ (c(p) > 0

∧ ∃!q ∈ PAtom∃a ∈B(ã(q) = h̃(p) ∧ c(p) = c(q) ∧ (c(p) < 1 ⇒ c/p = c/q)))
)

(if the symbol at p in h is a constructor, c(p) > 0 and there’s exactly one partner in B at q such
that c(p) = c(q) (and c/p = c/q if non-exclusive))

(BFc) ∀p ∈ PAtom∀a ∈B
(
ã(p) ∈ Fun ⇒ (c(p) > 0

∧ ∃!q ∈ PAtom(h̃(q) = ã(p) ∧ c(p) = c(q) ∧ (c(p) < 1 ⇒ c/p = c/q)))
)

(if the symbol at p in B is a constructor, c(p) > 0 and there’s exactly one partner at q in h such
that c(p) = c(q) (and c/p = c/q if non-exclusive))

(Zc) ∀p ∈ PAtom∀a ∈B
(
(h̃(p) = * ∨ ã(p) = *) ⇒ c/p = 0

)
(a void path has a zero capability)

(NZc) ∀p ∈ PAtom∀a ∈B
(
(h̃(p) ∈ Fun ∪Var ∨ ã(p) ∈ Fun ∪Var) ⇒ c(p) 6= 0

)
(a non-void path has a non-zero capability)

Fig. 9. Capability constraints imposed by a clause h:- | B

8 The Capability System

Our capability system generalizes the mode system. As suggested earlier, the capability type (say
c) of a program or its fragment is a function

c : PAtom → [−1, +1].

The framework is necessarily polymorphic with respect to non-exclusive capabilities because
a non-exclusive capability may be split into two or more capabilities. This is why different goals
created at runtime should be distinguished using indices.

The following closure conditions of a capability function represent the uniformity of non-exclusive
capabilities:

1. 0 < c(p) < 1 ⇒ ∀q(0 < c(pq) < 1
)

2. −1 < c(p) < 0 ⇒ ∀q(−1 < c(pq) < 0
)

Our capability constraints, shown in Fig. 9, generalizes mode constraints (Fig. 4) without compli-
cating it. Here we have inherited all the notational conventions from the mode system (see Sect. 3.3)
and modified them appropriately.

As an example, consider the following program.

ps(X,Y,...) :- | rs.1(X,Y1,...), ps.2(X,Y2,...), joins.3(Y1,Y2,Y).
ps(X,Y,...) :- | X =s.1 Y.
joins(A,A,B) :- | B =s.1 A.

Then the capability constraints they impose include:
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1. From the first clause of p:
(a) −c/〈ps, 1〉+ c/〈rs.1, 1〉+ c/〈ps.2, 1〉 = 0 (by (BVc) applied to X)
(b) c/〈rs.1, 2〉+ c/〈joins.3, 1〉 = 0 (by (BVc) applied to Y1)
(c) c/〈ps.2, 2〉+ c/〈joins.3, 2〉 = 0 (by (BVc) applied to Y2)
(d) −c/〈ps, 2〉+ c/〈joins.3, 3〉 = 0 (by (BVc) applied to Y)

2. From the second clause of p:
(a) −c/〈ps, 1〉+ c/〈 =s, 1〉 = 0 (by (BVc) applied to X)
(b) −c/〈ps, 2〉+ c/〈 =s, 2〉 = 0 (by (BVc) applied to Y)
(c) c/〈 =s, 1〉+ c/〈 =s, 2〉 = 0 (by (BUc))

3. From join:
(a) c/〈joins, 1〉 > 0 (by (HVc) applied to A)
(b) c/〈joins, 2〉 > 0 (by (HVc) applied to A)
(c) −c/〈joins, 1〉 − c/〈joins, 2〉+ c/〈 =s, 2〉 = 0 (by (BVc) applied to A)
(d) −c/〈joins, 3〉+ c/〈 =s, 1〉 = 0 (by (BVc) applied to B)
(e) c/〈 =s, 1〉+ c/〈 =s, 2〉 = 0 (by (BUc))

In each constraint, the index s is universally quantified. These constraints are satisfiable if (and only
if) c/〈rs.1, 1〉 + c/〈rs.1, 2〉 = 0. Suppose this can be derived from other constraints. Suppose also
that c/〈ps0 , 1〉 = 1 holds, that is, p is initially called with a non-shared, read-only first argument.
Then the above set of constraints guarantees c/〈ps0 , 2〉 = 1, which means that the references to X
distributed to the r’s will be fully collected as long as all the r’s eventually return the references
they have received.

Note that the above constraints (1(a) and several others) and Rule (NZc) entail 0 < c/〈rs.1,
1〉 < 1 and 0 < c/〈ps.2, 1〉 < 1. That is, these paths are constrained to be non-exclusive paths. It is
easy to see that a set of constraints cannot entail a constraint of the form 0 < c/p < 1 unless some
variable is nonlinear.

We have not yet worked out on theoretical results, but conjecture that the following properties
hold (possibly with minor modification):

1. The three properties shown in Sect. 3.5, namely (i) degeneration of unification to assignment,
(ii) subject reduction, and (iii) groundness.

2. (Conservation of Constructors) A reduction does not gain or lose any constructor in the goal
clause, with its capability taken into account as its weight.

The Rules (HFc) and (BFc) can be relaxed so that the name of the constructor examined in
the head can be changed when it is recycled in the body, as long as the constructor comes with an
exclusive capability and its arity does not change. When this modification is done, the Conservation
of Constructors property should be modified accordingly to allow the changes of names.

This modification is important when computation involves a lot of constants such as numbers.
Indeed, some relaxation will be necessary to accommodate arithmetics in our framework in a rea-
sonable way. For instance, to perform local computation such as Y:=X+2, it would be unrealistic to
obtain constructors + and 2 from the parent process and let them escape through Y. Rather, we
want to allocate and garbage-collect them locally and let Y emit an integer constant.7

9 Related Work

Relating the family of π-calculi and the CCP formalism has been done as proposals of calculi
such as the γ-calculus [33], the ρ-calculus [24] and the Fusion calculus [48], all of which incorporate
constraints (or name equation) in some form. The γ-calculus is unique in that it uses procedures with
encapsulated states to model concurrency and communication rather than the other way around. The
ρ-calculus introduces constraints into name-based concurrency, while constraint-based concurrency
aims to demonstrate that constraints alone are adequate for modeling and programming concurrency.
The Fusion calculus simplifies the binding operators of the π-calculus using the unification of names.
A lesson learned from Constraint Logic Programming [17] is that, even when general constraint
7 In actual implementations, + and 2 will be embedded in compiled code and can be considered zero-resource

values.
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satisfaction is not intended, formulation in terms of constraints can be more elegant and less error-
prone. The simplicity of constraint-based concurrency and the existence of working implementations
suggest that encoding all these calculi in constraint-based concurrency would be worthwhile.

In addition to ρ and Fusion, various calculi based on the π-calculus have been proposed, which
include Lπ (Local π) [22], the Join calculus [11] and πI (Internal π) [26]. They are aimed at nicer
semantical properties and/or better correspondence to programming constructs. Some of the moti-
vations of these calculi are in common – at least at a conceptual level – with the design of constraint-
based concurrency with strong moding. For instance, πI restricts communicated data to local names
in order to control name scope, and Lπ restricts communicated data to those with output capa-
bilities in order to allow names to act as object identities. Both objectives have been achieved in
constraint-based concurrency. Lπ abolished name matching based on the observation that it would
be too strong a capability. The counterpart of name matching in constraint-based concurrency is
matching with a nonlinear head, which imposes a strong mode constraint that bans the comparison
of channels used for bidirectional communication.

In concurrent, logic, and/or functional languages and calculi, a number of type systems to deal
with polarities and linearities have been proposed.

In π-calculi and functional languages, Kobayashi proposes a linear type system for the π-calculus
[19], which seems to make the calculus close to constraint-based concurrency with linear, moded
variables because both linear channels and linear logic variables disallow more than one write access
and more than one read access. Turner et al. introduce linearity annotation to a type system for
call-by-need lambda calculus [35]. All these pieces of work could be considered the application of
ideas with similar motivations to different computational models. In concurrent logic programming,
the difficulty lies in the treatment of arbitrarily complex information flow expressed using logical
variables. Walker discusses types supporting more explicit memory management [50]. Session types
[13] shares the same objective with our mode system.

Languages that feature linearity can be found in various programming paradigms. Linear Lisp
[4] and Lilac [20] are two examples outside logic programming, while a survey of linear logic pro-
gramming languages can be found in [23].

There is a lot of work on compile-time garbage collection other than that based on typing. In
logic programming, most of the previous work is based on abstract interpretation [14]. Mercury [34]
is a logic programming language known for its high-performance and enables compile-time garbage
collection using mode and uniqueness declarations [21]. However, the key difference between Mercury
and GHC is that the former does not allow non-strict data structures while the latter is highly non-
strict.

Message-oriented implementation of Moded Flat GHC, which compiles stream communication
into tight control flow between communicating processes, can be thought of as a form of compile-time
garbage collection [41][40]. Another technique related to compile-time garbage collection is process
fusion by unfold/fold transformation [38], which should have some relationship with deforestation
of functional programs.

Janus [27] establishes the linearity property by allowing each variable to occur only twice. In
Janus, a reserved unary constructor is used to give a variable occurrence an output capability.
Our technique allows both linear and nonlinear variables and distinguishes between them by static
analysis, and allows output capabilities to be inferred rather than specified.

Concurrent read accesses under linear typing was motivated by the study on parallel array
processing in Moded Flat GHC [42] [25], which again has an independent counterpart in functional
programming [29].

10 Conclusions and Future Work

This is the first report on the ongoing project on garbage-free symbolic computation based on
constraint-based concurrency.

The sublanguage we propose, namely a strictly linear subset of Guarded Horn Clauses, retains
most of the power of the cooperative use of logical variables, and also allows resource sharing without
giving up the linguistic-level control over the resource handled by the program.

The capability type system integrates and generalizes the mode system and the linearity system
developed and used for Flat GHC. Thanks to its arithmetic and constraint-based formulation, the
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type system is kept quite simple. We plan to build a constraint-based type reconstructor in the
near future. A challenging issue from the theoretical point of view is the static analysis of the
extended occur-check condition. However, we have already been successful in detecting the (useless)
unification of identical nonlinear variable as erroneous; if X is unified with itself when it has the third
occurrence elsewhere, the third occurrence is constrained to have zero capability, which contradicts
Rule (NZc). Another important direction related to resource-consciousness is to deal with time as
well as space bounds. We need to see how type systems developed in different settings to deal with
resource bounds [16][9] can relate to our concurrent setting.

Undoubtedly, the primary concern is the ease of programming. Does resource-conscious pro-
gramming help programmers write correct programs enjoying better properties, or is it simply
burdensome? We believe the answer to the former is at least partly affirmative, but to a varying
degree depending on the applications. One of the grand challenges of concurrent languages and
their underlying theories is to provide a common platform for various forms of non-conventional
computing including parallel computing, distributed/network computing, real-time computing, and
mobile computing [45]. All these areas are strongly concerned with physical aspects and we hope
that a flexible framework with the notion of resources will be a promising starting point towards a
common platform.
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