
Pro
eedings of an International Conferen
e organized by the IPSJ

to Commemorate the 30th Anniversary (InfoJapan'90), Informa-

tion Pro
essing So
iety of Japan, O
tober 1990, pp. 87{94.

Last revision: O
tober 1991.

Designing a Con
urrent Programming Language

Kazunori Ueda

Institute for New Generation Computer Te
hnology

4-28, Mita 1-
home, Minato-ku, Tokyo 108 Japan

Abstra
t

This paper reviews the design and the evolution of a
on
urrent programming language

Guarded Horn Clauses (GHC). GHC was born from a study of parallelism in logi
 pro-

gramming, but turned out to be a simple and
exible
on
urrent programming language

with a number of ni
e properties. We give both an abstra
t view of GHC
omputation

based the notion of transa
tions and a
on
rete view, namely an operational semanti
s,

based on redu
tions. Also, we dis
uss in detail the properties of GHC su
h as its atomi

operations, whi
h have mu
h to do with the design of GHC.

1. Introdu
tion

It seems that many people still regard
on
urrent pro-

gramming as something spe
ial and diÆ
ult to learn.

Indeed,
on
urrent programming may have inherent

diÆ
ulties not in sequential programming, but the

situation
ould be improved by developing better for-

malisms and programming languages. Many
on
ur-

rent languages designed so far were built by adding

a number of spe
ial
onstru
ts to existing sequential

languages, adding
ertain
omplexity as well. So it

is worth trying to build a
on
urrent language in a

totally di�erent way.

Guarded Horn Clauses (abbreviated to GHC) [21℄

[22℄ was designed to be a simple
on
urrent program-

ming language with a very small number of primitive

onstru
ts. As its name suggests, GHC borrowed a

lot of
on
epts from (ordinary) logi
 programming,

whi
h, together with the
on
ept of a guard, were tai-

lored into a
on
urrent language. Hen
e it is usually

alled a
on
urrent logi
 programming language.

The simplest a

ount of GHC is the slogan:

GHC = Horn
lauses + Guards:

This
an be
orrelated with another slogan by

Kowalski [8℄:

Algorithm = Logi
 + Control:

A
tually, the logi
al reading of a program expresses

its stati
 aspe
ts, namely the relationship between in-

put and output information; and the guards are used

for expressing dynami
 aspe
ts or
ontrol, namely the

ausality between pie
es of input and output infor-

mation. The
orrelation thus suggests that GHC is a

language for des
ribing
on
urrent algorithms.

In logi
 programming, the exe
ution result of a

goal \:- G" under a program P has two aspe
ts,

namely

(i) the unsatis�ability of P [f:Gg (returned as a

yes/no answer), and

(ii) substitutions that make G logi
al
onsequen
es of

P .

From a programming language point of view, however,

more interest is in the se
ond aspe
t [9℄.

GHC as a
on
urrent language fully exploits the

se
ond aspe
t of
omputing substitutions. A build-

ing blo
k of a GHC program,
alled a pro
ess, is an

entity that observes and generates substitutions. For

instan
e, a pro
ess fa
torial(X,Y) will generate a

substitution fY=120g when it observes a substitution

fX = 5g. Unlike ordinary logi
 programs, GHC pro-

grams spe
ify the dire
tion of
omputation. That is,

GHC programs impose partial
ausal order on substi-

tutions observed and generated by pro
esses. This is

done by restri
ting data
ow
aused by uni�
ation, as

will be des
ribed in Se
tion 3.

2. Pro
esses in GHC

GHC is a rea
tive (as opposed to transformational)

language. In rea
tive languages, we are interested

in the
ommuni
ation between a program and the

{ 1 {

rest of the world performed in the
ourse of
omputa-

tion, rather than the �nal result of
omputation that

is the primary
on
ern in transformational languages

(the most typi
al of whi
h are fun
tional languages).

Another interesting
hara
terization of rea
tive or in-

tera
tive programs is that the input to a program
an

depend on the output from the program. This prop-

erty
an be mimi
ked in fun
tional languages with

lazy evaluation, but GHC allows us to des
ribe vari-

ous forms of
ommuni
ation more naturally.

GHC is an asyn
hronous rea
tive language. Ea
h

pie
e of
ommuni
ation engaged in by a pro
ess is

either from the pro
ess to the rest of the world or

the other way around, and the sender of informa-

tion is never blo
ked by the re
eiver. A history of

ommuni
ation between a pro
ess and the rest of the

world
an be divided into transa
tions, ea
h trans-

a
tion being an a
t of providing the pro
ess with a

possibly empty input substitution and getting an ob-

servable, non-empty output substitution. The input

an be empty be
ause an autonomous pro
ess may

not require any input. The output should be observ-

able be
ause that is usually what the outside world

is waiting for. A pro
ess is
onsidered erroneous if

it fails to generate any output substitution when the

outside world expe
ts it.

Ea
h transa
tion is quite similar to the whole
om-

putation of a transformational program. The di�er-

en
e is that the input from the outside world may

depend on the outputs of previous transa
tions. This

suggests that the behavior of a pro
ess
an be for-

mulated as a sequen
e of transa
tions, whi
h is an

external, abstra
t view of a pro
ess in our setting.

Note that the above view of a pro
ess be
omes very

similar to the view of Theoreti
al CSP (TCSP) [7℄, a

syn
hronous model of
on
urren
y, by regarding ea
h

transa
tion as a single event.

As we have seen, GHC uses substitutions (sets

of bindings between variables and their values) to

model information
ommuni
ated between pro
esses.

Substitutions are generated by uni�
ation and ob-

served using mat
hing (Se
tion 3.1), a restri
ted form

of uni�
ation. A ni
e thing is that these notions have

a logi
al as well as an algebrai

hara
terization, as

pointed out by Maher [10℄ and studied extensively by

Saraswat [16℄. A substitution
an be viewed as an

equality
onstraint on the possible values of variables.

A (binding) environment, whi
h is the produ
t of all

the substitutions generated so far,
an be viewed as

the multiset (interpreted as the
onjun
tion) of the

onstraints
orresponding to the substitutions. In

the GHC
ontext, uni�
ation
an be viewed as the

publi
ation of a
onstraint into the
urrent environ-

ment, and mat
hing
an be viewed as the
he
king

of whether the
urrent environment implies a given

onstraint under the equality theory of GHC. GHC

adopts Clark's equality theory [2℄ that models synta
-

ti
 equality over �nite terms. We
ould adopt equal-

ity theories other than Clark's without
hanging the

essen
e of the language [16℄. Moreover, we
ould al-

low
onstraints other than
onjun
tions of equalities.

However, the
urrent
hoi
e has the advantage that

the generation and the observation of
onstraints
an

be easily
omputed.

3. GHC

How
an we de�ne the intended behavior of a pro
ess?

The basi
 idea is to des
ribe it in terms of other pro-

esses. This is attra
tive sin
e the behavior
an then

be realized by the redu
tion of pro
esses.

There are two possible styles for the des
ription:

One is to use pro
ess
onstru
tors [11℄, namely oper-

ators on pro
esses, to
ompose a more
omplex pro-

ess expression from simpler ones. The other style is

to use rewrite rules of pro
esses as in term rewriting

systems. GHC has taken the rewrite-rule approa
h

following the tradition of logi
 programming, though

this
hoi
e is for histori
al reasons and is not essen-

tial. Saraswat [16℄ shows how
on
urrent logi
 pro-

gramming
an be reformulated using the
onstru
tor

approa
h.

3.1 Syntax of GHC

Now let us introdu
e GHC. GHC has borrowed many

notions from logi
 and logi
 programming, whi
h en-

ables a terse introdu
tion of the language. We assume

here that the following notions are de�ned as usual [9℄:

variables, fun
tion(symbol)s,
onstants (re-

garded as 0-ary fun
tions), predi
ate(sym-

bol)s, terms, atom(i
 formula)s, substitutions,

renaming, uni�
ation.

We say that a term t

1

mat
hes a term t

2

if there is a

substitution su
h that t

1

� � t

2

(`�' denoting synta
ti

equality). Mat
hing is
alled one-way uni�
ation also.

A program is a set of guarded
lauses. A guarded

lause is of the form

h :- G | B;

where h is an atom, and G and B are multisets of

atoms. h is
alled the head of the
lause; atoms in G

are
alled guard goals; and atoms in B are
alled body

goals. The part before the
ommitment operator `|'

is
alled the guard, and the part after `|' is
alled the

body.

A
lause with an empty body is
alled a unit

lause. The set of all
lauses in a program whose

heads have the predi
ate symbol p is
alled the pro
e-

dure for p. A goal with the predi
ate symbol p is said

to
all p.

{ 2 {

Informally, ea
h guarded
lause is a
onditional

rewrite rule of goals, where

� h is the template that should mat
h a goal (say

g) to be rewritten,

� G is the auxiliary
ondition for the rewriting (G

must be exe
uted without instantiating g), and

� B is the multiset of (sub)goals to repla
e g.

That a program is a set means that the dupli
a-

tion (up to renaming of variables) of guarded
lauses

is insigni�
ant, not to mention their ordering. On the

other hand, G and B are multisets be
ause two syn-

ta
ti
ally identi
al goals may behave di�erently due

to indetermina
y.

To run a program, we use a goal
lause of the form

:- B;

whi
h spe
i�es the initial multiset of body goals.

A goal is either a uni�
ation goal of the form t

1

= t

2

or a non-uni�
ation goal. A uni�
ation goal, whose

behavior is prede�ned in the language, may gener-

ate a substitution and
onstrain the possible values

of variables. A non-uni�
ation goal is rewritten to

other goals using guarded
lauses, possibly after ob-

serving a substitution. The guard of a guarded
lause

spe
i�es what substitution should be observed before

rewriting, and provides the language with a syn
hro-

nization me
hanism.

3.2 Flat GHC

The above de�nition of GHC allows any atom to o

ur

as a guard goal. However, this proved to be unne
-

essarily expressive as a
on
urrent language (Se
tion

6), whi
h motivated us to move to a subset of GHC

alled Flat GHC.

Sin
e guard goals are used as
onditions, we �rst

de�ne a
lass of predi
ates,
alled test predi
ates, that

are appropriate for the purpose. A predi
ate p is

alled a test predi
ate if the pro
edure for p is de-

�ned by a set of unit
lauses. Calls to a test predi
ate

have a property that they do not generate observable

substitutions; the only thing that matters is whether

they su

eed or not.

A Flat GHC program is a set of
at guarded

lauses,
lauses in whi
h guard goals are restri
ted

to uni�
ation goals and
alls to test predi
ates.

3.3 Operational Semanti
s of Flat GHC

Now we formalize the operational semanti
s of Flat

GHC. We follow the stru
tural approa
h of Plotkin

[14℄, whi
h is now a standard way of des
ribing opera-

tional semanti
s formally. The stru
tural operational

semanti
s of full GHC is found in [15℄.

� 8 :

�

:(f(X

1

; : : : ; X

m

) = g(Y

1

; : : : ; Y

n

))

�

, for all pairs

f , g of distin
t fun
tions (in
luding
onstants).

� 8 :

�

:(t= X)

�

, for ea
h term t other than and
on-

taining X.

� 8 :

�

X=X

�

.

� 8 :

�

f(X

1

; : : : ; X

m

)=f(Y

1

; : : : ; Y

m

) �

V

m

i=1

(X

i

=Y

i

)

�

,

for ea
h fun
tion f .

� 8 :

�

V

m

i=1

(X

i

=Y

i

) � f(X

1

; : : : ; X

m

)=f(Y

1

; : : : ; Y

m

)

�

,

for ea
h fun
tion f .

� 8 :

�

X=Y � Y=X

�

� 8 :

�

X=Y ^ Y=Z � X=Z

�

Figure 1. Clark's equality theory E , in
lausal form

Let B be a multiset of goals, and C a multiset of

equations that represents a (binding) environment of

B. Let V

F

denote the set of all variables o

urring

in a synta
ti
 entity F . The
urrent
on�guration is

a triple, denoted

B;C

�

:V , su
h that V

B

[V

C

� V .

It re
ords the goals to be redu
ed and the
urrent

environment, as well as the variables already in use

for the
urrent
omputation. A
omputation under a

program P starts with the initial
on�guration

B

0

;

;

�

:V

B

0

, where B

0

is the body of the given goal
lause.

What we are going to de�ne is a transition rela-

tion

1

�!

2

, whi
h reads \the
on�guration

1

an

be redu
ed to the
on�guration

2

." When we need to

expli
itly mention the program P being used, we use

the form P `

1

�!

2

, whi
h reads \under the pro-

gram P ,

1

an be redu
ed to

2

." By

�

�! we denote

the re
exive, transitive
losure of �!. The natural

dedu
tion form

P

1

` t

1

P

2

` t

2

(if Cond)

says that if the transition t

1

an happen under P

1

and the
ondition Cond holds, the transition t

2

an

happen under P

2

. The numerator and the
ondition

are omitted if they are empty.

We have three rules. In the following rules, F j= G

means that G is a logi
al
onsequen
e of F . 8V

F

: F

and 9V

F

: F are abbreviated to 8 : F and 9 : F , respe
-

tively. Also, following [18℄, we denote 9(V

F

nV) : F by

ÆV : F , where V is a �nite set of variables. We assume

that there is an inje
tion, denoted ` � ', from the set

of predi
ates to the set of fun
tions, whi
h is natu-

rally extended to an inje
tion from the set of atoms

to the set of terms. E denotes Clark's equality theory

(Figure 1).

P `

B

1

; C

1

�

:V �!

B

0

1

; C

0

1

�

:V

0

P `

B

1

[B

2

; C

1

�

:V �!

B

0

1

[B

2

; C

0

1

�

:V

0

(i)

{ 3 {

P `

fb=h

i

g [G

i

; C

�

: (V [V

(h

i

;G

i

)

)

�

�!

;; C [C

g

�

:V

0

fh

i

:- G

i

| B

i

g [P `

fbg; C

�

:V �!

B

i

; C [C

g

�

: (V

0

[V

B

i

)

�

if E j= 8 :

�

C � ÆV

b

: C

g

�

and V

(h

i

;G

i

;B

i

)

\ V = ;

�

(ii)

P `

ft

1

= t

2

g; C

�

:V �!

;; C [ft

1

=t

2

g

�

:V (iii)

Rule (i) expresses
on
urrent redu
tion of a mul-

tiset of goals. Rule (ii) says that a goal b
an be

redu
ed using a guarded
lause \h

i

:- G

i

| B

i

" if

the head uni�
ation b=h

i

and the guard goals G

i

an

be redu
ed out without a�e
ting the variables in b.

This means that the head uni�
ation is restri
ted to

mat
hing e�e
tively. The
ondition V

(h

i

;G

i

;B

i

)

\V = ;

guarantees that the guarded
lause has been renamed

using fresh variables. Rule (iii) says that a uni�
ation

goal simply publishes (or posts) a
onstraint to the

urrent environment.

3.4 Intera
ting with a Flat GHC Pro
ess

How does the above transition relation relate to

our external view of a pro
ess stated in Se
tion 2?

Roughly speaking, a multiset of goals implements a

pro
ess, and a sequen
e of redu
tions realizes a trans-

a
tion. Re
all that a transa
tion is an a
t by an ob-

server pro
ess of providing an observee pro
ess with a

possibly empty input substitution and getting an ob-

servable (and hen
e non-empty) output substitution.

In the following, we
onsider in more detail how a

transa
tion is realized by redu
tions.

Consider the initial
on�guration

P [O; ;

�

:V

(V = V

P

[V

O

), where the pro
ess O is assumed to be

observing the pro
ess P , and assume the transition

P [O; ;

�

:V

�

�!

P

0

[O

0

; C

0

�

:V

0

has been made so

far. Then ea
h element of C

0

is either the one posted

by O or the one posted by P (note that C

0

is a mul-

tiset). Let C

0

O

be the set of
onstraints posted by

O (in
luding the
onstraints on lo
al variables gener-

ated during the exe
ution of guards). C

0

O

is regarded

as the
urrent knowledge of O. C

0

P

is de�ned simi-

larly. Hen
eforth, to denote

P

0

[O

0

; C

0

P

[C

0

O

�

:V

0

, we

use a more modular notation

P

0

; C

0

P

�

[

O

0

; C

0

O

�

:V

0

.

Also, we use abbreviations su
h as

B

1

; C

1

�

[

�

B

2

;

C

2

�

:V �!

B

0

2

; C

0

2

�

:V

0

�

whi
h means

B

1

; C

1

�

[

B

2

;

C

2

�

:V �!

B

1

; C

1

�

[

B

0

2

; C

0

2

�

:V

0

.

Now assume

(i) a (possibly empty) transition by the observer

P

0

; C

0

P

�

[

�

O

0

; C

0

O

�

:V

0

�

�!

O

00

; C

0

O

[�

�

:V

00

�

is made without referen
e to C

0

P

(i.e, the transi-

tion

O

0

; C

0

O

�

:V

0

�

�!

O

00

; C

0

O

[�

�

:V

00

an hap-

pen by itself) where E j= 9 :(C

0

O

[�) (i.e., O's

knowledge is still
onsistent), and then

(ii) a (possibly empty) transition by the observee

�

P

0

; C

0

P

�

:V

0

�

�!

P

00

; C

00

P

�

:V

00

�

[

O

00

; C

0

O

[�

�

is made (possibly with referen
e to C

0

O

[�), and

then

(iii) a (non-empty) transition by the observer

P

00

; C

00

P

�

[

�

O

00

; C

0

O

[�

�

:V

00

�!

O

000

; C

0

O

[� [�

1

�

:V

000

�! � � � �!

O

0000

; C

0

O

[� [�

1

[� � � [�

n

�

:V

0000

�

is made, where �

def

= �

1

[� � � [�

n

is su
h that

(a) for ea
h �

i

posted from a
lause body, E j=

8 :

�

C

0

O

[� [�

1

[� � � [�

i�1

� ÆV

O

:(C

0

O

[� [

�

1

[� � � [�

i

)

�

(i.e., non-lo
al
onstraints are

not posted from
lause bodies) and

(b) E 6j= 8 :

�

C

0

O

[� � ÆV

O

:(C

0

O

[� [�)

�

(i.e., a

new
onstraint is observed).

Then, we say that O has engaged in a (normal) trans-

a
tion hh�; �ii with P . The above transitions need not

happen stri
tly in that order; the point is that � is

�rst generated with referen
e to C

0

O

only, and then �

is generated without
onstraining non-lo
al variables.

The redu
tions of P

0

an be interleaved with these

two phases. Note that following this transa
tion, O

may engage in the next transa
tion with P .

As well as normal transa
tions, we must be able to

model various abnormal phenomena. This is be
ause

we want to distinguish between a pro
ess that always

behaves normally and a pro
ess that only sometimes

behaves normally. First, the observee may post a
on-

straint in
onsistent with the existing ones; or in alge-

brai
 terms, a uni�
ation body goal may fail. In that

event, any
onstraint and its negation be
omes ob-

servable, and from then on ea
h goal in the observee

an be redu
ed using any
lause. In a word, the ob-

servee has fallen into
haos, a totally unpredi
table

ondition. Interestingly,
haos in GHC is very simi-

lar to
haos in TCSP introdu
ed in order to model a

totally unde�ned indeterminate pro
ess.

Se
ond, the observee may fail to generate an ob-

servable output
onstraint in response to a given input

onstraint for various reasons, whi
h is
alled ina
tiv-

ity. The reason will be one of the following:

(1) the observee has been redu
ed out (i.e., su

eeds)

with no observable output,

(2) the observee has been redu
ed, with no observable

output, to a multiset of goals that does not allow

further redu
tion in the
urrent environment,

(3) the observee has fallen into in�nite
omputation.

We
all the �rst su

ess, the se
ond deadlo
k, and

the third divergen
e [23℄. Of these, divergen
e
on-

sumes unbounded
omputation resour
e beyond the

observer's
ontrol, while su

ess and deadlo
k do not.

{ 4 {

Unless the s
heduling of goals is fair, a divergent

pro
ess may monopolize the
omputational resour
e,

blo
king the exe
ution of other pro
esses running
on-

urrently. Hen
e divergen
e is worse than, and should

be distinguished from, non-divergent ina
tivity. It

is mathemati
ally attra
tive to regard divergen
e as

haos, as in TCSP. This treatment equates the two

apparently di�erent but most undesirable phenomena

in Flat GHC, divergen
e and the failure of uni�
ation.

Su

ess and deadlo
k
annot be distinguished by

observable output
onstraints. However, sometimes

it is useful to treat them separately. The observer

of a pro
ess usually gives an input
onstraint to ob-

serve an output
onstraint, but may sometimes do so

to terminate the observee. Then, su

ess is not an

abnormal phenomenon any more, and should be dis-

tinguished from deadlo
k. Thus the abstra
t view of

a pro
ess depends on what phenomena the observer

is interested in.

Note that a normal transa
tion is of a �nite na-

ture; it re
ords the observation of �nite output in-

formation made in �nite time. A meaningful Flat

GHC pro
ess
an be non-terminating and
an engage

in an in�nite number of transa
tions, but it should

be non-divergent and
ontrollable in the sense that it

should not run inde�nitely without observing an in�-

nite number of non-empty input
onstraints.

We imposed the restri
tion that input
onstraints

should be
onsistent with the observer's knowledge,

be
ause otherwise the observer itself would go
haoti
.

Our assumption is that the observer must be well-

behaved, while it is unreasonable to assume anything

about the observee. An observer is said to be faithful

if it eventually observes some of the observable output

onstraints generated by the observee.

Now we
laim that a Flat GHC pro
ess is ad-

equately
hara
terized by the set of all possible se-

quen
es of transa
tions made by all possible faithful

observers. This view of pro
esses gives a suÆ
iently

weak, but still reasonable, equivalen
e relation for

pro
esses, whi
h abstra
ts away the notion of redu
-

tions. Whether in�nite sequen
es should be in
luded

or are approximated by sets of �nite sequen
es de-

pends on whether fairness is
onsidered or not. Our

urrent position is to say nothing about fairness in the

de�nition of the language. However, the notion of the

knowledge of a pro
ess we have given above
an be

used to dis
uss whether information sent by a sender

pro
ess is eventually delivered to a re
eiver or not.

4. Some Properties of Flat GHC

4.1 Atomi
 Operations

One of the motivations that lead us to design

GHC was the examination of atomi
 operations in

Con
urrent Prolog [19℄. Con
urrent Prolog (in
luding

its o�springs) and the language

(#;!) [16℄ have the

notion of atomi
 publi
ation, in whi
h the publi
ation

of a
onstraint by a pro
ess is done upon redu
tion

and only when it does not
ause in
onsisten
y. Atomi

publi
ation may have to `test-and-set' a number of

variables at the same time, whi
h
an be
ostly in a

distributed implementation. In GHC and PARLOG

[4℄, on the other hand, the publi
ation of a
onstraint

is separated from the redu
tion of a non-uni�
ation

goal and is done by an independent uni�
ation goal.

This alternative,
alled eventual publi
ation, is advan-

tageous for implementation, though some program-

ming te
hniques
an be used only in atomi
 publi
a-

tion languages. Interestingly, our
hoi
e of eventual

publi
ation re
ently lead to the idea of the message-

oriented s
heduling of goals [25℄, a s
heduling that

ontrasts sharply with the ordinary one.

Moreover, GHC enjoys anti-substitutivity [21℄, a

property whi
h allows the delay of interpro
ess
om-

muni
ation between two o

urren
es of a shared vari-

able. Anti-substitutivity allows two o

urren
es of the

same variable to have even in
onsistent values. (Su
h

a variable is referred to as a non-atomi
 variable in

[20℄.) Fortunately, Maher's logi
al
hara
terization of

the
ommuni
ation me
hanism of GHC-like languages

[10℄ later assured that anti-substitutivity is quite a

natural notion.

4.2 Binding Environments

In GHC,
onstraints obtained by exe
uting the guards

of
lauses
annot a�e
t the
aller side. This means

that a single binding environment is suÆ
ient for man-

aging the values of variables, while in OR-parallel

Prolog and full Con
urrent Prolog, multiple environ-

ments need to be maintained.

The binding environment of GHC is monotoni
;

the publi
ation of a new
onstraint does not invalidate

any previous observations done by
lause guards. In

other words, if a
lause C
an redu
e a goal g in some

environment, it
an redu
e g in an environment with

more
onstraints. Thanks to this property, GHC
an

allow eventual publi
ation and anti-substitutivity.

4.3 Treatment of Failure

The original de�nition of GHC did not state mu
h

about failure. In Prolog, a goal is
onsidered to

have failed if no
lause
an resolve it, and many

other
on
urrent logi
 languages followed this tradi-

tion. However, we had felt that this was inappropriate

for GHC. GHC separated uni�
ation from redu
tion,

so it is quite reasonable to distinguish between the fail-

ure of redu
tion and the failure of uni�
ation whi
h

have quite di�erent behavioral
onsequen
es.

{ 5 {

It is worth noting that the transition relation of

Flat GHC does not rely on any notion of failure. Many

other
on
urrent logi
 languages and Prolog allow us

to write a
lause that is tried only when all the pre-

eding
lauses (assuming a program is a sequen
e of

lauses) turn out to be inappli
able forever. However,

it is not so easy to
orre
tly
he
k if a
lause
annot

redu
e a given goal forever. First, the
he
k requires

that guard goals and head uni�
ation be exe
uted

on
urrently in general. Se
ond, head uni�
ation be-

omes more diÆ
ult be
ause we must dete
t that the

head p(a,b)
annot unify with the goal p(X,
) or

p(X,X) forever. Flat GHC, on the other hand, al-

lows a
lause guard to be exe
uted sequentially in a

pre-determined order; the mat
hing of p(a,b) with

p(X,
)
an be left suspended at the �rst argument.

Although a Flat GHC program represents minimum

sequentiality, the only pla
es that require
on
urrent

exe
ution are between body goals redu
ed from the

top-level goals and between guarded
lauses trying to

redu
e a goal.

Failure of a uni�
ation body goal in GHC is an

ex
eptional situation whi
h is essentially the same

as division-by-zero in any programming language.

Consider the
onstraint X = 5/0 over real numbers.

This is equivalent to X*0 = 5, namely 0 = 5, whose

publi
ation would
ause in
onsisten
y. How to han-

dle su
h an ex
eption is dis
ussed in Se
tion 6.

5. Advantages of Flat GHC as a Con
urrent

Language

Now let us summarize advantages of Flat GHC as a

on
urrent language.

(1) A pro
ess is de�ned using other pro
esses, unlike

many
on
urrent languages in whi
h pro
esses are

de�ned using iteration. This is
onsistent with the

use of streams, whi
h are a re
ursive data stru
-

ture, for interpro
ess
ommuni
ation.

(2) As we have seen, the monotoni
 property of bind-

ing environments realizes a natural syn
hroniza-

tion me
hanism of waiting until suÆ
ient infor-

mation is observed.

(3) The me
hanism for interpro
ess
ommuni
ation

is expressive enough to naturally des
ribe data-

driven and demand-driven
omputation and dy-

nami
ally evolving pro
ess stru
tures. TCSP and

CCS [11℄ allowed re
ursive de�nitions of pro
esses,

but
ould not deal with dynami
ally evolving pro-

ess stru
tures be
ause they la
ked the ability to

reate and pass new
ommuni
ation
hannels. It

is only re
ently that CCS was extended to deal

with evolving pro
ess stru
tures [12℄.

(4) A sequen
e of messages (i.e., a stream) is repre-

sented using an expli
it data stru
ture, namely a

list. This is unlike most languages, in whi
h mes-

sage sequen
es are impli
it and a set of dedi
ated

operations is provided for them. GHC uses op-

erations like Lisp's
ar and
ons for interpro
ess

ommuni
ation. No spe
i�

ommuni
ation pro-

to
ols (e.g., FIFO
ommuni
ation using streams)

are built-in be
ause they are programmable.

(5) GHC allows various views. It
an be viewed as

a pro
ess des
ription language, a data
ow lan-

guage, and a
on
urrent assembly language. It

an be viewed also as a logi
 programming lan-

guage in the sense that the result of a
ompu-

tation allows de
larative interpretation. A GHC

program is better amenable to de
larative read-

ing than Prolog programs with extralogi
al oper-

ations su
h as I/O.

6. Evolution of GHC

GHC was born at the very end of 1984 from
lose

examination of parallelism in logi
 programming, the

dire
t trigger being the study of the atomi
 opera-

tions and the binding environment me
hanism of (full)

Con
urrent Prolog. No essential
hange has been

made sin
e then, but the proposed language has been

studied from various aspe
ts.

One good result of the study is that now we un-

derstand the language mu
h better than when it was

born, whi
h means that the language is more robust

than before. The study of atomi
 operations, of un-

usual behavior su
h as failure, and of relationship with

other logi
 languages,
on
urrent languages and mod-

els of
on
urren
y helped explain the language better.

The study of formal semanti
s of
on
urrent logi
 lan-

guages by many people (e.g., [3℄, [10℄, [13℄, [16℄) also

helped our understanding.

6.1 Subsetting

Another important result is the identi�
ation of sub-

sets whi
h
an be more eÆ
iently implemented but

are still useful.

Full GHC allowed any atom to o

ur as a guard

goal, trying to retain the expressive power of full

Con
urrent Prolog as mu
h as possible. However,

then, a uni�
ation body goal may have to be sus-

pended when it is exe
uted as a subgoal of some guard

goal. More importantly, our programming experi-

en
e showed that guard goals are used only for the

simple testing of
onditions. Sin
e guard goals are

given limited
ommuni
ation
apability, they are not

very powerful anyway. We had been unwilling to im-

plement the guard me
hanism of full GHC for these

reasons, and �nally de
ided to allow only prede�ned

predi
ates to be
alled from a guard. This was our

{ 6 {

�rst approximation to Flat GHC, whi
h was
learly

in
uen
ed by the subsetting of Con
urrent Prolog to

Flat Con
urrent Prolog [19℄.

However, the above-mentioned way of subsetting

was not quite satisfa
tory for a rather idealized pro-

gramming language like GHC, be
ause it depends on

the arbitrary
hoi
e of prede�ned predi
ates. We felt

that it would be mu
h better to state what properties

are suÆ
ient for a predi
ate to be
alled a test predi-

ate. The de�nition of Flat GHC in Se
tion 3.2 is one

solution.

Flatness as de�ned in Se
tion 3.2 guarantees that

no body goals are spawned by the exe
ution of a

guard. All the syn
hronization
onditions of uni�-

ation
an then be analyzed stati
ally and without

global analysis. Flat GHC does, however, allow nested

guard goals. Calls to test predi
ates in Flat GHC

have a desirable property that they are deterministi
,

that is, the
urrent environment uniquely determines

whether the
alls su

eed in it or not.

On
e we have de�ned within the framework of

GHC what are test predi
ates, an a
tual implemen-

tation of Flat GHC
ould reasonably restri
t guard

goals to
alls to prede�ned predi
ates. A wonderful

dis
overy of the language O
 [6℄ was that guard goals

in (Flat) GHC are not essential and
an be disallowed

theoreti
ally.

A problem with Flat GHC is that it is left to pro-

grammers to guarantee that the binding environment

never be
omes in
onsistent; a program goes
haoti

on
e its binding environment be
omes in
onsistent.

Of
ourse, it is most desirable that su
h inse
urity be

dete
ted at
ompile time.

The main reason for the inse
urity is that two or

more pro
esses sharing a variable may try to instan-

tiate it non-
ooperatively. Do
 [5℄ and Janus [17℄ in-

trodu
ed annotations (atta
hed to o

urren
es of vari-

ables) to synta
ti
ally guarantee that only one pro
ess

an instantiate a variable. On the other hand, Ueda

and Morita [25℄ showed that simple mode analysis
an

be used to guarantee the same property. The mode

system provides a uni�ed framework for mode de
la-

ration (of whi
h annotation is one possible way), mode

inferen
e and mode
he
king. Restri
tion to one pro-

du
er per variable disallows a variable to be used as

a shared resour
e with `multiple-writers'. However,

su
h a shared resour
e does not have to be imple-

mented using a variable, be
ause it
an be imple-

mented using a pro
ess. The mode system has been

designed so that it
an be in
orporated into Flat GHC

as a new language
onstru
t; in e�e
t, we have pro-

posed a further subset that
ould be
alledModed Flat

GHC.

Unfortunately, the above restri
tion is still insuf-

�
ient for guaranteeing the
onsisten
y of the binding

environment be
ause of the o

ur-
he
k problem. One

solution is to adopt rational terms instead of �nite

terms, as in some Prolog systems and Janus. This

makes it possible to
reate in�nite terms in a �nite

time, while in GHC, in�nite terms
an be
reated only

using in�nite re
ursion. The
onsequen
es of this is

yet to be studied.

6.2 Flat GHC and KL1

Although Flat GHC has a number of good properties,

it is not quite appropriate for programming parallel

omputers.

First, GHC is a rea
tive language in whi
h pro-

esses are assumed to be
ooperative rather than
om-

petitive. In a
tual appli
ations, however, not all pro-

esses may be
ooperative with others. An example is

a user pro
ess running
on
urrently with an operating

system.

Se
ond, although a GHC program fully expresses

the possibility of parallel exe
ution, it does not spe
-

ify at all how it should be exe
uted. It may be a

good platform for parallel pro
essing be
ause no un-

ne
essary sequentiality is imposed. However, it is a

on
urrent language, not a parallel language in whi
h

one
an spe
ify how pro
esses should be exe
uted on

a parallel
omputer.

The separation of
on
urren
y and parallelism is

not a design
aw but a deliberate de
ision. Sin
e lan-

guage
onstru
ts for spe
ifying parallel exe
ution may

depend on the
omputation models that re
e
t under-

lying implementations, they should be de�ned sepa-

rately.

The language
alled KL1 [1℄ takes these two is-

sues into a

ount. It is based on Flat GHC, but has

in
luded the `sh�oen' (manor)
onstru
t so that a pro-

ess may have full
ontrol over another pro
ess that

may not be
ooperative. The sh�oen
onstru
t enables

a pro
ess to
ontrol the exe
ution of another pro
ess

exe
uted within a sh�oen and the resour
e it
onsumes.

The sh�oen
onstru
t also handles ex
eptional situa-

tions of a pro
ess su
h as failure and deadlo
k. For

parallel exe
ution, KL1 provides a
onstru
t for spe
-

ifying whi
h goal should be exe
uted on whi
h pro-

essor and with what priority.

7. Con
lusion

We have reviewed the design and the evolution of

GHC. Ma
ros
opi
ally, GHC should be regarded as a

on
urrent programming language rather than a logi

programming language. However, when we look into

the language more mi
ros
opi
ally, we �nd that ea
h

transa
tion is similar to partial refutation in logi
 pro-

gramming and that the
ommuni
ation me
hanism al-

lows an elegant logi
al
hara
terization.

{ 7 {

It seems that
on
urrent logi
 programming is of-

ten misunderstood be
ause it stemmed from logi
 pro-

gramming. However, it is not just an in
omplete vari-

ant of logi
 programming. We believe that
on
urrent

logi
 programming is interesting in its own right and

deserves mu
h more attention and study.

The resear
h on GHC has been fo
used on the

semanti
al aspe
ts of the language. The
urrent syn-

tax of GHC is not essential at all; software engineer-

ing aspe
ts su
h as the modularization of large pro-

grams are important but separate issues to be
onsid-

ered. However, some software engineering issues are

already addressed in GHC; it provides an abstra
tion

and en
apsulation me
hanism based on pro
esses, and

we
an put obje
t-based
on
urrent programming into

pra
ti
e.

Finally, we note that the
urrent status of GHC

has been in
uen
ed by many works in the �elds

of logi
 programming and
on
urrent programming

and also by many dis
ussions with a number of re-

sear
hers.

A
knowledgments

We are indebted to Kenji Horiu
hi, Masahiro Hirata

and Keiji Hirata for valuable
omments on earlier ver-

sions of this paper.

Referen
es

1. Chikayama, T., Sato, H. and Miyazaki, T.,

Overview of the Parallel Inferen
e Ma
hine Operating

System (PIMOS). In Pro
. Int. Conf. on FGCS'88,

ICOT, Tokyo, 1988, pp. 230{251.

2. Clark, K. L., Negation as Failure. In Logi

and Data Bases, Gallaire, H. and Minker, J. (eds.),

Plenum Press, New York, 1978, pp. 293{322.

3. Gerth, R., Codish, M., Li
htenstein, Y. and

Shapiro, E., Fully Abstra
t Denotational Semanti
s

for Flat Con
urrent Prolog. In Pro
. Third Annual

Conf. on Logi
 in Computer S
ien
e, IEEE, 1988,

pp. 320{335.

4. Gregory, S., Parallel Logi
 Programming in

PARLOG: The Language and its Implementation.

Addison-Wesley, Wokingham, England, 1987.

5. Hirata, M., Programming Language Do
 and Its

Self-Des
ription or, X = X is Considered Harmful. In

Pro
. 3rd Conf. of Japan So
iety of Software S
ien
e

and Te
hnology, 1986, pp. 69{72.

6. Hirata, M., Parallel List Pro
essing Language O

and Its Self-Des
ription. Computer Software, Vol. 4,

No. 3 (1987), pp. 41{64 (in Japanese).

7. Hoare, C. A. R., Communi
ating Sequential Pro-

esses. Prenti
e-Hall International, UK, London,

1985.

8. Kowalski, R., Algorithm = Logi
 + Control.

Comm. ACM, Vol. 22, No. 7 (1979), pp. 424{436.

9. Lloyd, J. W., Foundations of Logi
 Programming

(Se
ond ed.). Springer-Verlag, Berlin, 1987.

10. Maher, M. J., Logi
 Semanti
s for a Class of

Committed-Choi
e Programs. In Pro
. Fourth Int.

Conf. on Logi
 Programming, MIT Press, 1987,

pp. 858{876.

11. Milner, R., Pro
ess Constru
tors and Interpreta-

tions. In Information Pro
essing 86, Kugler, H. -J.

(ed.), North-Holland, 1986, pp. 507{514.

12. Milner, R., Parrow, J. and Walker, D., A Cal
u-

lus of Mobile Pro
esses, Parts I and II. ECS-LFCS-89-

86, Dept. of Computer S
ien
e, Univ. of Edinburgh,

1989.

13. Murakami, M., A De
larative Semanti
s of Paral-

lel Logi
 Programs with Perpetual Pro
esses. In Pro
.

Int. Conf. on FGCS'88, ICOT, Tokyo, 1988, pp. 374{

381.

14. Plotkin, G. D., A Stru
tural Approa
h to Oper-

ational Semanti
s. DAIMI FN-19, Computer S
ien
e

Dept., Aarhus Univ., Denmark, 1981.

15. Saraswat, V. A., GHC: Operational Semanti
s,

Problems and Relationship with CP(#,j). In Pro
.

1987 Symp. on Logi
 Programming, IEEE, 1987,

pp. 347{358.

16. Saraswat, V. A., Con
urrent Constraint Pro-

gramming Languages. Ph. D. Thesis, CMU, 1989.

17. Saraswat, V., Kahn K. and Levy J., Janus: A

Step Towards Distributed Constraint Programming.

SSL 89-108, System S
ien
es Lab., Xerox PARC,

1989.

18. Saraswat, V. A. and Rinard, M., Con
urrent

Constraint Programming (Extended Abstra
t). In

Conf. Re
ord of the Seventeenth Annual ACM Symp.

on Prin
iples of Programming Languages, ACM,

1990, pp. 232{245.

19. Shapiro, E. Y., Con
urrent Prolog: A Progress

Report. Computer, Vol. 19, No. 8 (1986), pp. 44{58.

20. Shapiro, E., The Family of Con
urrent Logi
 Pro-

gramming Languages. Computing Surveys, Vol. 21,

No. 3 (1989), pp. 413{510.

21. Ueda, K., Guarded Horn Clauses. Do
toral the-

sis, Information Engineering Course, Fa
ulty of Engi-

neering, Univ. of Tokyo, 1986.

22. Ueda, K., Guarded Horn Clauses: A Parallel

Logi
 Programming Language with the Con
ept of a

Guard. ICOT Te
h. Report TR-208, ICOT, Tokyo,

1986. Also in Programming of Future Generation

Computers, Nivat, M. and Fu
hi, K. (eds.), North-

Holland, 1988, pp. 441{456.

23. Ueda, K. and Furukawa, K., Transformation

Rules for GHC Programs. In Pro
. Int. Conf. on

FGCS'88, ICOT, Tokyo, 1988, pp. 582{591.

{ 8 {

24. Ueda, K., Parallelism in Logi
 Programming. In

Information Pro
essing 89, Ritter, G. X. (ed.), North-

Holland, 1989, pp. 957{964.

25. Ueda, K. and Morita, M., A New Implementation

Te
hnique for Flat GHC. In Pro
. Seventh Int. Conf.

on Logi
 Programming, MIT Press, 1990, pp. 3{17.

{ 9 {

