
Message-Oriented Parallel Implementation

of Moded Flat GHC

Kazunori Ueda

NEC C&C Systems Research Laboratories

1-1, Miyazaki 4-chome, Miyamae-ku, Kawasaki 213, Japan

ueda@csl.cl.nec.co.jp

Masao Morita

Mitsubishi Research Institute

3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan

Abstract

We proposed in [Ueda and Morita 1990] a new, message-oriented implementation technique

for Moded Flat GHC that compiled uni�cation for data transfer into message passing. The

technique was based on constraint-based program analysis, and signi�cantly improved the

performance of programs that used goals and streams to implement recon�gurable data

structures. In this paper we discuss how the technique can be parallelized. We focus on

a method for shared-memory multiprocessors, called the shared-goal method, though a dif-

ferent method could be used for distributed-memory multiprocessors. Unlike other parallel

implementations of concurrent logic languages which we call process-oriented, the unit of

parallel execution is not an individual goal but a chain of message sends caused succes-

sively by an initial message send. Parallelism comes from the existence of di�erent chains of

message sends that can be executed independently or in a pipelined manner. Mutual exclu-

sion based on busy waiting and on message bu�ering controls access to individual, shared

goals. Typical goals allow last-send optimization, the message-oriented counterpart of last-

call optimization. We have built an experimental implementation on Sequent Symmetry. In

spite of the simple scheduling currently adopted, preliminary evaluation shows good parallel

speedup and good absolute performance for concurrent operations on binary process trees.

1. Introduction

Concurrent processes can be used both for programming computation and for programming

storage. The latter aspect can be exploited in concurrent logic programming to program

recon�gurable data structures using the following analogy,

records ! body goals

pointers ! streams (implemented by lists)

where a (concurrent) process is said to be implemented by a multiset of goals.

An advantage of using processes for this purpose is that it allows implementations to

exploit parallelism between operations on the storage. For instance, a search operation on

a binary search tree (Program 1), given as a message in the interface stream, can enter the

tree soon after the previous operation has passed the root of the tree. Programmers do

not have to worry about mutual exclusion, which is taken care of by the implementation.

{ 1 {

nt([],

-

,

-

, L,R) :- true | L=[], R=[].

nt([search(K,V)|Cs],K, V1,L,R) :- true | V=V1, nt(Cs,K,V1,L,R).

nt([search(K,V)|Cs],K1,V1,L,R) :- K<K1 | L=[search(K,V)|L1], nt(Cs,K1,V1,L1,R).

nt([search(K,V)|Cs],K1,V1,L,R) :- K>K1 | R=[search(K,V)|R1], nt(Cs,K1,V1,L,R1).

nt([update(K,V)|Cs],K,

-

, L,R) :- true | nt(Cs,K,V,L,R).

nt([update(K,V)|Cs],K1,V1,L,R) :- K<K1 | L=[update(K,V)|L1], nt(Cs,K1,V1,L1,R).

nt([update(K,V)|Cs],K1,V1,L,R) :- K>K1 | R=[update(K,V)|R1], nt(Cs,K1,V1,L,R1).

t([]) :- true | true.

t([search(

-

,V)|Cs]) :- true | V=undefined, t(Cs).

t([update(K,V)|Cs]) :- true | nt(Cs,K,V,L,R), t(L), t(R).

Program 1. A GHC program de�ning binary search trees as processes

This suggests that the programming of recon�gurable data structures can be an important

application of concurrent logic languages. (The verbosity of Program 1 is a separate issue

which is outside the scope of this paper.)

Processes used as storage are almost always suspending, but should respond quickly

when messages are sent. However, most implementations of concurrent logic languages have

not been tuned for processes with this characteristic. In our earlier paper [Ueda and Morita

1990], we proposed message-oriented scheduling of goals for sequential implementation,

which optimizes goals that suspend and resume frequently. Although our primary goal was

to optimize storage-intensive (or more generally, demand-driven) programs, the proposed

technique worked quite well also for computation-intensive programs that did not use one-

to-many communication. However, how to utilize the technique in parallel implementation

was yet to be studied.

Parallelization of message-oriented scheduling can be quite di�erent from parallelization

of ordinary, process-oriented scheduling. An obvious way of parallelizing process-oriented

scheduling is to execute di�erent goals on di�erent processors. In message-oriented schedul-

ing, the basic idea should be to execute di�erent message sends on di�erent processors, but

many problems must be solved as to the mapping of computation to processors, mutual

exclusion, and so on. This paper reports the initial study on the subject.

The rest of the paper is organized as follows: Section 2 reviews Moded Flat GHC, the

subset of GHC we are going to implement. Section 3 reviews message-oriented schedul-

ing for sequential implementation. Section 4 discusses how to parallelize message-oriented

scheduling. Of the two possible methods suggested, Section 5 focuses on the shared-goal

method suitable for shared-memory multiprocessors and discusses design issues in more

detail. Section 6 shows the result of preliminary performance evaluation. The readers are

assumed to be familiar with concurrent logic languages [Shapiro 1989].

2. Moded Flat GHC and Constraint-Based Program Analysis

Moded Flat GHC [Ueda and Morita 1990] is a subset of GHC that introduces a mode system

for the compile-time global analysis of data
ow caused by uni�cation. A uni�cation body

goal of the form t

1

= t

2

can cause bidirectional data
ow in general, but mode analysis tries

to guarantee that at least one of t

1

and t

2

is an uninstantiated variable and hence the goal

does not fail except due to occur check.

Our experience with GHC and KL1 [Ueda and Chikayama 1990] has shown that the full

functionality of bidirectional uni�cation is seldom used and that programs using it can be

rewritten rather easily, if not automatically, to programs using uni�cation as assignment.

{ 2 {

These languages are indeed used as general-purpose concurrent languages, which means

that it is very important to optimize basic operations such as uni�cation and to obtain

machine code close to that obtained from procedural languages.

For global compile-time analysis to be practical, it is highly desirable that individual

program modules can be analyzed separately in such a way that the results can be merged

later. The mode system of Moded Flat GHC is thus constraint-based; the mode of a whole

program can be determined by accumulating the mode constraints obtained separately from

the syntactic analysis of each program clause. Another advantage of the constraint-based

system is that it allows programmers to declare some of the mode constraints, in which case

the analysis works as mode checking as well as mode inference.

The modularity of the analysis was achieved by the rather strong assumption of the

mode system: whether the function symbol at some position (possibly deep in a data

structure) of a goal g is determined by g or by other goals running concurrently is determined

solely by that position speci�ed by a path, which is de�ned as follows. Let Pred be the set

of predicate symbols and Fun the set of function symbols. For each p2Pred with the arity

n

p

, let N

p

be the set f1; 2; : : : ; n

p

g. N

f

is de�ned similarly for each f 2Fun. Now the sets

of paths P

t

(for terms) and P

a

(for atoms) are de�ned using disjoint union as:

P

t

= (

X

f2Fun

N

f

)

�

; P

a

= (

X

p2Pred

N

p

)� P

t

:

An element of P

a

can be written as a string hp; iihf

1

; j

1

i : : : hf

n

; j

n

i, that is, it records the

predicate and the function symbols on the path as well as the argument positions selected.

A mode is a function from P

a

to the set fin; outg, which means that it assigns either in

or out to every possible position of every possible instance of every possible goal. Whether

some position is in or out can depend on the predicate and function symbols on the path

down to that position. The function can be partial, because the mode values of many

uninteresting positions that will not be realized can be left unde�ned.

Mode analysis checks if every variable generated in the course of execution will have

exactly one out occurrence (occurrence at an out position) that can determine its top-level

value, by accumulating constraints between the mode values of di�erent paths.

Constraint-based analysis can be applied to analyzing other properties of programs as

well. For instance, if we can assume that streams and non-stream data structures do not

occur at the same position of di�erent goals, we can try to classify all the positions into

(1) those whose top-level values are limited to the list constructors (cons and nil) and

(2) those whose top-level values are limited to symbols other than the list constructors,

which is the simplest kind of type inference. Other applications include the static identi�-

cation of `single-reference' positions, namely positions whose values are not read by more

than one goal and hence can be discarded or destructively updated after use. This could

replace the MRB (multiple-reference bit) scheme [Chikayama and Kimura 1987], a runtime

scheme adopted in current KL1 implementations for the same purpose.

3. Message-Oriented Sequential Implementation

In a process-oriented sequential implementation of concurrent logic languages, goals ready

for execution are put in a queue (or a stack or a deque, depending on the scheduling).

Once a goal is taken from the queue, it is reduced as many times as possible, using last-

call optimization, until it suspends or it is swapped out. A suspended goal is hooked on

{ 3 {

sender’s
goal

record

receiver’s
goal

record

sender’s
code

receiver’s
code

comm. reg.
(hardware)

comm. cell

put
mes.

get
mes.

(p) (s) (q)

Fig. 1. Immediate message send

sender’s
goal

record

receiver’s
goal

record

sender’s
code

receiver’s
code

comm. reg.
(hardware)

comm. cell

buffer
descriptor

queue of
buffered elements

code for buffering
(p) (s) (q)

Fig. 2. Bu�ered message send

the uninstantiated variable(s) that caused suspension, and when one of the variables is

instantiated, it is put back into the queue.

Message-oriented implementation has much in common with process-oriented imple-

mentation, but di�ers in the treatment of stream communication: It compiles the genera-

tion of stream elements into procedure calls to the consumer of the stream. A stream is

an unbounded bu�er of messages in principle, but message-oriented implementation tries

to reduce the overhead of bu�ering and unbu�ering by transferring control and messages

simultaneously to the consumer whenever possible. To this end, it tries to schedule goals so

that whenever the producer of a stream sends a message, the consumer is suspending on the

stream and is ready to handle the message. Of course, this is not always possible because

we can write a program in which a stream must act as a bu�er; messages are bu�ered when

the consumer is not ready to handle incoming messages.

Process-oriented implementation tries to achieve good performance by reducing the

frequency of costly goal switching and taking advantage of last-call optimization. Message-

oriented implementation tries to reduce the cost of each goal switching operation and the

cost of data transfer between goals, in order to improve the performance of programs in

which the response to messages is particularly important.

Suppose two goals, p and q, are connected by a stream s and p is going to send a

message to q, which is suspending on s. We assume that a suspended goal will resume its

execution from the instruction following the one that caused suspension, not from the �rst

instruction of the predicate. Message-oriented implementation represents s as a two-�eld

communication cell that points to (1) the instruction in q's code from which the processing

of q is to be resumed and (2) q's goal record containing its arguments (Fig. 1). We call the

�rst �eld the code �eld and the second the environment �eld.

To send a message m, the goal p (i) loads m in a hardware register called the commu-

nication register, (ii) makes the goal record pointed to by the communication cell of s the

`current' one, and (iii) calls the code pointed to by the communication cell of s. The goal q

gets m from the communication register and may send other messages in its turn. Control

returns to p when all the message sends caused directly or indirectly by m have been pro-

cessed. However, if m is the last message which p can send out immediately (i.e., without

waiting for further incoming messages), control need not return to p but can go directly to

the goal that has outstanding message sends. This is called last-send optimization, which

we shall consider in Section 5.4 in more detail.

{ 4 {

We have observed in GHC/KL1 programming that the dominant form of interprocess

communication is one-to-one stream communication. It therefore deserves special treat-

ment, even though other forms of communication such as broadcasting and multicasting

become a little more expensive. One-to-many communication is done either by the repeated

sending of messages or by using non-stream data structures.

Techniques mentioned in Section 2 are used to analyze which positions of a predicate

and which variables in a program are used for streams and to distinguish between the sender

and the receiver(s) of messages.

When a stream must bu�er messages, the communication cell representing the stream

points to the code for bu�ering and the descriptor of a bu�er. The old entries of the

communication cell are saved in the descriptor (Fig. 2). In general, a stream must bu�er

incoming messages when the receiver goal is not ready to handle them. The following are

the possible reasons [Ueda and Morita 1990]:

(1) The receiver is waiting for a message from other input streams.

(2) The receiver is suspending on non-stream data, possibly the contents of messages.

(3) The sender of a message may run ahead of the receiver.

(4) When the receiver r belongs to a circular process structure, a message m sent by r may

possibly arrive at r itself or may cause another message to be sent back to r. However,

unless m has been sent by last-send optimization, r is not ready to receive it.

The receiver examines the bu�er when the reason for the bu�ering disappears, and

handles messages in it, if any.

Process-oriented implementation often caches the whole or a part of a goal record

in hardware registers, but this should not be done in message-oriented implementation

because process switching takes place frequently and access locality cannot be expected of

goal records.

4. Parallelization

How can we exploit parallelism in message-oriented implementation? Two quite di�erent

methods can be considered:

Distributed-goal method. Di�erent processors take charge of di�erent goals, and each pro-

cessor handles messages sent to the goals it is taking charge of. Consider a binary search

tree represented using goals and streams (Fig. 3) and suppose three processors take charge

of the three di�erent portions of the tree. Each processor performs message-oriented pro-

cessing within its own portion, while message transfer between portions is compiled into

inter-processor communication.

Shared-goal method. All processors share all the goals. There is a global, output-restricted

deque [Knuth 1973] of outstanding work to be done in parallel, from which an idle processor

gets a new job. The job is usually to execute a non-uni�cation body goal or to send a

message, the latter being the result of compiling a uni�cation body goal involving streams.

The message send will usually cause the reduction of a suspended goal. If the reduction

generates another uni�cation goal that has been compiled into a message send, it can be

performed by the same processor. Thus a chain of message sends is formed, and di�erent

chains of message sends can be performed in parallel as long as they do not interfere with

each other. In the binary tree example, di�erent processors will take care of di�erent

operations sent to the root. A tree operation may cause subsequent message sends inside

{ 5 {

‘update’ and ‘search’
commands from the driver

Fig. 3. Binary search tree as a process

the tree, but they should be performed by the same processor because there is no parallelism

within each tree operation.

Unlike the shared-goal method, the distributed-goal method can be applied to distributed-

memory multiprocessors as well as shared-memory ones to improve the throughput of mes-

sage handling. On shared-memory multiprocessors, however, the shared-goal method is

more advantageous in terms of latency (i.e., responses to messages), because (1) it performs

no inter-processor communication within a chain of message sends and (2) good load bal-

ancing can be attained easily. The shared-goal method requires a locking protocol for goals

as will be discussed in Section 5.1, but it enables more tightly-coupled parallel processing

that covers a wider range of applications. Because of its greater technical interest, the rest

of the paper is focused on the shared-goal method.

5. Shared-Goal Implementation

In this section, we discuss important technicalities in implementing the shared-goal method.

We explain the method and the intermediate code mainly by examples; the details of our

implementation is the subject of another paper.

5.1 Locking of Goals

Consider a goal p(Xs,Ys) de�ned by the following single clause:

p([A|Xs1],Ys) :- true | Ys=[A|Ys1], p(Xs1,Ys1).

In the shared-goal method, di�erent messages in the input stream Xs may be handled

by di�erent processors that share the goal p(Xs,Ys). Any processor sending a message must

therefore try to lock the goal record (placed in the shared memory) of the receiver �rst and

obtain the grant of exclusive access to it. The receiver must remain locked until it sends

a message through Ys and restores the dormant state. The standard protocol of message

sending is the same as that of sequential implementation (Section 3), except that the sender

must lock the goal record pointed to by the environment �eld of the communication cell

before making that goal record the `current' one. We currently use one byte of the �rst word

of a goal record as a lock, and atomically modify it using an xchg (exchange) instruction

for locking.

The locking operation is important in the following respect as well: In message-oriented

implementation, the order of the elements in a stream is not represented spatially as a list

{ 6 {

structure but as the chronological order of message sends. The locking protocol must

therefore make sure that when two messages, � and �, are sent in this order to p(Xs,Ys),

they are sent to the receiver of Ys in the same order. This is guaranteed by locking the

receiver of Ys before p(Xs,Ys) is unlocked.

5.2 Busy Wait vs. Suspension

How should a processor trying to send a message wait until the receiver goal is unlocked?

The two extreme possibilities are (1) to spin (busy-wait) until unlocked and (2) to give up

(suspend) the sending immediately and do some other work, leaving a notice to the receiver

that it has a message to receive. We must take the following observations into account here:

(a) The time each reduction takes, namely the time required for a resumed goal to restore

the dormant state, is usually short (some tens of CISC instructions, say), though it

can be quite long sometimes.

(b) As explained in Section 5.1, a processor may lock more than one goal temporarily upon

reduction. This means that busy wait may cause deadlock when goals and streams form

a circular structure.

Because busy wait incurs much smaller overhead than suspension, Observation (a)

suggests that the processor should spin for a period of time within which most goals can

perform one reduction. However, it should suspend �nally because of (b).

Upon suspension, a bu�er is prepared as in Fig. 2, and the unsent message is put in it.

Subsequent messages go to the bu�er until the receiver has processed all the messages in

the bu�er and has removed the bu�er. As is evident from Fig. 2, no overhead is incurred

to check if the message is going to the bu�er or to the receiver. The sender simply follows

the standard protocol and locks the record pointed to by the communication cell, which

happens to be a bu�er descriptor in this case.

The receiver could notice the existence of outstanding messages by checking its input

streams upon each reduction, but it incurs overhead to programs which do not require

bu�ering. So we have chosen to avoid this overhead by letting the sender spawn and sched-

ule a special routine, called the retransmitter of the messages, when it creates a bu�er. The

retransmitter is executed asynchronously with the receiver. When executed, the retrans-

mitter tests if the receiver has been unlocked, in which case it sends the �rst message in

the bu�er and re-schedules itself.

For the shared resources other than goals, such as logic variables and the global deque,

mutual exclusion should be achieved by busy wait, because access to them takes a short

period of time. On the other hand, synchronization on the values of non-stream variables

due to the semantics of GHC should be implemented using suspension as usual.

5.3 Scheduling

Shared-goal implementation exploits parallelism between di�erent chains of message sends

that do not interfere with each other. In the case of a binary search tree (Fig. 3), di�erent

operations on the tree can be processed in a pipelined manner as long as there is no depen-

dence between the operations. This condition does not hold when, for instance, the key of a

search operation depends on the result of the previous search operation. When such depen-

dence exists, parallel execution can even lower the performance because of synchronization

overhead.

{ 7 {

Another example for which parallelism does not help is a demand-driven generator

of prime numbers which is made up of processes, one for each prime, for �ltering out the

multiples of those primes. The topmost goal that receives a new demand from outside �lters

out the multiples of the prime computed in response to the last demand. However, until

the last demand has almost been processed, the topmost goal doesn't know what prime's

multiples should be �ltered out, and hence will be blocked.

These considerations suggest that in order to avoid ine�ective parallelism, it is most

realistic to let programmers specify which chains of message sends should be done in parallel

with others. The simple method we are using currently is to have (1) a global deque for the

work to be executed in parallel by idle processors and (2) one local stack for each processor

for the work to be executed sequentially by the current processor. Each processor obtains

a job from the global deque when its local stack is empty. We use a global deque rather

than a global stack because, if the retransmitter of a bu�er fails to send a message, it must

go to the tail of the deque so it may not be retried soon.

Each job in a stack/deque is uniformly represented as a pair hcode; envi, where code

is the job's entry/resumption point and env is its environment. The job is usually to start

the execution of a goal or to resume the execution of a clause body. In these cases, env

points to the goal record on which code should work. When the job is to retransmit bu�ered

messages, env points to the communication cell pointing to the bu�er.

When a clause body has several message sends to be executed in parallel, they will

not put in the deque separately. Instead, the current processor executing the clause body

performs the �rst send (and any sends caused by that send), putting the rest of the work to

the deque after the �rst send succeeds in locking the receiver. Then an idle processor will

get the rest of the work and perform the second message send (and any sends caused by

that send), putting the rest of the rest back to the deque. This procedure is to guarantee

the order of messages sent through a single stream by di�erent processors. Suppose two

messages, � and �, are sent by a goal like Xs=[�,�|Xs1]. Then we have to make sure that

the processor trying to send � will not lock the receiver of Xs before the processor trying

to send � has done so.

5.4 Reduction

This section describes what a typical goal should do during one reduction, where by `typical'

we mean goals that can be reduced by receiving one message. As an example, consider the

distributor of messages de�ned as follows,

p([A|Xs],Ys,Zs) :- true | Ys=[A|Ys1], Zs=[A|Zs1], p(Xs,Ys1,Zs1).

where we assume A is known, by program analysis or declaration, to be a non-stream datum.

Otherwise a somewhat more complex procedure is necessary, because the three occurrences

of A will be used for one-to-two communication. The intermediate code for above program

is:

entry(p/3)

rcv

-

value(A1)

get

-

cr(A4)

send

-

call(A2)

put

-

cr(A4)

send

-

call(A3)

execute

o

or send

-

jmp(A3).

{ 8 {

The Ai's are entries of the goal record of the goal being executed, which contain the

arguments of the goal and temporary variables. Other programs may use Xi's, which are

(possibly virtual) general registers local to each processor, and GAi's, which are the argu-

ments of a new goal being created. The label entry(p/3) indicates the initial entry point

of the predicate p with three arguments.

The instruction rcv

-

value(A1) waits for a message from the input stream on the

�rst argument. If messages are already bu�ered, it takes the �rst one and puts it on

the communication register. A retransmitter of the bu�er is put on the deque if more

messages exist; otherwise the bu�er is made to disappear (Section 5.7). If no messages are

bu�ered, which is expected to be most probable, rcv

-

value unlocks the goal record, and

suspends until a message arrives. In either case, the instruction records the resumption

address, namely the address of the next instruction, in the communication cell. When the

communication cell points to a bu�er, the resumption address is recorded in the bu�er

descriptor instead. The goal is usually suspending at this instruction.

The instruction get

-

cr(A4) saves into the goal record the message in the communica-

tion register, which the previous rcv

-

value(A1) has received. Then send

-

call(A2) sends

the message in the communication register through the second stream. The instruction

send

-

call(A2) tries to lock the receiver of the second stream and if successful, transfers

control to the receiver. If the receiver is busy for a certain period of time or it isn't busy

but is not ready to handle the message, the message is bu�ered. The instruction send

-

call

does not unlock the current goal record. When control eventually returns, put

-

cr(A4)

restores the communication register and send

-

call(A3) sends the next message.

When control returns again, execute performs the recursive call by going back to

the entry point of the predicate p. Then the rcv

-

value(A1) instruction will either �nd

no bu�ered messages or �nd some. In the former case, rcv

-

value(A1) obviously sus-

pends. In the latter case, a retransmitter of the bu�er must have been scheduled, and

so rcv

-

value(A1) can suspend until the retransmitter sends a message. Moreover, the

resumption address of the rcv

-

value(A1) instruction has been recorded by its previous

execution. Thus in either case, execute e�ectively does nothing but unlock the current

goal. This is why last-send optimization can replace the last two instructions by a single

instruction, send

-

jmp(A3).

The instruction send

-

jmp(A3) locks the receiver of the third stream, unlocks the

current goal, and transfers control to the receiver without stacking the return address.

Last-send optimization enables the current goal to receive the next message earlier and

allows the pipelined processing of message sends. Note that with last-send optimization,

the rcv

-

value(A1) instruction will be executed only once when the goal starts execution.

The instructions executed for each incoming message are those from get

-

cr(A4) through

send

-

jmp(A3).

The above instruction sequence performs the two message sends sequentially. However,

a variant of send

-

call called send

-

fork stacks the return address on the global deque

instead of the local stack, allowing the continuation to be processed in parallel. Note that

send

-

fork leaves the continuation to another processor rather than the message send itself

for the reason explained in Section 5.3.

The reduction of a goal may in general involve the spawning and the termination of

goals and the explicit control of message bu�ering; they are described in Section 5.5 and

5.6, respectively. Finally, we note that although process-oriented scheduling and message-

oriented scheduling di�er in the
ow of control, they are quite compatible in the sense that

an implementation can use both in running a single program. Our experimental implemen-

{ 9 {

The program: (1) nreverse([H|T],O) :- true | append(O1,[H],O), nreverse(T,O1).

(2) nreverse([], O) :- true | O=[].

(3) append([I|J],K,L) :- true | L=[I|M], append(J,K,M).

(4) append([], K,L) :- true | K=L.

entry(nreverse/2)

rcv

-

value(A1) receive a message from the 1st arg

(the program is usually waiting for incoming messages here)

check

-

not

-

eos(101) if the message is `eos', collect the current comm. cell and goto 101

get

-

cr(X3) save the message H in the comm. reg. to the reg. of the current PE

commit Clause 1 is selected (no operation)

put

-

cc(X4) create a comm. cell with an empty bu�er

push

-

value(X3) put the message H into the bu�er

push

-

eos put `eos' into the bu�er

g

-

setup(append/3,3) create a goal record for 3 args and record the name

put

-

value(A2,GA3) set the 3rd arg of append to O

put

-

value(X4,GA2) set the 2nd arg of append to [H] (comm. cell with the bu�er

created above)

put

-

com

-

variable(A2,GA1) create a locked variable O1 and set the 2nd arg of nreverse and the

1st arg of append to the pointer to O1,

assuming that append will turn O1 into a comm. cell soon

g

-

call execute append until it suspends

return unlock the current goal and do the job on the local stack top

label(101)

commit Clause 2 is selected (no operation)

send

-

call(A2) send `eos' in the comm. reg. to the receiver of O

proceed deallocate the goal record and return

entry(append/3)

deref(A3) dereference the 3rd arg L

rcv

-

value(A1) receive a message from the 1st arg.

check

-

not

-

eos(102) if the message is `eos', collect the current comm. cell and goto 102

commit Clause 3 is selected (no operation)

sendn

-

jmp(A3) send the received message to the receiver of L, where

`n' means that the instruction assumes that L has been dereferenced

label(102)

commit Clause 4 is selected (no operation)

send

-

unify

-

jmp(A2,A3) make sure that messages sent through K are

forwarded to the receiver of L, and return

Fig. 4. Intermediate code for na��ve reverse

tation has actually been made by modifying a process-oriented implementation.

5.5 An Example

Here we give the intermediate code of a na��ve reverse program (Fig. 4). In order for the

code to be self-explanatory, some comments are appropriate here.

Suppose the messages m

1

, : : : , m

n

are sent to the goal nreverse(In,Out) through

In, followed by the eos (end-of-stream) message indicating that the stream is closed. The

nreverse goal generates one suspended append goal for each m

i

, creating the structure in

Fig. 5. The ith append has as its second argument a bu�er with two messages, m

i

and

{ 10 {

nreverse append append append

1
2 1

2
3 1

2
3 1

2
3

eos
m[n]
. . .

m[k+1]
eos
m[k]

eos
m[k-1]

eos
m[1]

Out

Fig. 5. Process structure being created by nreverse([m

1

,...,m

n

],Out)

eos. The �nal eos message to nreverse causes the second clause to forward the eos to the

most recent append goal holding m

n

. The append holding m

n

, in response, lets di�erent

processors (if available) send the two bu�ered messages, m

n

and eos, to the append holding

m

n�1

. The message m

n

is transferred all the way to the append holding m

1

and appears

in Out. The following eos causes the next append goal to send m

n�1

and another eos.

The performance of nreverse hinges on how fast each append goal can transfer mes-

sages. For each incoming message, an append goal checks if the message is not eos and then

transfers both the message and control to the receiver of the output stream. The message

remains on the communication register and need not be loaded or stored.

The send

-

unify

-

jmp(r

1

,r

2

) instruction is used for the uni�cation of two streams.

Arrangements are made so that next time a message is sent through r

1

, the sender is made

to point directly to the communication cell of r

2

. Note that the send

-

unify

-

jmp instruction

itself has no access to the pointer in the sender's goal record and hence cannot change it. If

the stream r

1

has a bu�er, which is the case with nreverse, the above redirection is made

to happen after all the contents of the bu�er are sent to the receiver of r

2

.

It is worth noting that the multiway merging of streams can transfer messages as

e�ciently as append.

5.6 Bu�ering

As discussed in Section 5.2, the producer of a stream s creates a bu�er due to timeout when

the receiver is locked for a long time. However, this is a rather unusual situation; a bu�er is

usually created by s's receiver when it remains unready to handle incoming messages after

it has unlocked itself. Here we re-examine the four reasons for bu�ering in Section 3:

(1) Selective message receiving. This happens, for instance, in a program that merges two

sorted streams of integers into a single sorted stream:

omerge([A|X1],[B|Y1],Z) :- A< B | Z=[A|Z1], omerge(X1,[B|Y1],Z1).

omerge([A|X1],[B|Y1],Z) :- A>=B | Z=[B|Z1], omerge([A|X1],Y1,Z1).

Two numbers, one from each input stream, are necessary for a reduction. Suppose the

�rst number A arrives through the �rst stream. Then the goal omerge checks if the second

stream has a bu�ered value. Since it doesn't, the goal cannot be reduced. So it records A in

the goal record and changes the �rst stream to a bu�er, because it has to wait for another

number B to come through the second stream. Suppose B(> A) arrives and the �rst clause

is selected. Then the second stream should become a bu�er and B will be put back. The

�rst stream, being now a bu�er, is checked and a retransmitter is stacked if it contains an

element; otherwise the bu�er is made to disappear. Finally A is sent to the receiver of the

third stream. The above procedure is admittedly complex, but this program is indeed one

of the hardest ones to execute in a message-oriented manner. A simpler example of selective

{ 11 {

message receiving appears in the append program in Section 5.5; its second input stream

bu�ers messages until the non-recursive clause is selected.

(2) Suspension on non-stream data. The most likely case is suspension on the content of a

message which happens when, for instance, the �rst argument of an update message to a

binary search tree is uninstantiated. When a goal receives from a stream s a message that is

not su�ciently instantiated for reduction, it changes s to a bu�er and puts the message back

in it. A retransmitter is hooked on the uninstantiated variable(s) that caused suspension,

which will be invoked when any of them is instantiated.

(3) The sender of a stream running ahead of the receiver. It is not always possible to

guarantee that the sender of a stream does not send a message before the receiver commences

execution, though the scheduling policy tries to avoid such a situation. The simplest solution

to this problem is to initialize each stream to an empty bu�er. However, creating and

collecting a bu�er incurs certain overhead, while a bu�er created for the above reason will

receive no messages in most cases. So the current scheme defers the creation of a real bu�er

until a message is sent. Moreover, when the message is guaranteed to be received soon, the

put

-

com

-

variable instruction (Fig. 4) is generated and lets the sender busy-wait until the

receiver executes rcv

-

value.

(4) Circular process structure. When the receiver sends more than one message in response

to an incoming message, sequential implementation must bu�er subsequent incoming mes-

sages until the last message is sent out. In parallel implementation, the same e�ect is

automatically achieved by the lock of the goal record, and hence the explicit control of

bu�ering is not necessary.

The retransmission of a bu�er created due to the reason (1) or (3) is explicitly controlled

by the receiver. When a bu�er is created due to the reason (2) or by the sender of a stream,

a retransmitter of the bu�er is scheduled asynchronously with the receiver.

5.7 Mutual Exclusion of Communication Cells

A communication cell representing a stream may be updated both by the sender and the

receiver of the stream. For instance, the sender may create a bu�er and connect it to the cell

when the receiver is locked for a certain period of time. The receiver may create or remove

a bu�er for the cell when bu�ering becomes necessary or unnecessary, may set or update

the code �eld of the cell by the rcv

-

value instruction, may execute send

-

unify

-

jmp and

connect the stream to another, and may move or delete the goal record of its own.

This of course calls for some method of mutual exclusion for communication cells. The

simplest solution would be to lock a communication cell whenever updating or reading it,

but locking both a goal record and a communication cell for each message send would be

too costly. It is highly desirable that an ordinary message send, which reads but does not

update a communication cell, need not lock the communication cell.

However, without locking upon reading, the following sequence can happen and incon-

sistency arises:

(1) the sender follows the pointer in the environment �eld of the communication cell,

(2) the receiver starts and completes the updating of the communication cell under an

appropriate locking protocol, and then

{ 12 {

(3) the sender locks the (wrong) record r (the goal record for the receiver or a bu�er for

the communication cell) obtained in Step (1) and calls the code pointed to by the code

�eld of the updated communication cell.

This can be avoided by not letting the receiver update the environment �eld of the

communication cell. The receiver instead stores inside the record r the pointer p to the

right record. The receiver accordingly sets the code �eld of the communication cell to the

pointer to a code sequence that noti�es the sender of the existence of the pointer p, which

will be called by the sender in Step (3).

The sender can now access the right record pointed to by p via the wrong record

r, but it is usually desirable that p is �nally written into the environment �eld of the

communication cell so that subsequent access to the right record may be direct. This

update of the communication cell must be done before the sender is unlocked and the

control is completely transferred to the receiver. For this purpose, we take advantage of

the fact that the 1-byte lock of a record can take states other than `locked' and `unlocked'.

When the lock of a record has one of these other states, a special routine corresponding to

that state runs before the goal record of the sender is unlocked. This feature is being used

for updating the environment �eld of a communication cell safely.

The principle behind the the above scheme is that the code �eld of a communication

cell is updated only by the receiver goal and the environment �eld only by the sender goal.

To obey this principle, the sender should not update the code �eld when it creates a bu�er

due to timeout. This is again achieved by setting the 1-byte lock of the bu�er to a special

state, which causes the code for bu�ering to be invoked in subsequent message sends.

For a bu�er created by a receiver, the above scheme implies that the bu�er is �rst

pointed to from the receiver's goal record and then the sender moves the pointer to the

communication cell before it inserts the �rst element. In our actual implementation, how-

ever, we chose not to move the pointer from the goal record but to put elements in the

bu�er indirectly via the goal record. If we move the pointer, the environment �eld of the

communication cell must be rewritten again (by the sender, according to the principle)

when the bu�er disappears. The overhead of these move operations will not justify the

elimination of extra cost incurred by the indirect access to the bu�er. The management of

a bu�er is much easier when it is pointed to from the receiver's goal record.

6. An Experimental System and Its Performance

We have �nished the initial version of the abstract machine instruction set for the shared-

goal method. An experimental runtime system for performance evaluation has been devel-

oped on Sequent Symmetry, a shared-memory parallel computer with 20MHz 80386's. The

system is written in an assembly language and C. The abstract machine instructions are

expanded into native codes automatically by a loader. A compiler from Moded Flat GHC

to the intermediate code is yet to be developed.

The current system employs a simple scheme of parallel execution as described in

Section 5.3. When the system runs with more than one processor, one of them acts as

a master processor and the others as slaves. They act in the same manner while the

global deque is non-empty. When the master fails to obtain a new job from the deque,

it tries to detect termination and exceptions such as stack over
ow. The current system

does not care about perpetually suspended goals; they are treated just like garbage cells in

Lisp. A slight overhead of counting the number of goals in the system will be necessary to

detect perpetually suspended goals [Inamura and Onishi 1990] and/or to feature the shoen

{ 13 {

Table 1. Performance Evaluation (in seconds)

binary process tree na��ve reverse

(5000 operations) (1000 elements)

Language Processing (search) (update)

GHC 1 PE (no locking) 1.25 1.83 2.23 (225 kRPS)

�

1 PE 1.38 2.10 3.27 (154 kRPS)

2 PEs 0.78 1.15 2.43 (207 kRPS)

3 PEs 0.55 0.81 1.71 (294 kRPS)

4 PEs 0.44 0.63 1.33 (377 kRPS)

5 PEs 0.36 0.53 1.10 (456 kRPS)

6 PEs 0.33 0.46 0.96 (523 kRPS)

7 PEs 0.33 0.39 0.85 (591 kRPS)

8 PEs 0.33 0.36 0.77 (652 kRPS)

C (recursion) cc -O 0.71 0.72

C (iteration) cc -O 0.32 0.35

(

�

kilo Reductions Per Second)

construct of KL1 [Ueda and Chikayama 1990], but it should scarcely a�ect the result of

performance evaluation described below.

Locking of shared resources, namely logic variables, goal records, communication cells,

the global deque, etc., is done using the xchg (exchange) instruction as usual.

Using Program 1, we measured the processing time of the following:

(1) 5000 update operations with random keys, given to an empty binary tree, and

(2) 5000 search operations with the same sequence of keys, given to the tree with 4777

nodes created by (1).

The number of processors was changed from 1 to 8. For the one-processor case, a

version without locking/unlocking operations was tested as well. The numbers include the

execution time of the driver that sends messages to the tree. The result was compared with

two versions of sequential C programs using records and pointers, one using recursion and

the other using iteration. The performance of nreverse (Fig. 4) was measured as well. The

results are shown in Table 1.

The results show good (if not ideal) parallel speedup, though for search operations on

a binary tree, the performance is �nally bounded by the sequential nature of the driver and

the root node. Access contention on the global deque can be another cause of overhead.

Note, however, that the two examples are indeed harder to execute in parallel than running

independent processes in parallel, because di�erent chains of message sends share goals.

Note also that the binary tree with 4777 nodes is not very deep.

The binary tree program run with 4 processors outperformed the optimized recursive

C program. The iterative C program was more than twice as fast as the recursive one and

was comparable to the GHC program run with 8 processors. The comparison, however,

would have been more preferable to parallel GHC if a larger tree had been used.

The overhead of locking/unlocking was about 30% in nreverse and about 10% in

the binary tree program. Since nreverse is one of the fastest programs in terms of the

kRPS value, we can conclude that the overhead of locking/unlocking is reasonably small on

average even if we lock such small entities as individual goals.

{ 14 {

As for space e�ciency, the essential di�erence between our implementation and C

implementations is that GHC goal records have pointers to input streams while C records

do not consume memory by being pointed to. The di�erence comes from the expressive

power of streams; unlike pointers, streams can be uni�ed together and can bu�er messages

implicitly.

One may suspect that message-oriented implementation su�ers from poor locality in

general. This is true for data locality, because a single message chain can visit many goals.

However, streams in process-oriented implementation cannot enjoy very good locality either,

because a tail-recursive goal can generate a long list of messages. Both process-oriented

and message-oriented implementations enjoy good instruction locality for the binary tree

program and nreverse.

Comparison of performance between a message-oriented implementation and a process-

oriented implementation was reported in [Ueda and Morita 1990] for the one-processor case.

7. Conclusions and Future Work

The main contribution of this paper is that message-oriented implementation of Moded Flat

GHC was shown to bene�t from small-grain, tightly-coupled parallelism on shared-memory

multiprocessors. Furthermore, the result of preliminary evaluation shows that the absolute

performance is good enough to be compared with that of procedural programs.

These results suggest that the programming of recon�gurable storage structures that

allow concurrent access can be a realistic application of Moded Flat GHC. Programmers

need not worry about mutual exclusion necessitated by parallelization, because it is achieved

automatically at the implementation level. In procedural languages, parallelization may well

require major rewriting of programs. To our knowledge, how to deal with recon�gurable

storage structures e�ciently in non-procedural languages without side e�ects has not been

studied in depth.

We have not yet fully studied language constructs and their implementation for more

minute control over parallel execution. The current scheme for the control of parallelism

is a simple extension to the sequential system; it worked well for the benchmark programs

used, but will not be powerful enough to be able to tune the performance of large programs.

We need a notion of priority that should be somewhat di�erent from the priority construct

in KL1 designed for process-oriented parallel execution. The notion of fairness may have to

be reconsidered also. KL1 provides the shoen (manor) construct as well, which is the unit

of execution control, exception handling and resource consumption control. How to adapt

the shoen construct to message-oriented implementation is another research topic.

Acknowledgments

This work was done as part of the Fifth Generation Computer Project while the �rst author

was with Institute for New Generation Computer Technology.

References

[Chikayama and Kimura 1987] T. Chikayama and Y. Kimura, Multiple Reference Manage-

ment in Flat GHC. In Proc. 4th Int. Conf. on Logic Programming, MIT Press, 1987,

pp. 276{293.

{ 15 {

[Inamura and Onishi 1990] Y. Inamura and S. Onishi, A Detection Algorithm of Perpetual

Suspension in KL1. In Proc. Seventh Int. Conf. on Logic Programming, MIT Press,

1990, pp. 18{30.

[Knuth 1973] D. E. Knuth, The Art of Computer Programming, Vol. 1 (2nd ed.). Addison-

Wesley, Reading, MA, 1973.

[Shapiro 1989] Shapiro, E., The Family of Concurrent Logic Programming Languages. Com-

puting Surveys, Vol. 21, No. 3 (1989), pp. 413{510.

[Ueda and Morita 1990] K. Ueda and M. Morita, A New Implementation Technique for Flat

GHC. In Proc. Seventh Int. Conf. on Logic Programming, MIT Press, 1990, pp. 3{17.

A revised, extended version to appear in New Generation Computing.

[Ueda and Chikayama 1990] K. Ueda and T. Chikayama, Design of the Kernel Language

for the Parallel Inference Machine. The Computer Journal, Vol. 33, No. 6 (Dec., 1990),

pp. 494{500.

{ 16 {

