
Encoding Distributed Process Calculi into LMNtal

Kazunori UEDA

Dept. of Computer Science and Engineering, Waseda University
ueda@ueda.info.waseda.ac.jp

October 2007

Abstract

Towards a unifying model of concurrency, we have designed and implemented
LMNtal (pronounced “elemental”), a model and language based on hierarchical
graph rewriting that uses logical variables to represent connectivity and membranes
to represent hierarchy. Diverse computational models including the π-calculus and
the λ-calculus have been encoded into LMNtal and tested on our LMNtal system.
This paper describes the encoding of the ambient calculus with running examples.
The technical crux is the distributed management of names in the presence of local-
ity an mobility. We have designed and implemented a self-adjusting management
technique of names in which the name management and mobility operations are
performed concurrently.

1 Introduction

LMNtal [3][7] is a language model based on hierarchical graph rewriting that uses logical
variables to represent connectivity and membranes to represent hierarchy. Its objectives
are (i) to serve as a computational model that encompasses diverse formalisms related
to multiset rewriting, concurrency, and mobility, and (ii) to provide a practical program-
ming language based on hierarchical graph rewriting and its implementation1. LMNtal
is an outcome of the attempt to unify constraint-based concurrency [6] and Constraint
Handling Rules (CHR) [2], the two notable extensions to concurrent logic programming.
The main feature of LMNtal is its ability to deal with both connectivity and hierarchy in
a simple setting. Although born from a very different background, LMNtal shares many
of its motivations with Bigraphical Reactive Systems [5]. Connectivity and hierarchy
are the two major structuring mechanisms found in many fields ranging from society to
biology, not to mention the world of computing.

In order to demonstrate the expressive power of LMNtal as a unifying model, we
have encoded various computational models including the λ-calculus and the π-calculus
into LMNtal [4]．One of the goals of LMNtal is to represent wide-area distributed
computing. It is for this purpose that LMNtal allows both graph nodes and rewrite rules
to be enclosed in a membrane to delimit the scope of the rewrite rules. In an attempt
to relate existing models of distributed computing and LMNtal, this paper studies the
encoding of the ambient calculus [1], one of the best-known distributed process calculi.

Distributed process calculi are process calculi with some (named or unnamed) notion
of locations. Membranes, a construct often used to represent locations in distributed

1http://www.ueda.info.waseda.ac.jp/lmntal/

1

process calculi, represent locality by enclosing a multiset of atomic processes. Ambients
are essentially membranes that may form hierarchies, and are in common with LMNtal
membranes in that both are used to represent administrative domains. LMNtal and
the ambient calculus exhibit similarities also in that processes in remote locations do
not interact directly ignoring the membrane topology; they interact only by succession
of proximity interaction. On the other hand, the ambient calculus allows the reconfig-
uration of the ambient structure, which accordingly causes the reconfiguration of the
scope of names. The main motivation of the present work is to study how to encode the
dynamic reconfiguration of the scope of names in a hierarchical setting.

2 The Ambient Calculus

The ambient calculus [1] is a model of concurrency in which ambients move around
in a hierarchical ambient structure based on authentication. The full ambient calculus
features both mobility and communication, but this paper is concerned with the mobility
aspect, namely the pure mobility calculus.

Expressions of the ambient calculus are defined as follows, where the syntactic cat-
egory n representing names is presupposed:

(processes) P ::= (νn)P | 0 | P | P | !P | n[P] | M.P
(capabilities) M ::= in n | out n | open n

Here, (νn)P represents hiding (or the creation of fresh local names), 0 represents an
inert process, P | P represents parallel composition, !P represents repetition of P , n[P]
represents an ambient with the name n, and M.P represents a process that performs M
and then becomes P .

The operational semantics of the ambient calculus consists of a structural congruence
and a reduction relation. We remind the readers of the reduction rules for in m, out m,
open m:

n[in m.P | Q] | m[R] → m[n[P | Q] | R]
m[n[out m.P | Q] | R] → n[P | Q] | m[R]

open m.P | m[Q] → P | Q

The rules of the structural congruence and the structural rules of the reduction relation
are standard and omitted.

The in operation transforms a sibling relation between ambients into a parent-child
relation. Conversely, the out operation transforms a parent-child relation into a sibling
relation. The open operation removes an ambient’s membrane and makes its contents
belong to the parent ambient. All these capabilities are suspended if there is no ambient
with the name m.

3 LMNtal

This section briefly describes the syntax and the semantics of LMNtal. For details
omitted from here, the readers are referred to [3].

The syntax of LMNtal is shown in Fig. 1, where the two syntactic categories, X for
link names and p for atom names are presupposed. We reserve the atom name “=” for
connectors described below.

2

(process) P ::= 0 (null)
| p(X1, . . . ,Xm) (m ≥ 0) (atom)
| P,P (molecule)
| {P} (cell)
| T :- T (rule)

(process template) T ::= 0 (null)
| p(X1, . . . ,Xm) (m ≥ 0) (atom)
| T,T (molecule)
| {T} (cell)
| T :- T (rule)
| @p (rule context)
| $p[X1, . . . ,Xm|A] (process context)
| p(*X1, . . . , *Xm) (m > 0) (aggregate)

(residual) A ::= [] (empty)
| *X (bundle)

Figure 1: Syntax of LMNtal

Each link name occurring in a process P can occur at most twice (the Link Condi-
tion). A link name occurring exactly once in P represents a free link of P , while a link
name occurring exactly twice in P is considered bound and represents a local link of P .

Intuitively, 0 is an empty process, p(X1, . . . ,Xm) (m ≥ 0) is an m-ary atom, P,P
is parallel composition, {P} is a cell formed by wrapping a process P with a membrane
{ }, and T :- T is a rewrite rule of processes. An atom X =Y , called a connector,
interconnects the link X and the link Y .

Process templates on the both sides of rewrite rules allow additional constructs as
explained below. Rule contexts and process contexts represent “the rest of the processes”
inside a membrane. A rule context @p matches a possibly empty ruleset (multiset of
rules) inside a membrane, while a process context $p[X1, . . . ,Xm|A] (m ≥ 0) matches
a process (not containing rules) inside a membrane. The argument of a process context
specifies what links may or must occur free. When the residual A is [], the argument
is abbreviated to [X1, . . . ,Xm] and means that the set of free links of $p must be
exactly {X1, . . . , Xm}. When A is of the form ∗X (called a bundle), it represents zero
or more free links of the context that may occur in addition to the “must-occur” links
X1, . . . , Xm. The final construct, p(*X1, . . . , *Xn) (n > 0), stands for an aggregate
of n-ary atoms with the same name; see [3] for technical details. Rewrite rules must
observe several additional syntactic conditions in order (i) to ensure the well-formedness
of processes obtained by expanding process/rule contexts and aggregates, (ii) to ensure
that the processes represented by process/rule contexts and aggregates can be uniquely
determined, and (iii) to ensure that the application of rewrite rules preserves the well-
formedness of processes.

The operational semantics of LMNtal consists of the structural congruence defined
by (E1)–(E10) (Fig. 2) and the reduction relation defined by (R1)–(R6) (Fig. 3). (E1)–

3

(E1) 0,P ≡ P

(E2) P,Q ≡ Q,P

(E3) P, (Q,R) ≡ (P,Q),R

(E4) P ≡ P [Y/X] if X occurs bound in P

(E5) P ≡ P ′ ⇒ P,Q ≡ P ′,Q

(E6) P ≡ P ′ ⇒ {P} ≡ {P ′}

(E7) X =X ≡ 0

(E8) X =Y ≡ Y =X

(E9) X =Y ,P ≡ P [Y/X] if P is an atom and X occurs free in P

(E10) {X =Y ,P} ≡ X =Y , {P} if exactly one of X and Y occurs free in P

Figure 2: Structural congruence on LMNtal processes

(R1)
P −→ P ′

P,Q −→ P ′,Q
(R2)

P −→ P ′

{P} −→ {P ′}

(R3)
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) {X =Y ,P} −→ X =Y , {P} if X and Y occur free in {X =Y ,P}

(R5) X =Y , {P} −→ {X =Y ,P} if X and Y occur free in P

(R6) Tθ, (T :- U) −→ Uθ, (T :- U)

Figure 3: Reduction relation on LMNtal processes

(E3) are the characterization of processes as multisets. (E4) stands for α-conversion
of local link names. (E5)–(E6) are structural rules that make ≡ a congruence. (E7)
says that a self-absorbed loop is equivalent to 0, while (E8) expresses the symmetry of
connectors. (E9) and (E10) stand for the absorption/emission rules of connectors for
atoms and cells, respectively.

Computation proceeds by rewriting processes using rules collocated in the same
“place” of the nested membrane structure. (R1)–(R3) are standard structural rules,
and (R4)–(R5) are the mobility rules for connectors. The central rule of LMNtal is
(R6). The substitution θ is to map process contexts, rule contexts, and aggregates into
specific processes, rules, and atoms, respectively. The major challenge in the design of
the operational semantics has been the proper treatment of interplay between graph
structures formed by links and hierarchical structures formed by membranes that may
be crossed by links.

4 Issues in Encoding the Ambient Calculus

The most prominent similarity between the ambient calculus and LMNtal is that both
feature membranes that can be nested. This suggests that any natural encoding from
the ambient calculus to LMNtal should map ambients into LMNtal cells, and we regard

4

this as the boundary condition in designing our encoding. Henceforth cells representing
ambients are referred to as ambient cells.

The major issue should now be how to encode names of the ambient calculus.

4.1 Representing Names

As in the π-calculus, names play a crucial role in the ambient calculus. The basic
operations on names are

(a) to create a fresh local name,

(b) to pass it to anther process using communication primitives,

(c) to name ambients, and

(d) to form capabilities.

The last two are closely related; local ambient names are used as secret keys for entering,
exiting from, and removing ambients.

Two possible ways of representing names of the ambient calculus in LMNtal are
(i) to map them into LMNtal atom names and (ii) to map them into graph structures
formed by cells and links. We take the latter approach and map

• names into cells (which we call name cells) that represents identity and

• name occurrences into links entering the name cells.

The use of graphs rather than atom names is motivated by the following:

1. to demonstrate the expressive power of graph rewriting in LMNtal,

2. to express the topology of name references and its changes explicitly,

3. to be able to express local names introduced by ν, and

4. to limit the use of LMNtal atom names to the encoding of the fixed set of primitives
of the ambient calculus.

Compared with ambient cells that form administrative domains and contain rewrite
rules, name cells are lightweight; they simply hold name references together with auxil-
iary information for name management. In other words, cells are used as records that
allow duplication of field names.

We have already encoded the π-calculus under the same policy [4], but it turns out
that the encoding of the ambient calculus is significantly more complicated because of
the membranes representing ambient boundaries.

Names in the ambient calculus are referenced from various “places” of an ambient
hierarchy. Accordingly, the identity of names must be represented and managed globally
as a whole, and at the same time the identity must be checkable locally inside each am-
bient in order to allow local computation to proceed. Global, monolithic management
of names is inadequate for handling the both requirements; we need to let each ambient
hold one proxy for each name referenced from inside the ambient. This results in rep-
resenting a name (in the ambient calculus) in terms of a tree structure comprising root
cells and proxy cells. We call this tree structure a name tree. There must be exactly one

5

name tree for each global name. Henceforth both root cells and proxy cells are called
name cells generically.

A root cell and a proxy cell have the form

{id, name(n), +L1, . . . , +Lm} (root of a global name)
{id, +L1, . . . , +Lm} (root of a local name)

{id, -L0, +L1, . . . , +Lm} (proxy)

respectively, where m > 0, L0 is connected to its parent name cell, and Lk (1 ≤ k ≤ m)
is connected either to an occurrence of the name inside the ambient or to a proxy cell
held by a child ambient. The “+” and “-” signs are unary atom names written as prefix
operators. name(n) is an abbreviation of name(L),n(L).

Next, we define the normal form of a name tree. Intuitively, a name tree in a
normal form should accord with the underlying ambient hierarchy. Let us make this
more precise. First, note that an ambient hierarchy forms a tree structure that will be
referred to as an ambient tree. A name tree in a normal form must have a root cell at
the uppermost node of some connected subgraph of the ambient tree2, and a proxy cell
at each of other nodes of the above connected subgraph.

From this condition and the condition m > 0, it follows that

1. an ambient cell containing a leaf node of a name tree must have a reference to
that name, and that

2. a link interconnecting two (root or proxy) nodes of a name tree crosses an ambient
boundary exactly once.

Since the above condition does not mention where to place the root of a name tree,
we add two more conditions:

• The root of the name tree of a global name is placed at the top level of the ambient
hierarchy.

• The root of the name tree of a local name is placed at the innermost ambient
containing all the ambients referring to that local name (minimality).

Figure 4 shows an ambient structure that has five normal-form name trees repre-
senting two global names (a and b) and three (anonymous) local names. Ellipses stand
for ambients, squares stand for root cells, and filled circles stand for proxy cells.

4.2 The Encoding Rules

We define the encoding from the ambient calculus into LMNtal by means of the function
[[·]] defined as follows. The encoding of the repetition !P will be discussed in the next
section.

[[0]] def= 0

[[P | Q]] def= ([[P]], [[Q]])↓

2A connected subgraph S of a tree T is not necessarily a subtree of T ; indeed, S is obtained from
some subtree S0 of T by deleting zero or more subtrees of S0.

6

a b

Figure 4: An ambient structure with name trees

[[(νn)P]] def= (hiden([[P]]↓))↓

[[n[P]]] def= {@amb, amb(L), [[n]](L), [[P]]}↓

[[M.P]] def= ([[M]]([[P]]))↓

[[op n]] def= [[op]]([[n]]) (op ∈ {in, out, open})

[[op]] def= λf . λp . (op(L,M), {+M, p}, f(L)) (op ∈ {in, out, open})

[[n]] def= λl . {id, name(n), + l}

Here, ↓ is a normalization function that transforms name trees in an encoded graph
structure into their normal forms by preserving their connectivity as graphs and ad-
justing the placement and the numbers of root cells and proxy cells. The details will
be shown as the LMNtal code in the next section. It should be legitimate to regard
the hiding construct (νn) as syntax rather than operations, and the following auxiliary
function, hiden, is used to remove global name information:

hiden(({id, name(n),P},Q)) = ({id,P},Q})

The notation @amb in the definition of [[= ambnP]] stands for the encoded ruleset
shown in the next section. For computation inside each ambient to proceed, the encoded
ruleset must take effect within each ambient cell. Since LMNtal’s reduction rules act
only on the process at the same place in the membrane hierarchy, rulesets for the ambient
calculus must be brought into each ambient membrane.

5 Representing the Encoding in LMNtal

Following the encoding policy described in the previous section, we have built a running
LMNtal program realizing the ambient calculus (Fig. 5). Some remarks on the syntactic
convention of LMNtal are appropriate here to read the LMNtal code:

• Rule are prefixed by rule names using the extended syntax of LMNtal [7].

• A nullary process context $p is an abbreviation of $p[|*X]; it is a process context
with no constraints on the occurrences of free links.

7

• A newly created ambient must be given an atom amb.use inside it. The LMNtal
system comes with a module system, where the notation m.use is used as the
standard idiom for expanding the module’s ruleset into that place by mention-
ing the module name m. Since the atom amb.use itself is unnecessary for the
computation, it is removed by the rule gc amb in the expanded ruleset.

Note that the atom amb.use does not occur in the rules in, out, open of Fig. 5. It is
unnecessary because the ruleset for local computation is received by the rule contexts
(@p, @q, @r) on the left-hand side and is passed to the right-hand side.

As one can see, each of in, out, open is taken care of by a single LMNtal rule.
However, these rules alone are not sufficient because they migrate name cells together
with ambient cells and do not necessarily preserve the normal form condition of name
trees. If name trees are not in a normal form, subsequent reductions may not be able to
recognize the identity of names (though it never happens that occurrences of different
names are wrongly recognized as occurrences of the same name). One may wonder if we
can reinforce the first three rules of Fig. 5 to ensure the normal form property, but this
seems difficult because the migration of an ambient moves all free names of the ambient
that may not be specified explicitly in the rewrite rules.

5.1 Name Management

The above consideration motivated us to give a set of rules for name management
independently of the rules for ambient mobility.

Rules whose names start with proxy_ are to reestablish the normal-form conditions
of a name tree structure when the set of names referred to in each ambient is changed
by mobility primitives. proxy_enter enables two references to the same name within
an ambient to be recognized within that ambient. proxy_resolve merges two serial
proxies for the same name in the same ambient. proxy_insert_middle is activated
when in moves two directly connected name cells (root or proxy) to remote places not
in a parent-child relation, and inserts a new proxy in between. proxy_insert_outer
is activated when out exports some child proxy out of an ambient and inverts the
parent-child relationship between proxies, and creates a new proxy at the parent level.
proxy_merge_outer is activated when the second parent of a proxy is created (by
proxy_insert_outer) and merges the two parents.

local_name_in and global_name_out are to normalize the location of root cells;
local_name_in moves a root cell into the innermost possible level, while global_name_out
moves a root cell towards the top level of the ambient hierarchy. root_merge merges
two root cells with the same global name.

Rules whose names start with gc_ are used to garbage-collect unused names. gc_
local_name and gc_global_name remove unreferenced root cells, while gc_proxy re-
moves unreferenced proxy cells.

Rules in Fig. 5 preserve the following invariant properties about the name trees:

1. Every occurrence of a name in the encoded process is linked to some name cell
(root or proxy) of the name.

2. If we regard the root cells of the same global names as interconnected, then names
are in one-to-one correspondence with connected components of name cells.

3. A link interconnecting two name cells is terminated with a “-” atom on one end
and with a “+” atom on the other end.

8

¶ ³
{ module(amb).

/* n[in m.P | Q] | m[R] --> m[n[P|Q] | R] */
in@@
{amb(N0), {id,+N0,$n}, {id,+M0,-M1,$m0}, in(M0,{$p}), $q,@q},
{amb(M2), {id,+M2,-M3,$m1}, $r,@r},
{id,+M1,+M3,$m2} :-

{amb(M4), {id,+M4,+M5,-M,$m1},
{amb(N2), {id,+N2,$n}, {id,-M5,$m0}, $p,$q,@q},

$r,@r},
{id,+M,$m2}.

/* m[n[out m.P | Q] | R] --> n[P|Q] | m[R] */
out@@
{amb(M0), {id,+M0,+M2,$m1}, {id,+N1,$n2},

{amb(N0), {id,+M1,-M2,$m0}, {id,+N0,-N1,$n}, out(M1,{$p}), $q,@q},
$r,@r} :-
{amb(N2), {id,-M3,$m0}, {id,+N2,-N3,$n}, $p,$q,@q},
{amb(M4), {id,+M3,+M4,$m1}, {id,+N3,$n2}, $r,@r}.

/* open m.P | m[Q] --> P|Q */
open@@
open(M,{$p}), {amb(M1), {id,+M1,-M2,$mm}, $q,@q}, {id,+M,+M2,$m} :-

$p, $q, {id,$m,$mm}.

proxy_enter@@
{$p[M0,M1|*P],@p}, {id,+M0,+M1,$m} :-

{$p[M0,M1|*P],@p, {id,+M0,+M1,-M}}, {id,+M,$m}.

proxy_resolve@@
{id,-M,$m0}, {id,+M,$m1} :- {id,$m0,$m1}.

proxy_insert_middle@@
{{{id,-M,$m},$p,@p},$q,@q} :- {{id,+M0,-M}, {{id,-M0,$m},$p,@p},$q,@q}.

proxy_insert_outer@@
{{id,+M0,$m0},$p,@p} :- {{id,-M,$m0},$p,@p}, {id,+M0,+M}.

proxy_merge_outer@@
{id,+M0,$m0}, {id,+M1,$m1}, {{id,-M0,-M1,$m2},$p,@p} :-

{id,+M,$m0,$m1}, {{id,-M,$m2},$p,@p}.

local_name_in@@
{$p[M|*P],@p}, {id,+M} :- {{id,+M}, $p[M|*P],@p}.

global_name_out@@
{{id,name($n),+M0},{$p[M0|*M],@p},$q,@q} :- unary($n) |

{{id,+M0,-M},{$p[M0|*M],@p},$q,@q}, {id,name($n),+M}.

root_merge@@
{id,name($n0),$m0}, {id,name($n1), $m1} :- unary($n0), unary($n1), $n0=$n1 |

{id,name($n0),$m0,$m1}.

gc_local_name@@ {id} :- .
gc_global_name@@ {id,name($n)} :- unary($n) | .
gc_proxy@@ {id,+X,$m}, {{id,-X}, $p,@p} :- {id,$m}, {$p,@p}.
gc_amb@@ amb.use :- .

}.µ ´
Figure 5: LMNtal code of the ambient calculus

4. A link interconnecting a name cell and a name occurrence does not cross ambient
membranes.

The normalization rules turn name trees into their normal forms preserving the above
invariants. It is easy to see that a name tree is in a normal form if no normalization rule

9

¶ ³
/* !(open m.P) | m[Q] --> P | Q | !(open m.P) */
open_repl@@ /* special case of !open */
open_repl(M,{$p}), {amb(M1), {id,+M1,-M2,$mm}, $q,@q}, {id,+M,+M2,$m} :-

nlmem.copy({$p},cp,Copies), copies(Copies,P),
$q, {id,+M3,$m,$mm}, open_repl(M3,P).

open_repl_aux@@
copies(cp(C1,C2),P), {+C1,$p1} :- $p1, P=C2.µ ´

Figure 6: Encoding of repetition

is applicable and that a normal form is uniquely determined.
It should be noted that name normalization and ambient operations may run concur-

rently. This means that in, out and open rules may be applied even when name trees are
not in their normal forms. However, the three rules also preserve the above-mentioned
invariants, and we can allow name tree normalization to proceed asynchronously with
ambient operations.

5.2 Encoding Repetition

Like many other models of concurrency, the ambient calculus features the repetition
construct !P . The semantics of !P is given by the relation !P ≡ P | !P , and its purpose
is to spawn an instance of P on demand rather than to create infinitely many P ’s. Indeed,
one will notice that the uses of ! are rather limited in each model of concurrency; in the
case of the ambient calculus it is almost always used in the form !(open n.P). This is
regarded as the encoding of procedure calls, and the creation of an ambient n triggers
the execution of the procedure body P . Readers may recall that ! in the π-calculus is
mostly used for the encoding of procedures, too. So it makes sense not to allow ! in its
general form but give an encoding of the specialized form !(open n.P) instead (Fig. 6).

One issue that arises in the encoding of !(open n.P) is that the duplication of P
creates new references to the free names of P . Duplication of [[P]] with free names can be
expressed using aggregates. Aggregates are the only construct not yet supported in our
current implementation, but the LMNtal system instead supports an nlmem (nonlinear
membrane) API which does the necessary job for our purpose. nlmem.copy({P}, a,R),
which is an abbreviated form of (nlmem.copy(R0, a,R), {+R0,P}), creates two copies
of the cell {+R0,P} with all its free links renamed, and connects R and the two fresh
copies of R0 using a ternary atom with the name a. Furthermore, for each free link L
except R0 of the original cell {+R0,P}, nlmem.copy connects the two fresh copies of L
and the original L via the ternary atom a. The semantics of nlmem.copy can be given
by the following rule scheme:

nlmem.copy({$p[|*X]},a,R) :-
{+R1, $p[|*Y]}, {+R2, $p[|*Z]},
a(*Y,*Z,*X), a(R1,R2,R).

6 Examples

We have encoded most of the examples in [1] into LMNtal and run them successfully on
our LMNtal system. Let us give two examples.

10

¶ ³
// Firewall Access
// Firewall =def (new w) w[k[out w.in kk.in w] | open kk.open kkk.P]
// Agent =def kk[open k.kkk[Q]]

{id,name(k),+K9,+K3}, {id,name(kk),+L3,+L9}, {id,name(kkk),+M9,+M3}, {id,+W9},
{amb.use. amb(W0),

{id,+W0,+W8,-W9}, {id,+K8,-K9}, {id,+L1,+L8,-L9}, {id,+M0,-M9},
{a.use. amb(K0), {id,+K0,-K8}, {id,+W1,+W2,-W8}, {id,+L0,-L8},

out(W1,{in(L0,{in(W2,{})})})},
open(L1,{open(M0,{pp})})

},
{amb.use. amb(L2), {id,+L2,-L3}, {id,+K2,-K3}, {id,+M2,-M3},

open(K2,{{amb(M1), {id,+M1,-M2}, qq}})
}.µ ´

Figure 7: Example: Firewall Access

The first example is the encoding of firewall access. Figure 7 is the result of expanding
the parallel composition of Firewall and Agent defined as follows:

Firewall def= (νw)w[k [out w . in kk . in w] | open kk . open kkk . P]

Agent def= kk [open k . kkk [Q]]

The above definition expresses a protocol with which an Agent holding keys k, kk, kkk
can enter a Firewall ambient with a private ambient name w. The basic idea here is
to let an ambient k inside w go outside and bring the Agent back. In Fig. 7, pp and
qq represent the processes P and Q to be executed after the Agent ’s entrance. They
can be regarded as free names representing processes and could be replaced by encoded
processes by adding rewrite rules for them.

The result of execution (under the --hiderule option) is:

{pp, qq, amb(L749), {id, +L749}}.

This represents (νw)w[P | Q], which means P was allowed to enter an ambient with a
private name.

Second, we show the encoding of objective moves in terms of the ambient calculus’s
subjective moves (Fig. 8). Objective moves allow processes not protected by ambient
membranes to enter or exit from ambients. This is very different from the migration
of computation protected by ambient membranes in that the permissions of the target
ambients are crucial for security.

allow n
def= !(open n)

mv in n.P
def= (νk)k [in n.enter[out k.open k.P]]

mv out n.P
def= (νk)k [out n.exit[out k.open k.P]]

n↓↑ [P] def= n[P | allow enter] | allow exit

mv in and mv out are the objective versions of in and out, respectively. n↓↑ [P] is an
ambient that allows itself to be the target of mv in and mv out.

The program in Fig. 8 expands the module b containing the four auxiliary definitions,
and executes mv in n . P | n↓↑ [Q]. The result obtained is:

11

¶ ³
// Objective Moves
// allow n =def !open n
// mv in n.P =def (new k) k[in n.enter[out k.open k.P]]
// mv out n.P =def (new k) k[out n.exit[out k.open k.P]]
// n_dnup[P] =def n[P | allow enter] | allow exit

{ module(b).
allow(N) :- open_repl(N,{}).
mv_in(N,{$p}) :- {id,+K}, {id,name(enter),+E},
{amb.use. amb(K0), {id,+K0,+K9,-K}, {id,+N0,-N}, {id,+E1,-E},

in(N0,
{{amb(E0), {id,+E0,-E1}, {id,+K1,+K2,-K9}, out(K1,{open(K2,{$p})})}})}.

mv_out(N,{$p}) :- {id,+K}, {id,name(exit),+E},
{amb.use. amb(K0), {id,+K0,+K9,-K}, {id,+N0,-N}, {id,+E1,-E},

out(N0,
{{amb(E0), {id,+E0,-E1}, {id,+K1,+K2,-K9}, out(K1,{open(K2,{$p})})}})}.

n_dnup(N,{$p}) :- {id,name(enter),+E}, {id,name(exit),+Ex0},
{amb.use. b.use. amb(N0), {id,+N0,-N}, {id,+E0,-E}, $p, allow(E0)},
allow(Ex0).

b.use :- .
{module(b), @b} :- .

}.

b.use.
{id,name(n),+N0,+N1}, mv_in(N0,{pp}), n_dnup(N1,{qq}).µ ´

Figure 8: Example: Objective Moves

open_repl(L270,L535),
{pp, qq, amb(L324), open_repl(L591,L601),

{+L601},
{id, -L557, +L591},
{id, -L338, +L324}},

{id, n(name), +L338},
{id, exit(name), +L270},
{id, enter(name), +L557},
{+L535},

which represents n[P | Q | allow enter] | allow exit, that is, n↓↑ [P | Q].

7 Discussions and Conclusion

Computation in the ambient calculus changes the hierarchy of name references with
the reconfiguration of ambient hierarchy. Ambient name occurrences should be consid-
ered as virtually interconnected resources because they represent access rights to the
administrative domains defined by the ambients, but previous formulations handled the
migration of these resources implicitly with ambient migration.

The main contribution of this paper is that our encoding in LMNtal makes this
important operation explicit by representing the topology of name references by means
of name trees and its reconfiguration algorithm by means of a set of rewrite rules that
works autonomously and asynchronously.

Our encoding consists of fifteen rules, of which three are the direct translation of

12

the three primitives of the ambient calculus, eight for name management, and the rest
for garbage collection. An important feature of LMNtal is that it allows diagrammatic
interpretation of computation, and each encoded rule can be understood graphically.

The encoding of names into graphs (name trees) was useful for manifesting and
understanding the behavior of names in the ambient calculus. Name management using
proxy cells reflects the implementation of real distributed systems. Proxy cells were not
necessary for the encoding of the π-calculus. This suggests that the the role of names
in the ambient calculus is significantly more complex than that of the π-calculus.

Concurrency can be viewed as multiset rewriting of processes. LMNtal, which is a
multiset rewriting language augmented with links and membranes, allows concise en-
coding of the operational semantics of various models of concurrency. The ambient
calculus has several variants including boxed ambients, safe ambients, and bioambients.
By changing some of the rules in Fig. 5, one should be able to readily obtain implemen-
tations of these variants. We plan to encode more computational models to demonstrate
the value of LMNtal as a unifying model.

Acknowledgments. The author would like to thank the current and former members of
the LMNtal development team who jointly built our publicly available LMNtal im-
plementation. This work is partially supported by Grant-In-Aid for Scientific Re-
search ((B)(2) 16300009; Priority Areas (C)(2)13324050, (B)(2)14085205 and 04560009),
MEXT and JSPS.

References

[1] Cardelli, L. and Gordon, A. D., Mobile Ambients, in Foundations of Software Science
and Computational Structures, Nivat, M. (ed.), LNCS 1378, Springer-Verlag, 1998,
140–155.

[2] Frühwirth, T., Theory and Practice of Constraint Handling Rules, J. Logic Program-
ming, 37 (1998), 95–138.

[3] Ueda, K. and Kato, N., LMNtal: a Language Model with Links and Membranes,
in Proc. Fifth Int. Workshop on Membrane Computing (WMC 2004), LNCS 3365,
Springer-Verlag, 2005, 110–125.

[4] Inui, A., Kudo, S., Hara, K., Mizuno, K. and Ueda, K., A Unifying Programming
Language LMNtal Based on Hierarchical Graph Rewriting, to appear in Computer
Software, JSSST, 2008.

[5] Milner, R., Bigraphical Reactive Systems, in Proc. 12th Int. Conf. on Concurrency
Theory (CONCUR 2001), LNCS 2154, Springer-Verlag, 2001, 16–35.

[6] Ueda, K., Resource-Passing Concurrent Programming, in Proc. 4th Int. Symp. on
Theoretical Aspects of Computer Software (TACS 2001), LNCS 2215, Springer-
Verlag, 2001, 95–126.

[7] Ueda, K., Kato, N, Hara, K. and Mizuno, K., LMNtal as a Unifying Declarative
Language, in Proc. Third workshop on Constraint Handling Rules (CHR 2006), 1–
15.

13

