
Optimizing KLIC Generic Objects by Static Analysis

Kazunori Ueda and Ryoji Tsuchiyama

�

Department of Information and Computer Science, Waseda University

4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169-8555, Japan

ueda@ueda.info.waseda.ac.jp

Abstract

The KLIC system has achieved both high

portability and extensibility by employing

C as an intermediate language and featur-

ing generic objects that allow users to de-

�ne new classes of data. It is also e�cient

for an untyped and unmoded language with

�ne-grained concurrency, but its
exibility

incurs runtime overhead that could be re-

duced by static analysis. This paper stud-

ies how constraint-based static analysis and

abstract interpretation can be used to re-

duce dynamic data checking and to optimize

loops. We applied the proposed technique

to the optimization of
oating-point num-

bers and their arrays. The optimized KL1

programs turned out to be only 34%{70%

slower than the comparable C programs.

1 Introduction

The KLIC system [4] compiles KL1 [8] pro-

grams into e�cient C programs, leaving low-

level details of optimization to the underly-

ing C compilers. Thus KLIC achieves high

portability, and at the same time it is quite

e�cient as a symbolic processing language

with tagged data representation. However,

it is our belief that parallel symbolic pro-

cessing is fully justi�ed only with static pro-

gram analysis, because the (costly) e�ort of

parallelization is easily cancelled out by in-

su�cient e�ort to improve single-processor

performance. Also, real-life parallel sym-

bolic applications (such as machine learn-

ing) may involve a lot of numerical compu-

�

Currently with Mitsubishi Electric Co. Ltd.

tation. We anticipate that future symbolic

languages should provide certain support of

high-performance computing.

We developed a constraint-based mode

system for GHC programs [9] and adapted

it to deal with the features of KL1. The im-

plementation of our mode analyzer is called

klint [13]. The mode system deals with the

direction of information
ow and checks if

every piece of communication is cooperative.

A well-moded program is uni�cation-safe,

that is, it will not cause the failure of uni�ca-

tion body goals (except due to occur-check).

In the terminology of Concurrent Constraint

Programming [7], this means that a tell op-

eration will not make the constraint store

inconsistent.

Constraint-based analysis can be used

also for type analysis and linearity analy-

sis, both partly supported by the current

klint system [13]. Our implementation tech-

nique builds upon these three analyses, plus

abstract interpretation of the instantiation

states of variables, as described in Section 4.

In this paper, we study how static pro-

gram analysis improves the performance of

the current KLIC implementation. Both for

pedagogical and practical reasons, we take

simple numerical computation as an exam-

ple to demonstrate the technique.

2 Number Representation in

KLIC

KLIC employs 32-bit representation for

scalar data. To accommodate tag bits, each

integer is represented using the most signif-

icant 28 bits of a word, accompanied by a

1

tag \0010". Floating-point numbers (64-bit

long in KLIC) are implemented using data

objects, one of the three kinds of generic ob-

jects [4]. A data object is represented as a

pointer to a record containing the value (or

a reference to the value) and a pointer to

the table of methods available to the data.

Vectors (one-dimensional arrays) are repre-

sented as data objects as well.

Although data objects are a natural and

exible means of de�ning new classes of

data, accessing and operating on data ob-

jects involve the checking of tag values and

the dereferencing of a couple of pointers.

Another problem is that, since data objects

are basically pointers to records,
oating-

point numbers not accessed any more be-

come garbage. Integers do not have the

garbage problem, but still involve the ma-

nipulation of tags|checking, removing (for

arithmetic operations), and/or attaching.

Arrays that allow constant-time access

and update are essential in many e�cient

algorithms. KLIC provides one-dimensional

arrays called vectors. Vectors in a single-

assignment language such as KL1 are nec-

essarily immutable at the language level,

so KLIC implements them as multi-version

data structures in which old element val-

ues are preserved in an association list while

the latest values are stored in random-access

arrays [6]. In many programs, however,

old element values thus preserved are not

accessed later, in which case the manage-

ment of an association list turns out to be

an overhead. Also, KL1 vectors can store

any values including uninstantiated vari-

ables, which means that before operating

on a vector element, one must check if it

is already instantiated and has the intended

data type.

It is highly desirable to be able to iden-

tify a class of programs which, with static

analysis, can be executed without tag opera-

tions for the checking of types and the avail-

ability of data. In addition to the compile-

time techniques, we have designed and im-

plemented an array class for instantiated

numbers, which is intended to be used in

combination with static analysis.

3 Constraint-Based Static

Analysis

One of the novelties of our optimization

technique is that it is largely based on

constraint-based static analysis, which has

a lot of advantages:

Simplicity. The mode system has been de-

signed so that it is accessible to pro-

grammers. In other words, its purpose

is not only for compilers to analyze pro-

grams but also for programmers to un-

derstand their programs better.

E�ciency. Mode analysis is a constraint

satisfaction problem with many simple

mode constraints, and can be solved

e�ciently by uni�cation over feature

graphs [1].

Modularity. Thanks to its incremental na-

ture, it is naturally amenable to sepa-

rate analysis of large programs.

Generality. It allows simple and general

formulations of various interesting ap-

plications including the diagnosis of

non-well-moded programs [5] and auto-

mated debugging [2].

We have designed three constraint-based

systems for static analysis: mode, type, and

linearity systems. Of these, the mode sys-

tem provides the most fundamental infor-

mation in the sense that it is referred to by

type and linearity systems. Because mode

analysis has been described in detail in the

literature [9, 10, 11], we outline our type

analysis and linearity analysis below.

3.1 Type Analysis

There may be a number of ways to intro-

duce a type system into concurrent logic

programming, but we chose to have a type

system very similar in structure to the mode

system. That is, a type tells what func-

tion symbols (including constant symbols)

can occur at what positions in data struc-

tures. To mention a \position", we de�ne

the notion of a path as a sequence of pairs, of

2

� �

(HBF

�

) �(p) = F

i

, for a function symbol in F

i

occurring at p in h or B.

(HBV

�

) 8q 2 P

Term

(� (pq) = �(p

0

q)), for a variable occurring both at p and p

0

in h

or B.

(GV

�

) 8q 2 P

Term

(m(p

0

q) = in) �(pq) = �(p

0

q)), for a variable occurring both at

p in h and at p

0

in G.

(BU

�

) 8q 2 P

Term

(�(h=

k

; 1iq) = �(h=

k

; 2iq)), for a uni�cation body goal =

k

.

�

Figure 1: Type constraints imposed by a program clause h:- G | B or a goal clause:- B

the form hsymbol; argi, of predicate/function

symbols and argument positions. Let P

Atom

be the set of paths for specifying positions

in a goal, and P

Term

the set of paths for

specifying positions in a term. For exam-

ple, in a goal p(f(a,b),C), the symbol b

occurs at hp; 1ihf; 2i 2 P

Atom

. The set Fun

of function symbols are assumed to be ap-

propriately classi�ed into mutually disjoint

subsets F

1

; : : : ; F

n

. For instance, all integers

may form one subset while all
oating-point

numbers may form another subset.

Formally, a type is a function from P

Atom

to the set fF

1

; : : : ; F

n

g. Like principal

modes, principal types can be computed by

uni�cation over feature graphs. A program

and/or a goal clause is said to have a type �

if it satis�es all the typing constraints sum-

marized in Figure 1. The choice of a fam-

ily of sets F

1

; : : : ; F

n

is somewhat arbitrary.

This is another reason why moding is more

fundamental than typing in concurrent logic

programming.

3.2 Linearity Analysis

The purpose of linearity analysis [14] is to

distinguish between data structures possi-

bly referenced by two ore more pointers and

those referenced by only one pointer. We

call the former shared data and the latter

nonshared data. Nonshared data structures

can be recycled as soon as they are read by

the sole reader (compile-time garbage col-

lection).

Sharing of a data structure is caused by

nonlinear variables de�ned as follows: An

occurrence of a GHC variable is called a

channel occurrence unless it is the second

or subsequent occurrences in a clause head

or an occurrence in a guard. A variable

in a program clause or a goal clause is

called linear if it has two or less channel

occurrences in the clause, and nonlinear if

it may have three or more channel occur-

rences. Mode analysis guarantees that ex-

actly one of the channel occurrences of a

variable is the writer occurrence and all the

others are reader occurrences, so communi-

cation with a linear variable is one-to-one

(or one-to-zero), while communication with

a nonlinear variable is one-to-many. Read-

ers are encouraged to see that surprisingly

many of the variables in existing concurrent

logic programs are linear.

To distinguish between nonshared data

and shared data in structural operational se-

mantics, we extend the semantics and attach

either of the annotations 1 or ! to every

function symbol f occurring in the bodies

of program clauses and goal clauses. Sup-

pose a substitution operation fv tg is

implemented by pointer assignment. Then

f

!

(: : :) means that the structure f(: : :)

is possibly shared and f

1

(: : :) means that

f(: : :) is never shared. The annotations are

managed as follows:

1. Annotations in program clauses and

initial goal clauses are given according

to how the structures are implemented.

For instance, suppose two processes p

and q in a goal clause

:- p([1,2,3],X), q([1,2,3],Y).

share a single list [1,2,3] in an ac-

3

� �

(BF

�

) �(p) = shared, for a function symbol f

!

occurring at p in B,

(LV

�

) For a linear variable with two occurrences at p

1

and p

2

,

8q 2 P

Term

(m(p

1

q) = in ^ �(p

1

q) = shared) �(p

2

q) = shared)

(when p

1

is a head path)

8q 2 P

Term

(m(p

1

q) = out ^ �(p

1

q) = shared) �(p

2

q) = shared)

(when p

1

is a body path),

(NV

�

) For a nonlinear variable occurring at p (and elsewhere),

8q 2 P

Term

(m(pq) = out) �(pq) = shared) (when p is a head path)

8q 2 P

Term

(m(pq) = in) �(pq) = shared) (when p is a body path)

(BU

�

) For a uni�cation body goal =

k

,

8q 2 P

Term

(h=

k

; 1iq = shared , h=

k

; 2iq = shared)

�

Figure 2: Linearity constraints imposed by a program clause h:- G | B or a goal clause

:- B

tual implementation. Then the eight

function symbols in the textual repre-

sentation of the goal clause must have

the annotation !. If two separate lists

are created at runtime, the annotations

can be either 1 or !. All function sym-

bols occurring in a term with a princi-

pal function symbol with ! must have

the annotation ! (closure condition).

2. In the extended operational semantics,

the annotations are handled as follows.

Suppose an assignment fv tg takes

place in a goal reduction. This hap-

pens either by the execution of a uni�-

cation goal v = t or by the reduction of a

non-uni�cation goal p(: : : t : : :) using a

clause of the form p(: : : v : : :):- G | B

(renamed using fresh variables).

� When v is nonlinear, all the an-

notations in t are �rst changed to

! in order to indicate that mul-

tiple readers have (direct or indi-

rect) access to all the subterms in

t. Then the other occurrences of v

(if any) are replaced by (modi�ed)

t.

� When v is linear, the other occur-

rence of v (if any) is replaced by t

without changes of annotations.

The annotation can be viewed as model-

ing a 1-bit reference counter [3], though it is

to be compiled away.

Linearity of a well-moded GHC program

can be characterized by a linearity function

� : P

Atom

! fnonshared ; sharedg. A pro-

gram clause h :- G | B or a goal clause

:- B is said to have a linearity � if it sat-

is�es all the linearity constraints shown in

Figure 2. The linearity constraints can be

trivially satis�ed by a function that always

returns shared , but such a linearity function

provides no useful information. The purpose

of linearity analysis is to �nd which paths

can have the value nonshared .

The main result about linearity analysis is

the Subject Reduction Theorem, which guar-

antees that when a program P and a goal

clause G satis�es � and G is reduced to G

0

using P, then G

0

also satis�es �. It follows

from this theorem that all data structures

occurring at nonshared paths have an anno-

tation 1.

4 Abstract Interpretation

Constraint-based program analysis nicely

captures implementation-independent prop-

erties of programs, and provides basic infor-

mation for optimization. However, it cannot

capture time-dependent or implementation-

dependent properties. An example of such

4

properties is the instantiation state of the

arguments of goals. It depends on both

when it is observed (possibilities include

when it is created, when it starts execution,

and when it is �nished) and how the goals

are scheduled.

The analysis of instantiation states en-

ables a compiler to form a thread , namely

a sequence of (�ne-grain) goals that can

be executed sequentially without suspen-

sion checking (except upon entry into the

thread). The form of a thread we are par-

ticularly interested in is a sequence of built-

in body goals possibly followed by a tail-

recursive call. The analysis can be done

using an abstract domain fbound; unboundg

and proceeds as follows:

1. reorder body goals in each program

clause using mode information to form

a potential thread, and

2. perform abstract execution of the main

program (or the top-level program of

the program module being analyzed)

according to the obtained control
ow

until the instantiation state of goal ar-

guments reaches a �xpoint.

If the abstract interpretation guarantees

the sequential execution of reordered goals

to determine all the necessary values of in-

put arguments, we have succeeded in form-

ing a thread and can proceed to loop opti-

mization described in the next section.

5 Loop Optimization

One of the most important applications of

constraint-based analysis and abstract inter-

pretation is the optimization of loops pro-

grammed as simple or mutual tail recursion.

Since tail-recursive calls usually have

more statically available information about

their arguments than the initial call to the

predicate, it is reasonable to have two en-

try points for each predicate, one for exter-

nal calls and the other for the tail-recursive

loop. The purpose is to eliminate

1. tag operations and

2. general procedures for accessing generic

objects

from the loop and to cache KL1 data using

C variables while looping.

Abstract interpretation may not guaran-

tee that all the data examined in clause

guards in a loop have been instantiated and

fully dereferenced when the loop is entered.

In this case, a compiler may insert a syn-

chronization code outside the loop to guar-

antee that all the data examined inside the

loop have concrete values and thus to re-

duce the number of synchronization opera-

tions performed at runtime. It is not always

possible to move a synchronization point out

of the loop because it may block the execu-

tion of uni�cation body goals whose results

are otherwise observable from other concur-

rent processes. However, in many cases we

can prove that this won't block the publica-

tion of any output data.

6 Number Arrays

Loop optimization is e�ective for both scalar

and vector computation. However, vectors

in KLIC are not as e�cient as they could be

to represent homogeneous arrays of instan-

tiated data (Section 2). To achieve perfor-

mance competitive with programs written in

procedural languages, we have implemented

arrays of 64-bit
oating point numbers and

arrays of 32-bit integers as KLIC's data ob-

jects. They are supposed to be used with

static analysis and have the following fea-

tures:

1. All the elements of an array must be

of the same type (64-bit
oating-point

numbers or 32-bit integers).

2. The values to be stored into arrays must

be instantiated.

3. Linearity analysis must guarantee that

multi-version control can be safely omit-

ted.

4. Allocated on a special area not under

management of the garbage collector.

5

Table 1: Optimization of
oating-point numbers and loops

without opt. with opt. C

32.6 msec. 4.47 msec. 2.63 msec.

(12.4) (1.70) (1.00)

Table 2: Arrays vs. vectors

KLIC vector double array double array C

with loop opt.

8.66 sec. 6.54 sec. 0.772 sec. 0.576 sec.

(15.0) (11.4) (1.34) (1.00)

This is to avoid copying of large ar-

rays by garbage collection. In an im-

plementation on a shared-memory par-

allel computer we are currently working

on, arrays may be allocated on shared

memory.

5. No bound check of index values. It

would be more reasonable to separate

array bound checks from access opera-

tions so that static analysis may elimi-

nate checks that are known to succeed.

6. Split and join operations with no copy-

ing. Suppose we want to let processes

access and update di�erent parts of an

array concurrently and without inter-

ference. This can be done by splitting

the original array and giving the resul-

tant subarrays to the processes. The

subarrays �nally returned by the pro-

cesses can be rejoined without copying,

as long as they have been updated in

place.

7 Experiments

To demonstrate the e�ect of our optimiza-

tion techniques, we took two examples, one

to compute

P

10000

k=1

(1=k

2

) and the other to

compute the product of two 100 � 100 ma-

trices, and compared the performance of

� the C code generated by KLIC (version

3.002),

� optimized, hand-compiled intermediate

code (in C) we have designed, and

� programs directly written in C.

The results are shown in Tables 1 and

2. The measurements were done using

Sun Ultra Enterprise 4000 (MPU: 168MHz),

and the numbers shown are the execu-

tion times of the main loops. All the

C programs were compiled using gcc -O2

-fomit-frame-pointer. The results show

that loop optimization and array types were

both e�ective, and the optimized KL1 pro-

grams turned out to be only 34%{70%

slower than the comparable C programs.

One of the remaining sources of overhead

is the polling of external events in each it-

eration, without which a thread executing a

tight loop might run inde�nitely.

8 Conclusions

We have shown that static analysis can

make the performance of KLIC, an imple-

mentation of a \pure" concurrent logic lan-

guage, quite close to C for numerical compu-

tation. The most important future work is

to build an optimizing KLIC compiler that

makes use of the output of the static an-

alyzer. Another important direction is to

extend our array objects to allow parallel

processing on shared-memory parallel com-

puters.

6

A key feature of concurrent logic lan-

guages is (and should be) that paralleliza-

tion can be achieved with very low addi-

tional programming e�ort. We hope our

research will open up a new approach to

high-performance computing and new appli-

cation of concurrent logic programming.

References

[1] A��t-Kaci, H. and Nasr, R., LOGIN:

A Logic Programming Language with

Built-In Inheritance. J. Logic Program-

ming, Vol. 3, No. 3 (1986), pp. 185{215.

[2] Ajiro, Y., Ueda, K. and Cho, K., Error-

correcting Source Code. To be pre-

sented at the Fourth Int. Conf. on Prin-

ciples and Practice of Constraint Pro-

gramming (CP98), Pisa, Italy, October

1998.

[3] Chikayama, T. and Kimura, Y., Mul-

tiple Reference Management in Flat

GHC. In Logic Programming: Proc. of

the Fourth Int. Conf (ICLP'87), The

MIT Press, 1987, pp. 276{293.

[4] Chikayama, T., Fujise, T., and Sekita,

D., A Portable and E�cient Imple-

mentation of KL1. In Proc. PLILP'94,

LNCS 844, Springer, 1994, pp. 25{39.

[5] Cho, K. and Ueda, K., Diagnos-

ing Non-Well-Moded Concurrent Logic

Programs. In Proc. 1996 Joint Int.

Conf. and Symp. on Logic Program-

ming (JICSLP'96), The MIT Press,

1996, pp. 215{229.

[6] Eriksson, L.-H. and Rayner, M., In-

corporating Mutable Arrays into Logic

Programming. In Proc. Second Int.

Logic Programming Conf., Uppsala

Univ., Sweden, 1984, pp. 101{114.

[7] Saraswat, V. A. and Rinard, M., Con-

current Constraint Programming (Ex-

tended Abstract). In Conf. Record of

the Seventeenth Annual ACM Symp.

on Principles of Programming Lan-

guages, ACM, 1990, pp. 232{245.

[8] Ueda, K. and Chikayama, T., Design of

the Kernel Language for the Parallel In-

ference Machine. The Computer Jour-

nal, Vol. 33, No. 6 (1990), pp. 494{500.

[9] Ueda, K. and Morita, M., Moded Flat

GHC and Its Message-Oriented Im-

plementation Technique. New Genera-

tion Computing, Vol. 13, No. 1 (1994),

pp. 3{43.

[10] Ueda, K., I/O Mode Analysis in Con-

current Logic Programming. In Proc.

Int. Workshop on Theory and Practice

of Parallel Programming, LNCS 907,

Springer, 1995, pp. 356{368.

[11] Ueda, K., Experiences with Strong

Moding in Concurrent Logic/Con-

straint Programming. In Proc. Int.

Workshop on Parallel Symbolic Lan-

guages and Systems, LNCS 1068,

Springer, 1996, pp. 134{153.

[12] Ueda, K. and Cho, K. kima|Analyzer

of Ill-moded KL1 Programs. Available

from http://www.icot.or.jp/AITEC/

FGCS/funding/itaku-H8-index-E.html,

1997.

[13] Ueda, K., klint | Static Analyzer for

KL1 Programs. Available from http:

//www.icot.or.jp/AITEC/FGCS/

funding/itaku-H9-index-E.html,

1998.

[14] Ueda, K., Linearity Analysis of Con-

current Logic Programs. Presented at

the 11th Annual Summer United Work-

shops on Parallel, Distributed and

Cooperative Processing (SWoPP'98),

IPSJ SIGPRO, August 1998. Full pa-

per in preparation.

7

