
LMNtal: a Language Model with Links and Membranes

Kazunori UEDA†‡ Norio KATO†

†Dept. of Computer Science,
Waseda University

3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
E–mail:{ueda,n-kato}@ueda.info.waseda.ac.jp

‡CREST, Japan Science and Technology Corporation

Abstract

LMNtal (pronounced “elemental”) is a simple language model based on
graph rewriting that uses logical variables to represent links and membranes to
represent hierarchies. The two major goals of LMNtal are (i) to unify various
computational models based on multiset rewriting and (ii) to serve as the basis
of a truly general-purpose language covering various platforms ranging from
wide-area to embedded computation. Another important contribution of the
model is it greatly facilitates programming with dynamic data structures.

1 Introduction

This work is motivated by two “grand challenges” in computational formalisms
and programming languages. One is to have a computational model that unifies
various paradigms of computation, especially those of concurrent computation and
computation based on multiset rewriting. The other is to design and implement a
programming language that covers a variety of computational platforms which are
now developing towards both wide-area computation and nanoscale computation.
As the first step towards these ends, this paper proposes a language model LMNtal
(pronounced “elemental”) whose design goals are as follows:

1. simple — to serve as a computational model as well as the basis of a practical
programming language (hence a language model).

2. unifying and scalable — to unify and reconcile various programming concepts.
For instance, LMNtal treats

(a) processes, messages and data uniformly,

(b) dynamic process structures and dynamic data structures uniformly, and

(c) synchronous and asynchronous communication uniformly.

Also, through such uniformity and resource-consciousness implied by (a) and
(b) above, LMNtal is intended to be scalable, that is, be applicable to compu-
tational platforms of various physical scales.

1

3. easy to understand — since we often use figures to explain and understand
concurrent computation and programming with dynamic data structures, the
language is designed so that computation can be viewed as diagram transfor-
mation.

4. fast — optimizing compilation techniques are an important subject of the
project, though this paper will focus on basic concepts.

We briefly describe the design background of LMNtal. The first author designed
Guarded Horn Clauses (GHC) [14] in mid 1980’s, a concurrent language that made
use of the power of logical variables to feature channel mobility. Various type systems
such as mode and linearity systems were later designed for GHC [15]. A lot of
implementation efforts and techniques have been accumulated over the past two
decades. Concurrent logic programming was generalized to concurrent constraint
programming that allowed data domains other than finite trees, and a concurrent
constraint language Janus [13] chose multisets (a.k.a. bags) as an important data
domain. Another important generalization was Constraint Handling Rules (CHR)
[8] that allowed multisets of atomic formulae in clause heads. CHR was designed as
a language for defining constraint solvers, but at the same time it is one of the most
powerful multiset rewriting languages.

Given these two extensions, a natural question arises as to whether (the multiset
aspect of) the two extensions can be unified or embedded into each other. LMNtal
was designed partly as a solution to this question. The language design was first
published in [16]. It was then reviewed and revised through intensive discussions,
receiving feedback from the implementation effort that ran in parallel. This paper
reflects the latest design published in [17].

2 Overview of LMNtal and Related Work

The “four elements” of LMNtal are logical links, multisets, nested nodes, and transformation
— hence the name LMNtal. This section elaborates these four elements, touching
on related work.

1. Logical links — Structures of communicating processes can be represented as
graphs in which nodes represent processes and links represent communication
channels. Likewise, dynamic data structures can be represented using nodes
and links. LMNtal treats them uniformly, that is, links represent both one-
to-one communication channels between logically neighboring processes and
logical neighborhood relations between data cells.

Two major mechanisms in concurrency formalisms are name-based communi-
cation (as in the π-calculus) and constraint-based communication using logical,
single-assignment variables (as in concurrent constraint programming [15]). Of
these, links of LMNtal are closer to communication using logical variables in
that (i) a message sent through a link changes the identity of the link and
(ii) links are always private (i.e., third processes cannot access them). The

2

first point is the key difference between LMNtal and the π-calculus. How-
ever, LMNtal links are different also from links of concurrent logic/constraint
programming and CHR in that LMNtal has no notion of instantiating a link
variable to a value.

LMNtal links are non-directional like chemical bonds. However, if links are
always followed in a fixed direction to reach partners, the direction could be
represented and “reconstructed” using appropriate type systems.

2. Multisets of nested nodes — There have been many diverse proposals of
computational models equipped with the notion of multisets, early examples
of which include Petri Nets and Production Systems. Concurrent processes
naturally form multisets; Gamma [2] and Chemical Abstract Machines [3] are
two typical computational models based on multiset rewriting; languages based
on Linear Logic [10] take advantage of the fact that the both sides of a sequent
are multisets; Linda’s tuple spaces are multisets of tuples.

However, not all of them feature multisets as first-class citizens; many of the
programming languages featuring multisets (e.g., Gamma, Linda, CHR) in-
corporate them in a way different from other data structures. The advantage
of having multisets as first-class citizens is that it gives us greater expressive
power such as the nesting and the mobility of multisets.

LMNtal features multiset hierarchies and encapsulation by allowing a multiset
of nodes enclosed by a membrane to be viewed as a single node. Hierarchical
multisets can be found in the ambient calculus [4], the P-system [12], the
bigraphical model [11], as well as in the fields of knowledge representation [6].

Hierarchization of multisets plays many important rôles, for instance in (i) log-
ical management of computation (e.g., user processes running under adminis-
trative processes), (ii) physical management of computation (e.g., region-based
memory management), and (iii) localization of computation (i.e., reaction rules
placed at a certain “place” of the hierarchy of membranes can act only on pro-
cesses at that place).

3. Transformation — LMNtal has a rewrite-rule-based syntax. There has been
a lot of work on graph grammars transformation [1], including hierarchical
graph transformation [5], but LMNtal’s emphasis is on its design from the
programming language point of view. The key design issue has been the proper
treatment of free links in the presence of membrane structures.

Rewrite rules specify reaction between elements of a multiset, but reaction
between interlinked elements can be much more efficient (in finding partners)
than reaction between unlinked elements.

LMNtal features both channel mobility and process mobility. In other words,
it allows dynamic reconfiguration of process structures as well as the migration of
nested computation.

3

P ::= 0 (null)
| p(X1, . . . ,Xm) (m ≥ 0) (atom)
| P,P (molecule)
| {P} (cell) †
| T :- T (rule)

T ::= 0 (null)
| p(X1, . . . ,Xm) (m ≥ 0) (atom)
| T, T (molecule)
| {T} (cell) †
| T :- T (rule)
| @p (rule context) †
| $p[X1, . . . ,Xm|A] (process context) †
| p(*X1, . . . , *Xm) (m > 0) (aggregate) †

A ::= [] (empty) †
| *X (bundle) †

Figure 1: Syntax of LMNtal (Lines with daggers (†) are not in Flat LMNtal)

3 Syntax of LMNtal

3.1 Links and Names

First of all, we presuppose two syntactic categories:

• Links (or link variables), denoted by X. In the concrete syntax, links are
denoted by identifiers starting with capital letters.

• Names (including numbers), denoted by p. In the concrete syntax, names are
denoted by identifiers different from links. The name “=” is the only reserved
name in LMNtal.

3.2 Syntax

The two major syntactic categories of LMNtal are processes and process templates.
The former is the subject of the language that evolves with program execution. The
latter is used in reaction rules and can express local contexts of processes, namely
contexts within particular cells.

The syntax of LMNtal is given in Figure 1. As usual, parentheses () are used
to resolve syntactic ambiguities. Commas for molecules connect tighter than the
“:-” for rules. P and T have several syntactic conditions, as will be detailed in this
section. The part of a process not included in any rule is called the non-rule part
of the process. Cells can be arbitrarily nested. The part of a cell {P} or {T} not
contained in nested cells is called the toplevel of {P} or {T}, respectively.

We can think of a subset of LMNtal, Flat LMNtal, that does not allow cell
hierarchies. The syntax of Flat LMNtal does not feature the lines with daggers (†).

4

The rest of this section explains processes, rules and process templates in more
detail.

3.2.1 Processes.

A process P must observe the following link condition:

Link Condition: Each link in the non-rule part of P can occur at most twice.

A link occurring only once in the non-rule part of P is called a free link of P .
Each of the other links occurring in P is called a local link of P . A closed process is
a process containing no free links.

Intuitively, 0 is an empty process; p(X1, . . . ,Xm) is an atom with m ordered
links; P,P is parallel composition (or multiset union); {P} is a process enclosed
with the membrane { }; and T :- T is a rewrite rule for processes.

An atom X =Y , called a connector, connects one side of the link X and one side
of the link Y .

Note that the link condition never prevents us from composing two processes P1

and P2. When each of P1 and P2 satisfies the link condition but the composition
P1, P2 does not, there must be a link occurring twice in one and at least once in the
other. Since the former is a local link, we can always α-convert it to a fresh link
(Section 4.1) to restore the link condition. The links used in rules are not considered
in the link condition because they are understood to be local to the rules.

3.2.2 Rules and Process Templates.

Rules have the form T :- T , where the T ’s are called process templates. The first
and the second T are called the left-hand side (LHS) and the right-hand side (RHS),
respectively.

Process templates have three additional constructs, namely rule contexts, process
contexts, and aggregates. Contexts in LMNtal refer to the rest of the entities in the
innermost surrounding membrane. Rule contexts are to represent multisets of rules,
while process contexts are to represent multisets of cells and atoms.

A process context consists of a name $p and an argument [X1, . . . ,Xm|A]. The
argument of a LHS process context specifies the set of free links that the context
must have. Xi denotes a specific link if it occurs elsewhere in the LHS and an
arbitrary free link if it does not occur in the LHS. The final component A is called
a residual. A residual of the form *V receives the bundle of zero or more free links
other than X1, . . . ,Xm, and a residual [] means that there should be no free links
other than X1, . . . ,Xm.

An aggregate represents a multiset of atoms with the same name, whose multi-
plicity coincides with the number of links represented by the argument bundles.

The precise semantics of all these additional contexts will be given in Section 4.
Rules have several syntactic side conditions. Firstly, process contexts and rule

contexts in a rule must observe the following:

5

LHS Conditions:

1. A rule cannot occur in the LHS of a rule.

2. Aggregates cannot occur in the LHS of a rule.

3. Rule contexts and process contexts occurring in the LHS of a rule must occur
within a cell.

Note that the first condition disallows the decomposition of rules. The third
condition means that rule contexts and process contexts deal only with local contexts
delimited by membranes.

Secondly, rules must satisfy the following occurrence conditions on links and
other syntactic constructs:

Occurrence Conditions:

1. A link and a bundle occurring in a rule must occur exactly twice in the rule.

2. Links occurring in the argument of a process context must be pairwise dis-
tinct.

3. Bundles occurring in the LHS of a rule must be pairwise distinct.

4. A rule context and a process context occurring in a rule must occur exactly
once in the LHS and must not occur in another rule occurring inside the rule.

5. The toplevel of each cell occurring in the LHS of a rule may have at most
one process context and at most one rule context.

Condition 1 implies that a rule cannot have free links. Condition 2 is imposed
because the links specify the set of free links to be owned by a process matching the
process context. Condition 3 is because a bundle in the LHS of a rule is to receive,
rather than compare, a set of free links of the matching process. The “must occur
once” condition in Condition 4 means that a rule context or a process context must
receive a multiset of rules or a process upon application of the rule, and the “exactly
once” condition means that they cannot be used to compare two contexts. Note
that rule contexts and process contexts may occur more than once in the RHS of a
rule. Condition 5 is to ensure that the values received by rule contexts and process
contexts are uniquely determined.

Of the links occurring in a rule L:- R, those occurring only in L are consumed
links; those occurring only in R are links generated by the rule, and those occurring
once in L and once in R are inherited links.

Finally, we introduce several consistency conditions:

Consistency Conditions:

1. The residuals of the process contexts with the same name in a rule must be
either all empty ([]) or all bundles.

6

2. The arity m of the process contexts with the same name in a rule must
coincide.

3. The process contexts having the same bundle must have the same name.

4. For each aggregate p(*X1, . . . , *Xm) (m > 0) in a rule, there must be a
process context name $q and each *Xi must occur as the residual of a process
context with the name $q in the rule.

For example, the rule

{exch,$a[X,Y|[]]} :- {$a[Y,X|[]]}

satisfies Consistency Conditions 1 and 2 (Conditions 3 and 4 hold vacuously) and
says that when a cell contains an atom exch and exactly two free links at its toplevel,
the two free links are crossed and the atom exch is erased.

The rule
{kill,$a[|*X]} :- killed(*X)

satisfies Consistency Conditions 3 and 4 (the other conditions hold vacuously) and
says that when a cell contains an atom kill at its toplevel, the cell is erased and
each link crossing the membrane is terminated by a unary atom killed.

The above conditions do not allow dynamic composition of rules, but do allow
(i) statically determined rules to be spawned dynamically and (ii) the set of rules
inside a cell to be copied and migrated to another cell. Thus LMNtal enables the
cell-wise compilation of the set of rules while providing certain higher-order features.

4 Operational Semantics

We first define structural congruence (≡) and then the reduction relation (−→) on
processes.

4.1 Structural Congruence

We define the relation ≡ on processes as the minimal equivalence relation satisfying
the rules shown in Figure 2. Two processes related by ≡ are essentially the same
and are convertible to each other in zero steps. Here, [Y/X] is a link substitution
that replaces X with Y .

(E1)–(E3) are the characterization of molecules as multisets. (E4) allows the
renaming (α-conversion) of local names. Note that the link Y cannot occur free in
P for the link condition on P [Y/X] to hold. (E5)–(E6) are structural rules that
make ≡ a congruence. (E7)–(E10) are concerned with connectors. (E7) says that a
self-absorbed loop is equivalent to 0, while (E8) expresses the symmetry of =. (E9)
is an absorption law of =, which says that a connector can be absorbed by another
atom (which can again be a connector). Because of the symmetry of ≡, (E9) says
that an atom can emit a connector as well. (E10) says that a connector can be
moved across a membrane boundary as long as it does not change the number of
free links of the membrane.

7

(E1) 0, P ≡ P
(E2) P,Q ≡ Q,P
(E3) P, (Q,R) ≡ (P,Q), R
(E4) P ≡ P [Y/X] if X is a local link of P
(E5) P ≡ P ′ ⇒ P,Q ≡ P ′, Q
(E6) P ≡ P ′ ⇒ {P} ≡ {P ′}
(E7) X =X ≡ 0
(E8) X =Y ≡ Y =X
(E9) X =Y, P ≡ P [Y/X] if P is an atom and X occurs in P
(E10) {X =Y, P} ≡ X =Y, {P} if exactly one of X and Y is a free link of P

Figure 2: Structural congruence on LMNtal processes

(R1)
P −→ P ′

P,Q −→ P ′, Q
(R2)

P −→ P ′

{P} −→ {P ′} (R3)
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) {X =Y, P} −→ X =Y, {P} (X and Y are distinct and don’t occur in P)

(R5) X =Y, {P} −→ {X =Y, P} (X and Y occur in the non-rule part of P)

(R6) Tθ, (T :- U) −→ Uθ, (T :- U)

Figure 3: Reduction relation on LMNtal processes

4.2 Reduction Relation

Computation proceeds by rewriting processes using rules collocated in the same
“place” of the nested membrane structure.

We define the reduction relation −→ on processes as the minimal relation satis-
fying the rules in Figure 3. Note that the right-hand side of −→ must observe the
link condition of processes.

Of the six rules, (R1)–(R3) are structural rules. (R1) says that reductions can
proceed concurrently based on local reducibility conditions. Fine-grained concur-
rency of LMNtal originates from this rule. (R2) says that computation within a
cell can proceed independently of the exterior of the cell. For a cell to evolve au-
tonomously, it must contain its own set of rules. Computation of a cell containing
no rules will be controlled by rules outside the cell. (R3) incorporates structural
congruence into the reduction relation.

(R4) and (R5) deal with the interaction between connectors and membranes.
(R4) says that, when a connector in a cell connects two links both coming from
outside, the cell can expel the connector. (R5) says that, when a connector connects
two links both entering the same cell, the connector itself can enter that cell.

(R6) is the key rule of LMNtal. The substitution θ is to represent what process
(or multiset of rules) has been received by each process context (or rule context),

8

respectively, and what multiset of atoms each aggregate represents. In Flat LMNtal,
θ becomes unnecessary and (R6) is simplified to

(R6′) T, (T :- U) −→ U, (T :- U).

(R6′) describes the reaction between a process and a rule not separated by mem-
branes.

Matching between a process and the LHS of a rule under (R6′) should generally
be done by α-converting the rule using (E4) and (R3). The whole resulting process,
namely U, (T :- U) and its surrounding context, should observe the link condition,
but this can always be achieved by α-converting T :- U before use so that the local
links in U won’t cause name crashes with the context.

The substitution θ in (R6) is represented as a finite set of substitution elements of
the form βi/αi (meaning that αi is replaced by βi), and should satisfy the following
three conditions. In the third condition, we assume that the occurrences of the
process context name $p in the RHS U are uniquely numbered, and that the function
v is a one-to-one mapping from link names and natural numbers to link names.

1. The domain of θ is the set of all rule contexts, process contexts and aggregates
occurring in the LHS T or in the non-rule part of the RHS U .

2. For each rule context @p in T , θ must contain P/@p, where P is a sequence of
rules.

3. For each process context $p[X1, . . . ,Xm|A] in T , the following (i)–(iii) hold,
where P is a process whose free links are {X1, . . . ,Xm+n} (if A = [] then
n = 0; otherwise n ≥ 0), whose local links are {Z1, . . . , Z�}, and which has no
rules outside cells.

(i) If A = [] then

(a) P/$p[X1, . . . ,Xm] ∈ θ

(b) For $p[Y1, . . . , Ym] with the number h in the RHS U ,

P [v(Z1, h)/Z1, . . . , v(Z�, h)/Z�, Y1/X1, . . . , Ym/Xm]
/ $p[Y1, . . . , Ym] ∈ θ

(ii) If A = *V then
(a) P/$p[X1, . . . ,Xm|*V] ∈ θ

(b) v(V, i) = Xm+i for 1 ≤ i ≤ n

(c) For $p[Y1, . . . , Ym|*W] with the number h in the RHS U ,

P [v(Z1, h)/Z1, . . . , v(Z�, h)/Z�, Y1/X1, . . . , Ym/Xm,
v(W, 1)/Xm+1 , . . . , v(W,n)/Xm+n]

/ $p[Y1, . . . , Ym|*W] ∈ θ

(d) For each q(*V1, . . . , *Vk) in the non-rule part of U such that some Vi

is V ,

(q(v(V1, 1), . . . , v(Vk, 1)), . . . , q(v(V1, n), . . . , v(Vk, n)))
/ q(*V1, . . . , *Vk) ∈ θ

9

icp
a

b

c

i
a

b

c

a

b

ci
cp

cp

Figure 4: Cell copying using process contexts and aggregates

(iii) a free link of T occurring in an atom (i.e., not in process contexts) doesn’t
occur in P .

Suppose the LHS of a rule contains a process context p[X1, . . . ,Xm|*V]. When
the RHS contains a process context of the same name, say $p[Y1, . . . ,Ym|*W], a
process isomorphic to the process matched by the corresponding process context in
the LHS is created. Its free links corresponding to X1, . . . ,Xm are connected to
Y1, . . . , Ym, respectively, and the free links corresponding to *V are connected to the
links represented by *W .

An aggregate p(*V1, . . . , *Vm) represents as many copies of the m-ary atom p as
the number of links denoted by the bundle *Vi. Each *Vi must have the same origin
with respect to the process context name (Consistency Condition 4); in other words,
the other occurrences of the *Vi’s must all appear in process contexts with the same
name. Occurrence Condition 4 implies that exactly one of *V1, . . . , *Vm occurs in
the LHS of a rule.

Let us give two examples. The LHS of the rule

kill(S), {i(S),$p[|*P]} :- killed(*P)

can reduce the process

kill(S), {i(S),a(X),b(Y,Z),c(Z,U)},

by letting $p[|*P] receive a(X),b(Y,Z),c(Z) , and the process is reduced to

killed(X), killed(Y).

In this example, the membrane is used to delimit the process structure to be con-
trolled, and the tag i() is attached to the message channel from outside the cell.
The above rule says that, when a kill message is sent through the channel, the
target cell is deleted and each free link owned by the cell is terminated by an atom
killed.

Next, consider the process

cp(S,S1,S2), {i(S),a(X),b(Y,Z),c(Z)}

and the rule

10

cp(S,S1,S2), {i(S),$p[|*P]} :-
{i(S1),$p[|*P1]}, {i(S2),$p[|*P2]}, cp(*P,*P1,*P2) .

Then the process is reduced to

{i(S1),a(X1),b(Y1,Z1),c(Z1)}, {i(S2),a(X2),b(Y2,Z2),c(Z2)},
cp(X,X1,X2), cp(Y,Y1,Y2) .

In short, the cp message makes two copies of the target cell and connects the free
links of the copied cells and the original free links using ternary cp atoms (Figure 4)．

5 Program Examples

5.1 Concatenating Lists

The skeleton of a linear list can be represented, using element processes c(ons) and
a terminal process n(il), as c(A1,X1,X0), . . . , c(An,Xn,Xn−1), n(Xn). Here, Ai

is the link to the ith element and X0 is the link to the whole list (from somebody
else). This corresponds to a list formed by the constraints X0 = c(A1,X1), . . . ,
Xn−1 = c(An,Xn), Xn = n in (constraint) logic programming languages, except that
the LMNtal list is a resource rather than a value. Two lists can be concatenated
using the following two rules:

append(X0,Y,Z0), c(A,X,X0) :- c(A,Z,Z0), append(X,Y,Z)
append(X0,Y,Z0), n(X0) :- Y=Z0

Figure 5 shows a graphical representation of the append program and its execution.
The above program has clear correspondence with append in GHC:

append(X0,Y,Z0) :- X0=c(A,X) | Z0=c(A,Z), append(X,Y,Z).
append(X0,Y,Z0) :- X0=n | Y=Z0.

but LMNtal has eliminated syntactic distinction between processes and data.
The above program resembles append in Interaction Nets [9]. Indeed, Lafont

writes “our rules are clearly reminiscent of clauses in logic programming, especially
in the use of variables (see the example of difference-lists), and our proposal could be
related to PARLOG or GHC” [9]. LMNtal generalizes Interaction Nets by removing
the restriction to binary interaction and allowing hierarchical processes.

5.2 Stream Merging

As in logic programming, streams can be represented as lists of messages, and n-to-1
communication by stream merging can be programmed as follows:

{i(X0),o(Y0),$p[|*Z]}, c(A,X,X0) :-
c(A,Y,Y0), {i(X),o(Y),$p[|*Z]}

Here, the membrane { } of the left-hand side records n (≥ 1) input streams with
the name i and one output stream with the name o. The process context $p[|*Z]
is to match the rest of the input streams and pass them to the RHS. Figure 6 shows
a redex to which the above rewrite rule is applicable and the result of reduction.

11

n

6

c

7

c

8

c

9

c n

a

1

c

2

c

3

c

5

c

4

cb

(a) Initial state

1

cc

2

cc

3

cc

5

cc

4

cc =bbb

6

cc

7

cc

8

cc

9

cc n

(b) Final state 1

1

c

1

cc

2

c

2

cc

3

c

3

cc

5

c

5

cc

4

c

4

ccbbb

6

cc

7

cc

8

cc

9

cc n

(c) Final state 2

aa cc aacc aa n =

A A

Z0 Z0

Y Y

X0 ZX X

Y

Z0 X0

Y

Z0

(d) Rewrite rules

Figure 5: List concatenation

5.3 Process Migration

Consider two cells that share a communication link. Suppose they run independently
using individual sets of reaction rules most of the time but sometimes migrate pro-
cesses to each other through the link. The rule for migration is given in an upper
layer.

It is the rôle of the upper layer to determine the protocol of process migration,
while the cells “hook” processes to be migrated on the communication link according
to the protocol. Here we assume that the innermost cell containing g(S,D) is to
be migrated by the upper layer, where S and D are the source and the destination
sides of the communication link, respectively (Figure 7).

{$s[S0|*S], @s, {g(S0,D0),$m[|*M],@m}}, {$d[D0|*D], @d} :-
{$s[S|*S], @s}, {{s(S,D),$m[|*M],@m}, $d[D|*D], @d}

When @m is non-empty, the rule acts as active process migration; otherwise it acts
as data migration. Note that the communication link between the source and the
destination processes changes after migration. This is an important characteristic of
logical links. The membrane delimiting migrated resources can be removed at the
destination site.

12

i o
X0

X

Y0

AAA

(a)

i o
X

Y0Y

AAA

(b)

Figure 6: Multiway stream merging

$s,@s

gg

$d,@d

$m,@m

(a) before migration

mm

$s,@s $d,@d

$m,@m

(b) after migration

Figure 7: Process migration

5.4 Cyclic Data Structures

Most declarative languages handle lists and trees elegantly but cyclic data structures
awkwardly. This is not the case with LMNtal. In LMNtal, a bidirectional circular
buffer with n elements can be represented as

b(S,Xn,X0), n(A1,X0,X1), . . . , n(An,Xn−1,Xn),

where b is a header process, the Ai’s are links to the elements, and S is the link
from the client process. Operations on the buffer are sent through S as messages
such as left, right and put (Figure 8). The reaction rules between messages and
the buffer can be defined as follows:

left(S,S0), n(A,L,C0), b(S0,C0,R) :- b(S,L,C), n(A,C,R)
right(S,S0), b(S0,L,C0), n(A,C0,R) :- n(A,L,C), b(S,C,R)

put(A,S,S0), b(S0,L,R) :- n(A,L,C), b(S,C,R)
...

13

b

nn

nn

n

right
S0

R

C0

AL

S

Figure 8: Cyclic data structures

Shape Types [7] are another attempt to facilitate manipulation of dynamic data
structures. Interestingly, Shape Types took a dual approach, namely they used
variables to represent graph nodes and names to represent links.

6 Concluding Remarks

We have presented a concise language model LMNtal, which has logical links, mul-
tisets, nested nodes and transformation as its “big four” elements. LMNtal was
inspired by communication using logical variables, and its principal goal as a con-
current programming language has been to unify processes, messages, and data.
There are many languages and computation models that support multisets and/or
graph rewriting, but LMNtal is unique in the design of link handling in the presence
of membrane hierarchies.

CHR is another multiset rewriting language that features logical variables. While
Flat LMNtal can be thought of as a linear fragment of CHR, LMNtal and CHR
have many differences in the use of logical variables, control of reactions, intended
applications, and so on. It is a challenging research topic to embed CHR into
LMNtal.

Both P-systems and LMNtal feature membrane hierarchies and rewrite rules
local to membranes. One apparent difference between P-systems and LMNtal is that
LMNtal features logical links as another key construct. We can think of a fragment
of LMNtal that allows only nullary atoms (atoms without links). This fragment is
somewhat close to P-systems, but one important design criteria of LMNtal has been
that computation inside a cell cannot affect its environment, that is, a cell cannot
export any process by itself. Instead, a cell communicates with its environment by
spawning (within the cell) particular processes that can be recognized and handled
by the rules in the environment.

We have released a prototype implementation in Java1. It features

• a construct for detecting inactive cells,

• built-in number types,

• the notion of type constraints for typechecking and comparison of numbers
and symbols, and

1http://www.ueda.info.waseda.ac.jp/lmntal/

14

• foreign language interface,

in addition to most of the constructs described in this paper.
Many things remain to be done. The most important issue in the language de-

sign is to equip it with useful type systems. We believe that many useful properties,
for instance shapes formed by processes and links, the directionality of links (i.e.,
whether links can be implemented as unidirectional pointers), and properties about
free links of cells, can be guaranteed statically using type systems. Challenging
topics in our implementation project include compact representation of processes
and links, optimizing compilation of reaction rules, and parallel and distributed im-
plementation. Since LMNtal is intended to unify various existing computational
models, relating LMNtal to them by embedding them into LMNtal is another im-
portant research subject. When the embeddings are simple enough, LMNtal will be
able to act as a common implementation language of various models of computation.

Last but not least, we should accumulate applications. Some interesting applica-
tions other than ordinary concurrent computation are graph algorithms, multi-agent
systems, Web services, and programming by self-organization.

Acknowledgments

Discussions with the members of the programming language research group at
Waseda helped the development of the ideas described here. This work is par-
tially supported by Grant-In-Aid for Scientific Research ((B)(2) 16300009, Priority
Areas (C)(2)13324050 and (B)(2)14085205), MEXT and JSPS.

References

[1] Andries, M. et al., Graph Transformation for Specification and Programming.
Sci. Comput. Program., Vol. 34, No. 1 (1999), pp. 1–54.

[2] Banâtre, J.-P. and Le Métayer, D., Programming by Multiset Transformation.
Commun. ACM, Vol. 35, No. 1 (1993), pp. 98–111.

[3] Berry, G. and Boudol, G., The Chemical Abstract Machine. In Proc. POPL’90,
ACM, pp. 81–94.

[4] Cardelli, L. and Gordon, A. D. : Mobile Ambients, in Foundations of Software
Science and Computational Structures, Nivat, M. (ed.), LNCS 1378, Springer-
Verlag, 1998, pp. 140–155.

[5] Drewes, F., Hoffmann, B. and Plump, D., Hierarchical Graph Transformation.
J. Comput. Syst. Sci., Vol. 64, No. 2 (2002), pp. 249–283.

[6] Engels, G. and Schürr, A., Encapsulated Hierarchical Graphs, Graph Types,
and Meta Types. Electronic Notes in Theor. Comput. Sci., Vol. 1 (1995), pp. 75–
84.

[7] Fradet, P. and Le Métayer, D., Shape Types. In Proc. POPL’97, ACM, 1997,
pp. 27–39.

15

[8] Frühwirth, T., Theory and Practice of Constraint Handling Rules. J. Logic
Programming, Vol. 37, No. 1–3 (1998), pp. 95–138.

[9] Lafont, Y., Interaction Nets. In Proc. POPL’90, ACM, pp. 95–108.

[10] Miller, D. : Overview of Linear Logic Programming, to appear in Linear Logic
in Computer Science, Ehrhard, T., Girard, J.-Y., Ruet, P. and Scott, P. (eds.),
Cambridge University Press.

[11] Milner, R., Bigraphical Reactive Systems. In Proc. CONCUR 2001, LNCS 2154,
Springer, 2001, pp. 16–35.

[12] Păun, Gh., Computing with Membranes. J. Comput. Syst. Sci., Vol. 61, No. 1
(2000), pp. 108–143.

[13] Saraswat, V. A., Kahn, K. and Levy, J., Janus: A Step Towards Distributed
Constraint Programming. In Proc. 1990 North American Conf. on Logic Pro-
gramming, MIT Press, 1990, pp. 431–446.

[14] Ueda, K., Concurrent Logic/Constraint Programming: The Next 10 Years. In
The Logic Programming Paradigm: A 25-Year Perspective, Apt, K. R., Marek,
V. W., Truszczynski M., and Warren D. S. (eds.), Springer-Verlag, 1999, pp. 53–
71.

[15] Ueda, K., Resource-Passing Concurrent Programming. In Proc. TACS 2001,
LNCS 2215, Springer, 2001, pp. 95–126.

[16] Ueda, K. and Kato, N., Programming with Logical Links: Design of the LMNtal
Language. In Proc. Third Asian Workshop on Programming Languages and
Systems (APLAS 2002), 2002, pp. 115–126.

[17] Ueda, K. and Kato, N., The Language Model LMNtal. Computer Software,
Vol. 21, No. 2 (2004), pp. 44-61 (in Japanese).

16

