Proceedings of an International Conference organized by the TPSJ
to Commemorate the 30th Anniversary (InfoJapan’90), Informa-
tion Processing Society of Japan, October 1990, pp. 87-94.

Last revision: October 1991.

Designing a Concurrent Programming Language

Kazunori Ueda

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan

Abstract

This paper reviews the design and the evolution of a concurrent programming language
Guarded Horn Clauses (GHC). GHC was born from a study of parallelism in logic pro-
gramming, but turned out to be a simple and flexible concurrent programming language
with a number of nice properties. We give both an abstract view of GHC computation
based the notion of transactions and a concrete view, namely an operational semantics,
based on reductions. Also, we discuss in detail the properties of GHC such as its atomic
operations, which have much to do with the design of GHC.

1. Introduction

It seems that many people still regard concurrent pro-
gramming as something special and difficult to learn.
Indeed, concurrent programming may have inherent
difficulties not in sequential programming, but the
situation could be improved by developing better for-
malisms and programming languages. Many concur-
rent languages designed so far were built by adding
a number of special constructs to existing sequential
languages, adding certain complexity as well. So it
is worth trying to build a concurrent language in a
totally different way.

Guarded Horn Clauses (abbreviated to GHC) [21]
[22] was designed to be a simple concurrent program-
ming language with a very small number of primitive
constructs. As its name suggests, GHC borrowed a
lot of concepts from (ordinary) logic programming,
which, together with the concept of a guard, were tai-
lored into a concurrent language. Hence it is usually
called a concurrent logic programming language.

The simplest account of GHC is the slogan:

GHC = Horn clauses + Guards.

This can be correlated with another slogan by
Kowalski [8]:

Algorithm = Logic + Control.

Actually, the logical reading of a program expresses
its static aspects, namely the relationship between in-
put and output information; and the guards are used

for expressing dynamic aspects or control, namely the
causality between pieces of input and output infor-
mation. The correlation thus suggests that GHC is a
language for describing concurrent algorithms.

In logic programming, the execution result of a
goal “:= G” under a program P has two aspects,
namely
(i) the unsatisfiability of P U {-~G} (returned as a

yes/no answer), and
(if) substitutions that make G logical consequences of

P.

From a programming language point of view, however,
more interest is in the second aspect [9].

GHC as a concurrent language fully exploits the
second aspect of computing substitutions. A build-
ing block of a GHC program, called a process, is an
entity that observes and generates substitutions. For
instance, a process factorial(X,Y) will generate a
substitution {Y=120} when it observes a substitution
{X=5}. Unlike ordinary logic programs, GHC pro-
grams specify the direction of computation. That is,
GHC programs impose partial causal order on substi-
tutions observed and generated by processes. This is
done by restricting dataflow caused by unification, as
will be described in Section 3.

2. Processes in GHC

GHC is a reactive (as opposed to transformational)
language. In reactive languages, we are interested
in the communication between a program and the

rest of the world performed in the course of computa-
tion, rather than the final result of computation that
is the primary concern in transformational languages
(the most typical of which are functional languages).
Another interesting characterization of reactive or in-
teractive programs is that the input to a program can
depend on the output from the program. This prop-
erty can be mimicked in functional languages with
lazy evaluation, but GHC allows us to describe vari-
ous forms of communication more naturally.

GHC is an asynchronous reactive language. Each
piece of communication engaged in by a process is
either from the process to the rest of the world or
the other way around, and the sender of informa-
tion is never blocked by the receiver. A history of
communication between a process and the rest of the
world can be divided into transactions, each trans-
action being an act of providing the process with a
possibly empty input substitution and getting an ob-
servable, non-empty output substitution. The input
can be empty because an autonomous process may
not require any input. The output should be observ-
able because that is usually what the outside world
is waiting for. A process is considered erroneous if
it fails to generate any output substitution when the
outside world expects it.

Each transaction is quite similar to the whole com-
putation of a transformational program. The differ-
ence is that the input from the outside world may
depend on the outputs of previous transactions. This
suggests that the behavior of a process can be for-
mulated as a sequence of transactions, which is an
external, abstract view of a process in our setting.
Note that the above view of a process becomes very
similar to the view of Theoretical CSP (TCSP) [7], a
synchronous model of concurrency, by regarding each
transaction as a single event.

As we have seen, GHC uses substitutions (sets
of bindings between variables and their values) to
model information communicated between processes.
Substitutions are generated by wunification and ob-
served using matching (Section 3.1), a restricted form
of unification. A nice thing is that these notions have
a logical as well as an algebraic characterization, as
pointed out by Maher [10] and studied extensively by
Saraswat, [16]. A substitution can be viewed as an
equality constraint on the possible values of variables.
A (binding) environment, which is the product of all
the substitutions generated so far, can be viewed as
the multiset (interpreted as the conjunction) of the
constraints corresponding to the substitutions. In
the GHC context, unification can be viewed as the
publication of a constraint into the current environ-
ment, and matching can be viewed as the checking
of whether the current environment implies a given

constraint under the equality theory of GHC. GHC
adopts Clark’s equality theory [2] that models syntac-
tic equality over finite terms. We could adopt equal-
ity theories other than Clark’s without changing the
essence of the language [16]. Moreover, we could al-
low constraints other than conjunctions of equalities.
However, the current choice has the advantage that
the generation and the observation of constraints can
be easily computed.

3. GHC

How can we define the intended behavior of a process?
The basic idea is to describe it in terms of other pro-
cesses. This is attractive since the behavior can then
be realized by the reduction of processes.

There are two possible styles for the description:
One is to use process constructors [11], namely oper-
ators on processes, to compose a more complex pro-
cess expression from simpler ones. The other style is
to use rewrite rules of processes as in term rewriting
systems. GHC has taken the rewrite-rule approach
following the tradition of logic programming, though
this choice is for historical reasons and is not essen-
tial. Saraswat [16] shows how concurrent logic pro-
gramming can be reformulated using the constructor
approach.

3.1 Syntax of GHC

Now let us introduce GHC. GHC has borrowed many
notions from logic and logic programming, which en-
ables a terse introduction of the language. We assume
here that the following notions are defined as usual [9]:
variables, function(symbol)s, constants (re-
garded as O-ary functions), predicate(sym-
bol)s, terms, atom (ic formula)s, substitutions,
renaming, unification.
We say that a term ¢; matches a term ¢t if there is a
substitution such that ¢16 = t5 (‘=" denoting syntactic
equality). Matching is called one-way unification also.
A program is a set of guarded clauses. A guarded
clause is of the form

h:-G | B,

where h is an atom, and G and B are multisets of
atoms. h is called the head of the clause; atoms in G
are called guard goals; and atoms in B are called body
goals. The part before the commitment operator ‘|’
is called the guard, and the part after ‘|’ is called the
body.

A clause with an empty body is called a wunit
clause. The set of all clauses in a program whose
heads have the predicate symbol p is called the proce-
dure for p. A goal with the predicate symbol p is said
to call p.

Informally, each guarded clause is a conditional

rewrite rule of goals, where
e § is the template that should match a goal (say

g) to be rewritten,

e G is the auxiliary condition for the rewriting (G
must be executed without instantiating g), and
e B is the multiset of (sub)goals to replace g.

That a program is a set means that the duplica-
tion (up to renaming of variables) of guarded clauses
is insignificant, not to mention their ordering. On the
other hand, G and B are multisets because two syn-
tactically identical goals may behave differently due
to indeterminacy.

To run a program, we use a goal clause of the form

:- B,

which specifies the initial multiset of body goals.

A goal is either a unification goal of the form ¢, =t
or a non-unification goal. A unification goal, whose
behavior is predefined in the language, may gener-
ate a substitution and constrain the possible values
of variables. A non-unification goal is rewritten to
other goals using guarded clauses, possibly after ob-
serving a substitution. The guard of a guarded clause
specifies what substitution should be observed before
rewriting, and provides the language with a synchro-
nization mechanism.

3.2 Flat GHC

The above definition of GHC allows any atom to occur
as a guard goal. However, this proved to be unnec-
essarily expressive as a concurrent language (Section
6), which motivated us to move to a subset of GHC
called Flat GHC.

Since guard goals are used as conditions, we first
define a class of predicates, called test predicates, that
are appropriate for the purpose. A predicate p is
called a test predicate if the procedure for p is de-
fined by a set of unit clauses. Calls to a test predicate
have a property that they do not generate observable
substitutions; the only thing that matters is whether
they succeed or not.

A Flat GHC program is a set of flat guarded
clauses, clauses in which guard goals are restricted
to unification goals and calls to test predicates.

3.3 Operational Semantics of Flat GHC

Now we formalize the operational semantics of Flat
GHC. We follow the structural approach of Plotkin
[14], which is now a standard way of describing opera-
tional semantics formally. The structural operational
semantics of full GHC is found in [15].

o V.(=(f(Xi,...,Xm) =g(Y1,...,Yy,))), for all pairs
f, g of distinct functions (including constants).
V.(=(t=X)), for each term ¢ other than and con-
taining X.

V.(X=X).

Vo (f(Xe, . Xm) = f(Y1, ..
for each function f.
V(AL (Xi=Yi) D (X, ..
for each function f.
V.(X=Y D Y=X)

o V.(X=YAY=Z D X=Z)

7Ym)) /\?ll(xi=Yi))7

,Xm)=f(Y1,...,Ym)),

Figure 1. Clark’s equality theory &, in clausal form

Let B be a multiset of goals, and C' a multiset of
equations that represents a (binding) environment of
B. Let Vr denote the set of all variables occurring
in a syntactic entity F. The current configuration is
a triple, denoted (B,C):V, such that Vg U Ve C V.
It records the goals to be reduced and the current
environment, as well as the variables already in use
for the current computation. A computation under a
program P starts with the initial configuration (BO,
®>: VB,, where By is the body of the given goal clause.

What we are going to define is a transition rela-
tion ¢; — ¢2, which reads “the configuration ¢; can
be reduced to the configuration c;.” When we need to
explicitly mention the program P being used, we use
the form P F ¢; — ¢2, which reads “under the pro-
gram P, ¢; can be reduced to ¢».” By — we denote
the reflexive, transitive closure of —. The natural
deduction form

PFt
Pkt

(if Cond)

says that if the transition #; can happen under P,
and the condition Cond holds, the transition ¢, can
happen under P,. The numerator and the condition
are omitted if they are empty.

We have three rules. In the following rules, F = G
means that G is a logical consequence of F. YVp . F
and Vg . F are abbreviated to V. F and 3. F, respec-
tively. Also, following [18], we denote I(Vp\V) . F by
0V . F, where V is a finite set of variables. We assume
that there is an injection, denoted ‘=, from the set
of predicates to the set of functions, which is natu-
rally extended to an injection from the set of atoms
to the set of terms. £ denotes Clark’s equality theory
(Figure 1).

Pt (By,C1):V — (B}, C): V'
P <B1 U B2,01>2V — <Bi UBQ,C{>:V’

(i)

Pt

({b=h;i} UG;,C):(V UV, a) — (B,CUCy): V!

({b},C):V — (B;,CUC,): (V' U Vg,

ifE'zv.(CD(SVb.Cg) (i)
and V(hi,Gi,Bi) NV =>0
(iii)

PE ({t1=t:},C):V — (0,C U {t1=t2}):V

Rule (i) expresses concurrent reduction of a mul-
tiset of goals. Rule (ii) says that a goal b can be
reduced using a guarded clause “h;
the head unification b="h; and the guard goals G; can
be reduced out without affecting the variables in b.
This means that the head unification is restricted to
matching effectively. The condition Vi3, ¢, 5,0V =0
guarantees that the guarded clause has been renamed
using fresh variables. Rule (iii) says that a unification
goal simply publishes (or posts) a constraint to the
current environment.

3.4 Interacting with a Flat GHC Process

How does the above transition relation relate to
our external view of a process stated in Section 27
Roughly speaking, a multiset of goals implements a
process, and a sequence of reductions realizes a trans-
action. Recall that a transaction is an act by an ob-
server process of providing an observee process with a
possibly empty input substitution and getting an ob-
servable (and hence non-empty) output substitution.
In the following, we consider in more detail how a
transaction is realized by reductions.

Consider the initial configuration <P U O,®>:V
(V =VpUVo), where the process O is assumed to be
observing the process P, and assume the transition
(PUO,B):V — (P'UO',C"): V' has been made so
far. Then each element of C’ is either the one posted
by O or the one posted by P (note that C' is a mul-
tiset). Let Cf, be the set of constraints posted by
O (including the constraints on local variables gener-
ated during the execution of guards). C{, is regarded
as the current knowledge of O. C% is defined simi-
larly. Henceforth, to denote <P’UO’, Ch UC”O>: V', we
use a more modular notation (P',Cp)U{(0',Cf): V'
Also, we use abbreviations such as <Bl,C’1> U (<B2,
C’2>:V — <B§,C’§>:V’) which means <Bl,C’1>U<Bg,
Cz): V — <B1, Cl> U <Bé, Cé) \ %

Now assume
(i) a (possibly empty) transition by the observer

(P'.CRYU ((0',CL): V' 5 (07,0 Ua): V")
is made without reference to C (i.e, the transi-
tion (O',CH): V' = (0",C4 U a): V" can hap-
pen by itself) where £ |= 3.(C, U a) (ie., O’s
knowledge is still consistent), and then

)

(iii) a

-G | By if

(i)

a (possibly empty) transition by the observee

((P',Cp): V! =55 (P, C): V") U (0", Ch U)
is made (possibly with reference to Cf, U «), and
then

(non-empty) transition by the observer
(P", €Y U ((O",Cly U a): V" —
(0", CHUaU B): V" — - —
(0", CHUaUBLU--UB,): V")

is made, where 8 def B1 U---U B, is such that

(a) for each f; posted from a clause body, &£ |
V.(ChUaUB U---UBizy D8Vo.(ChHUaU
Bi1U---Up;)) (i.e., non-local constraints are
not posted from clause bodies) and

(b) EEV.(CHLUa D Vo .(CHLUaUB)) (e, a

new constraint is observed).

Then, we say that O has engaged in a (normal) trans-

action ((a, B) with P. The above transitions need not

happen strictly in that order; the point is that « is

first generated with reference to Cf, only, and then 3

is generated without constraining non-local variables.

The reductions of P’ can be interleaved with these

two phases. Note that following this transaction, O

may engage in the next transaction with P.

As well as normal transactions, we must be able to
model various abnormal phenomena. This is because
we want to distinguish between a process that always
behaves normally and a process that only sometimes
behaves normally. First, the observee may post a con-
straint inconsistent with the existing ones; or in alge-
braic terms, a unification body goal may fail. In that
event, any constraint and its negation becomes ob-
servable, and from then on each goal in the observee
can be reduced using any clause. In a word, the ob-
servee has fallen into chaos, a totally unpredictable
condition. Interestingly, chaos in GHC is very simi-
lar to chaos in TCSP introduced in order to model a
totally undefined indeterminate process.

Second, the observee may fail to generate an ob-
servable output constraint in response to a given input
constraint for various reasons, which is called inactiv-
ity. The reason will be one of the following:

(1) the observee has been reduced out (i.e., succeeds)
with no observable output,

(2) the observee has been reduced, with no observable
output, to a multiset of goals that does not allow
further reduction in the current environment,

(3) the observee has fallen into infinite computation.

We call the first success, the second deadlock, and

the third divergence [23]. Of these, divergence con-

sumes unbounded computation resource beyond the
observer’s control, while success and deadlock do not.

Unless the scheduling of goals is fair, a divergent
process may monopolize the computational resource,
blocking the execution of other processes running con-
currently. Hence divergence is worse than, and should
be distinguished from, non-divergent inactivity. It
is mathematically attractive to regard divergence as
chaos, as in TCSP. This treatment equates the two
apparently different but most undesirable phenomena
in Flat GHC, divergence and the failure of unification.

Success and deadlock cannot be distinguished by
observable output constraints. However, sometimes
it is useful to treat them separately. The observer
of a process usually gives an input constraint to ob-
serve an output constraint, but may sometimes do so
to terminate the observee. Then, success is not an
abnormal phenomenon any more, and should be dis-
tinguished from deadlock. Thus the abstract view of
a process depends on what phenomena the observer
is interested in.

Note that a normal transaction is of a finite na-
ture; it records the observation of finite output in-
formation made in finite time. A meaningful Flat
GHC process can be non-terminating and can engage
in an infinite number of transactions, but it should
be non-divergent and controllable in the sense that it
should not run indefinitely without observing an infi-
nite number of non-empty input constraints.

We imposed the restriction that input constraints
should be consistent with the observer’s knowledge,
because otherwise the observer itself would go chaotic.
Our assumption is that the observer must be well-
behaved, while it is unreasonable to assume anything
about the observee. An observer is said to be faithful
if it eventually observes some of the observable output
constraints generated by the observee.

Now we claim that a Flat GHC process is ad-
equately characterized by the set of all possible se-
quences of transactions made by all possible faithful
observers. This view of processes gives a sufficiently
weak, but still reasonable, equivalence relation for
processes, which abstracts away the notion of reduc-
tions. Whether infinite sequences should be included
or are approximated by sets of finite sequences de-
pends on whether fairness is considered or not. Our
current position is to say nothing about fairness in the
definition of the language. However, the notion of the
knowledge of a process we have given above can be
used to discuss whether information sent by a sender
process is eventually delivered to a receiver or not.

4. Some Properties of Flat GHC

4.1 Atomic Operations

One of the motivations that lead us to design
GHC was the examination of atomic operations in

Concurrent Prolog [19]. Concurrent Prolog (including
its offsprings) and the language cc({, —) [16] have the
notion of atomic publication, in which the publication
of a constraint by a process is done upon reduction
and only when it does not cause inconsistency. Atomic
publication may have to ‘test-and-set’ a number of
variables at the same time, which can be costly in a
distributed implementation. In GHC and PARLOG
[4], on the other hand, the publication of a constraint
is separated from the reduction of a non-unification
goal and is done by an independent unification goal.
This alternative, called eventual publication, is advan-
tageous for implementation, though some program-
ming techniques can be used only in atomic publica-
tion languages. Interestingly, our choice of eventual
publication recently lead to the idea of the message-
oriented scheduling of goals [25], a scheduling that
contrasts sharply with the ordinary one.

Moreover, GHC enjoys anti-substitutivity [21], a
property which allows the delay of interprocess com-
munication between two occurrences of a shared vari-
able. Anti-substitutivity allows two occurrences of the
same variable to have even inconsistent values. (Such
a variable is referred to as a non-atomic variable in
[20].) Fortunately, Maher’s logical characterization of
the communication mechanism of GHC-like languages
[10] later assured that anti-substitutivity is quite a
natural notion.

4.2 Binding Environments

In GHC, constraints obtained by executing the guards
of clauses cannot affect the caller side. This means
that a single binding environment is sufficient for man-
aging the values of variables, while in OR-parallel
Prolog and full Concurrent Prolog, multiple environ-
ments need to be maintained.

The binding environment of GHC is monotonic;
the publication of a new constraint does not invalidate
any previous observations done by clause guards. In
other words, if a clause C' can reduce a goal g in some
environment, it can reduce ¢ in an environment with
more constraints. Thanks to this property, GHC can
allow eventual publication and anti-substitutivity.

4.3 Treatment of Failure

The original definition of GHC did not state much
about failure. In Prolog, a goal is considered to
have failed if no clause can resolve it, and many
other concurrent logic languages followed this tradi-
tion. However, we had felt that this was inappropriate
for GHC. GHC separated unification from reduction,
S0 it is quite reasonable to distinguish between the fail-
ure of reduction and the failure of unification which
have quite different behavioral consequences.

It is worth noting that the transition relation of
Flat GHC does not rely on any notion of failure. Many
other concurrent logic languages and Prolog allow us
to write a clause that is tried only when all the pre-
ceding clauses (assuming a program is a sequence of
clauses) turn out to be inapplicable forever. However,
it is not so easy to correctly check if a clause cannot
reduce a given goal forever. First, the check requires
that guard goals and head unification be executed
concurrently in general. Second, head unification be-
comes more difficult because we must detect that the
head p(a,b) cannot unify with the goal p(X,c) or
p(X,X) forever. Flat GHC, on the other hand, al-
lows a clause guard to be executed sequentially in a
pre-determined order; the matching of p(a,b) with
p(X,c) can be left suspended at the first argument.
Although a Flat GHC program represents minimum
sequentiality, the only places that require concurrent
execution are between body goals reduced from the
top-level goals and between guarded clauses trying to
reduce a goal.

Failure of a unification body goal in GHC is an
exceptional situation which is essentially the same
as division-by-zero in any programming language.
Consider the constraint X = 5/0 over real numbers.
This is equivalent to X*0 = 5, namely 0 = 5, whose
publication would cause inconsistency. How to han-
dle such an exception is discussed in Section 6.

5. Advantages of Flat GHC as a Concurrent
Language

Now let us summarize advantages of Flat GHC as a
concurrent language.

(1) A process is defined using other processes, unlike
many concurrent languages in which processes are
defined using iteration. This is consistent with the
use of streams, which are a recursive data struc-
ture, for interprocess communication.

As we have seen, the monotonic property of bind-
ing environments realizes a natural synchroniza-
tion mechanism of waiting until sufficient infor-
mation is observed.

The mechanism for interprocess communication
is expressive enough to naturally describe data-
driven and demand-driven computation and dy-
namically evolving process structures. TCSP and
CCS [11] allowed recursive definitions of processes,
but could not deal with dynamically evolving pro-
cess structures because they lacked the ability to
create and pass new communication channels. It
is only recently that CCS was extended to deal
with evolving process structures [12].

A sequence of messages (i.e., a stream) is repre-
sented using an explicit data structure, namely a

-6 —

list. This is unlike most languages, in which mes-
sage sequences are implicit and a set of dedicated
operations is provided for them. GHC uses op-
erations like Lisp’s car and cons for interprocess
communication. No specific communication pro-
tocols (e.g., FIFO communication using streams)
are built-in because they are programmable.
GHC allows various views. It can be viewed as
a process description language, a dataflow lan-
guage, and a concurrent assembly language. It
can be viewed also as a logic programming lan-
guage in the sense that the result of a compu-
tation allows declarative interpretation. A GHC
program is better amenable to declarative read-
ing than Prolog programs with extralogical oper-
ations such as I/0.

6. Evolution of GHC

GHC was born at the very end of 1984 from close
examination of parallelism in logic programming, the
direct trigger being the study of the atomic opera-
tions and the binding environment mechanism of (full)
Concurrent Prolog. No essential change has been
made since then, but the proposed language has been
studied from various aspects.

One good result of the study is that now we un-
derstand the language much better than when it was
born, which means that the language is more robust
than before. The study of atomic operations, of un-
usual behavior such as failure, and of relationship with
other logic languages, concurrent languages and mod-
els of concurrency helped explain the language better.
The study of formal semantics of concurrent logic lan-
guages by many people (e.g., [3], [10], [13], [16]) also
helped our understanding.

6.1 Subsetting

Another important result is the identification of sub-
sets which can be more efficiently implemented but
are still useful.

Full GHC allowed any atom to occur as a guard
goal, trying to retain the expressive power of full
Concurrent Prolog as much as possible. However,
then, a unification body goal may have to be sus-
pended when it is executed as a subgoal of some guard
goal. More importantly, our programming experi-
ence showed that guard goals are used only for the
simple testing of conditions. Since guard goals are
given limited communication capability, they are not
very powerful anyway. We had been unwilling to im-
plement the guard mechanism of full GHC for these
reasons, and finally decided to allow only predefined
predicates to be called from a guard. This was our

first approximation to Flat GHC, which was clearly
influenced by the subsetting of Concurrent Prolog to
Flat Concurrent Prolog [19].

However, the above-mentioned way of subsetting
was not quite satisfactory for a rather idealized pro-
gramming language like GHC, because it depends on
the arbitrary choice of predefined predicates. We felt
that it would be much better to state what properties
are sufficient for a predicate to be called a test predi-
cate. The definition of Flat GHC in Section 3.2 is one
solution.

Flatness as defined in Section 3.2 guarantees that
no body goals are spawned by the execution of a
guard. All the synchronization conditions of unifi-
cation can then be analyzed statically and without
global analysis. Flat GHC does, however, allow nested
guard goals. Calls to test predicates in Flat GHC
have a desirable property that they are deterministic,
that is, the current environment uniquely determines
whether the calls succeed in it or not.

Once we have defined within the framework of
GHC what are test predicates, an actual implemen-
tation of Flat GHC could reasonably restrict guard
goals to calls to predefined predicates. A wonderful
discovery of the language Oc [6] was that guard goals
in (Flat) GHC are not essential and can be disallowed
theoretically.

A problem with Flat GHC is that it is left to pro-
grammers to guarantee that the binding environment
never becomes inconsistent; a program goes chaotic
once its binding environment becomes inconsistent.
Of course, it is most, desirable that such insecurity be
detected at compile time.

The main reason for the insecurity is that two or
more processes sharing a variable may try to instan-
tiate it non-cooperatively. Doc [5] and Janus [17] in-
troduced annotations (attached to occurrences of vari-
ables) to syntactically guarantee that only one process
can instantiate a variable. On the other hand, Ueda
and Morita [25] showed that simple mode analysis can
be used to guarantee the same property. The mode
system provides a unified framework for mode decla-
ration (of which annotation is one possible way), mode
inference and mode checking. Restriction to one pro-
ducer per variable disallows a variable to be used as
a shared resource with ‘multiple-writers’. However,
such a shared resource does not have to be imple-
mented using a variable, because it can be imple-
mented using a process. The mode system has been
designed so that it can be incorporated into Flat GHC
as a new language construct; in effect, we have pro-
posed a further subset that could be called Moded Flat
GHC.

Unfortunately, the above restriction is still insuf-
ficient for guaranteeing the consistency of the binding

environment because of the occur-check problem. One
solution is to adopt rational terms instead of finite
terms, as in some Prolog systems and Janus. This
makes it possible to create infinite terms in a finite
time, while in GHC, infinite terms can be created only
using infinite recursion. The consequences of this is
yet to be studied.

6.2 Flat GHC and KL1

Although Flat GHC has a number of good properties,
it is not quite appropriate for programming parallel
computers.

First, GHC is a reactive language in which pro-
cesses are assumed to be cooperative rather than com-
petitive. In actual applications, however, not all pro-
cesses may be cooperative with others. An example is
a user process running concurrently with an operating
system.

Second, although a GHC program fully expresses
the possibility of parallel execution, it does not spec-
ify at all how it should be executed. It may be a
good platform for parallel processing because no un-
necessary sequentiality is imposed. However, it is a
concurrent language, not a parallel language in which
one can specify how processes should be executed on
a parallel computer.

The separation of concurrency and parallelism is
not a design flaw but a deliberate decision. Since lan-
guage constructs for specifying parallel execution may
depend on the computation models that reflect under-
lying implementations, they should be defined sepa-
rately.

The language called KL1 [1] takes these two is-
sues into account. It is based on Flat GHC, but has
included the ‘shoen’ (manor) construct so that a pro-
cess may have full control over another process that
may not be cooperative. The shoen construct enables
a process to control the execution of another process
executed within a shoen and the resource it consumes.
The shoen construct also handles exceptional situa-
tions of a process such as failure and deadlock. For
parallel execution, KL1 provides a construct for spec-
ifying which goal should be executed on which pro-
cessor and with what priority.

7. Conclusion

We have reviewed the design and the evolution of
GHC. Macroscopically, GHC should be regarded as a
concurrent programming language rather than a logic
programming language. However, when we look into
the language more microscopically, we find that each
transaction is similar to partial refutation in logic pro-
gramming and that the communication mechanism al-
lows an elegant logical characterization.

It seems that concurrent logic programming is of-
ten misunderstood because it stemmed from logic pro-
gramming. However, it is not just an incomplete vari-
ant of logic programming. We believe that concurrent
logic programming is interesting in its own right and
deserves much more attention and study.

The research on GHC has been focused on the
semantical aspects of the language. The current syn-
tax of GHC is not essential at all; software engineer-
ing aspects such as the modularization of large pro-
grams are important but separate issues to be consid-
ered. However, some software engineering issues are
already addressed in GHC; it provides an abstraction
and encapsulation mechanism based on processes, and
we can put object-based concurrent programming into
practice.

Finally, we note that the current status of GHC
has been influenced by many works in the fields
of logic programming and concurrent programming
and also by many discussions with a number of re-
searchers.

Acknowledgments

We are indebted to Kenji Horiuchi, Masahiro Hirata
and Keiji Hirata for valuable comments on earlier ver-
sions of this paper.

References

1. Chikayama, T., Sato, H. and Miyazaki, T.,
Overview of the Parallel Inference Machine Operating
System (PIMOS). In Proc. Int. Conf. on FGCS’8S,
ICOT, Tokyo, 1988, pp. 230-251.

2. Clark, K. L., Negation as Failure. In Logic
and Data Bases, Gallaire, H. and Minker, J. (eds.),
Plenum Press, New York, 1978, pp. 293-322.

3. Gerth, R., Codish, M., Lichtenstein, Y. and
Shapiro, E., Fully Abstract Denotational Semantics
for Flat Concurrent Prolog. In Proc. Third Annual
Conf. on Logic in Computer Science, IEEE, 1988,
pp- 320-335.

4. Gregory, S., Parallel Logic Programming in
PARLOG: The Language and its Implementation.
Addison-Wesley, Wokingham, England, 1987.

5. Hirata, M., Programming Language Doc and Its
Self-Description or, X = X is Considered Harmful. In
Proc. 3rd Conf. of Japan Society of Software Science
and Technology, 1986, pp. 69-72.

6. Hirata, M., Parallel List Processing Language Oc
and Its Self-Description. Computer Software, Vol. 4,
No. 3 (1987), pp. 41-64 (in Japanese).

7. Hoare, C. A. R., Communicating Sequential Pro-
cesses. Prentice-Hall International, UK, London,
1985.

8. Kowalski, R., Algorithm Logic + Control.
Comm. ACM, Vol. 22, No. 7 (1979), pp. 424-436.

9. Lloyd, J. W., Foundations of Logic Programming
(Second ed.). Springer-Verlag, Berlin, 1987.

10. Maher, M. J., Logic Semantics for a Class of
Committed-Choice Programs. In Proc. Fourth Int.
Conf. on Logic Programming, MIT Press, 1987,
pp. 858-876.

11. Milner, R., Process Constructors and Interpreta-
tions. In Information Processing 86, Kugler, H. -J.
(ed.), North-Holland, 1986, pp. 507-514.

12. Milner, R., Parrow, J. and Walker, D., A Calcu-
lus of Mobile Processes, Parts I and II. ECS-LFCS-89-
86, Dept. of Computer Science, Univ. of Edinburgh,
1989.

13. Murakami, M., A Declarative Semantics of Paral-
lel Logic Programs with Perpetual Processes. In Proc.
Int. Conf. on FGCS’88, ICOT, Tokyo, 1988, pp. 374—
381.

14. Plotkin, G. D., A Structural Approach to Oper-
ational Semantics. DAIMI FN-19, Computer Science
Dept., Aarhus Univ., Denmark, 1981.

15. Saraswat, V. A., GHC: Operational Semantics,
Problems and Relationship with CP({,|). In Proc.
1987 Symp. on Logic Programming, TEEE, 1987,
pp. 347-358.

16. Saraswat, V. A., Concurrent Constraint Pro-
gramming Languages. Ph. D. Thesis, CMU, 19809.
17. Saraswat, V., Kahn K. and Levy J., Janus: A
Step Towards Distributed Constraint Programming.
SSL, 89-108, System Sciences Lab., Xerox PARC,
1989.

18. Saraswat, V. A. and Rinard, M., Concurrent
Constraint Programming (Extended Abstract). In
Conf. Record of the Seventeenth Annual ACM Symp.
on Principles of Programming Languages, ACM,
1990, pp. 232-245.

19. Shapiro, E. Y., Concurrent Prolog: A Progress
Report. Computer, Vol. 19, No. 8 (1986), pp. 44-58.
20. Shapiro, E., The Family of Concurrent Logic Pro-
gramming Languages. Computing Surveys, Vol. 21,
No. 3 (1989), pp. 413-510.

21. Ueda, K., Guarded Horn Clauses. Doctoral the-
sis, Information Engineering Course, Faculty of Engi-
neering, Univ. of Tokyo, 1986.

22. Ueda, K., Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of a
Guard. ICOT Tech. Report TR-208, ICOT, Tokyo,
1986. Also in Programming of Future Generation
Computers, Nivat, M. and Fuchi, K. (eds.), North-
Holland, 1988, pp. 441-456.

23. Ueda, K. and Furukawa, K., Transformation
Rules for GHC Programs. In Proc. Int. Conf. on
FG(CS’88, ICOT, Tokyo, 1988, pp. 582-591.

24. Ueda, K., Parallelism in Logic Programming. In
Information Processing 89, Ritter, G. X. (ed.), North-
Holland, 1989, pp. 957-964.

25. Ueda, K. and Morita, M., A New Implementation
Technique for Flat GHC. In Proc. Seventh Int. Conf.
on Logic Programming, MIT Press, 1990, pp. 3-17.

