High-level Programming Languages and Systems for Cyber-Physical Systems

Kazunori Ueda Waseda University, Tokyo, Japan

Halmstad Summer School of Cyber-Physical Systems, July 17-21, 2017

Background

- Cyber-physical systems (CPS, 2000's–) = systems with computational and physical components
- Hybrid systems (1990's–) = dynamical systems with continuous and discrete behavior

CPS

Various aspects:

embedded systems, IoT, systems sensor network, big data, social/network infrastructure, distributed computing, security, ...

Computational foundations for

- interacting with the physical world (= implementing CPSs)
- modeling, simulation and verification

Hybrid Dynamical systems

Computing/modeling paradigms for CPSs

Key issue

= modeling of, and interfacing with, the *physical* world

How to reconcile them with computing abstraction of physical systems?

Computing/modeling paradigms for CPSs

Edward A. Lee: "Cyber-Physical Systems: Are Computing Foundations Adequate?"

NSF Workshop On Cyber-Physical Systems, October, 2006

4. Research directions

- Putting time into programming languages
- Rethinking the OS/programming split
- Rethink the hardware/software split
- Memory hierarchy with predictability
- Memory management with predictability
- Predictable, controllable deep pipelines
- Predictable, controllable, understandable concurrency
- Concurrent components
- Networks with timing
- Computational dynamical systems theory

 Systems whose states can make both continuous and discrete changes

Examples:

- bouncing ball, billiard, . . .
- thermostat + air conditioner + room.
- traffic signals + roads + cars

In general:

Dynamical systems whose description involves case analysis

- physical, biological, control, cyber-physical, etc.
- Relates to computer science, control engineering and apps.
- Programming language aspects rather unexplored

- Designing and implementing programming/modeling languages for hybrid systems
 - What are the basic notions and constructs?
 cf. automata (concrete) vs. λ-calculus (abstract)
 - Are they simple and accessible to non-specialists (e.g., engineers outside CS) ?
- Language constructs are divided into
 - those determining the underlying computational model (primitives)
 - those motivated by software engineering point of view (user language)

Modeling frameworks for hybrid systems

- Hybrid Automata and other "hybrid" models (Petri nets, I/O automata, Process Algebra, etc.)
- Modeling languages and tools with equations and updates
 - Modelica, Acumen, Ptolemy, Hybrid Language, ...
- Constraint-based languages and tools (domain = functions over time)
 - **iSAT** (Boolean+arithmetic constraint solver)
 - Hybrid CC (hybrid concurrent constraint language)
 - CLP(F) (constraint LP over real-valued functions)
 - Kaleidoscope '90 (discrete time)
 - HydLa (constraint hierarchy)

L. P. Carloni et al, Languages and Tools for Hybrid Systems Design, *Foundations and Trends in Electronic Design Automation*, Vol.1 (2006), pp.1-193.

Constraint Programming (CP)

A declarative programming paradigm in which a problem is described using equations/inequations over continuous or discrete domains

 $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5$

- Variables: x_1, \dots, x_5
- Domain: $1 \le x_i \le 5$
- **Constraints:** if $i \neq j$ then
 - $x_i \neq x_i$ • $x_j \neq x_i + |j - i|$ • $x_j \neq x_i - |j - i|$

Features and essence

- No algorithms: CP languages are often called modeling languages
- Developed in AI and Logic Programming communities
 - where the central interest has been constraint satisfaction and constraint propagation
 - many libraries for mainstream languages
 - CP languages are mostly based on Logic Programming
- Another view of CP: computing with partial information
 - by means of symbolic execution

Constraint Programming (CP)

- Different flavors and applications
 - Constraint satisfaction problems (CSPs)
 - Domains: finite, real, interval, ...
 - SMT (satisfiability modulo theories)
 - complex combination of logical connectives
 - usually not compute most general solutions
 - (Constraint-based) Concurrency

(a.k.a. Concurrent Constraint Programming)

Communication:	telli	ng and ask ing of constraints
Synchronization:	\Rightarrow	(also for conditionals)
Composition:	Λ	
Hiding:	Ξ	(also for fresh name creation)

Early history of constraint-based concurrency

Originated by process interpretation of logic programs

Kazunori Ueda: Logic/Constraint Programming and Concurrency: The Hard-Won Lessons of the Fifth Generation Computer Project. Science of Computer Programming, 2017

Inverter accepting a sequence of input data

nots([], Y) :- true | Y=[]. nots([0|X],Y0) :- true | Y0=[1|Y], nots(X,Y). nots([1|X],Y0) :- true | Y0=[0|Y], nots(X,Y).

- Discrete event systems can be represented using possibly infinite lists.
 - e.g., [0,1,1,0,1|A]

Constraints imposed by "nots(X,Y)":

Observed	Published	Rest
X=[0,1,1,0,1]	Y=[1,0,0,1,0]	(none)
X=[]	Y=[]	(none)
X=[0,1,1,0,1 X']	Y=[1,0,0,1,0 Y']	nots(X',Y')
(none)	(suspending)	nots(X,Y)
X=[2 _]	(reduction failure)	
X=[0 _], Y=[0 _]	(Inconsistency)	

Constraint Programming for hybrid systems

- Declarative description of hybrid systems
 = constraint programming of functions over time
 - cf. constraint programming over infinite sequences
- Many features are inherited from constraint-based concurrency
 - Implication (⇒) for synchronization and conditionals
 - Conjunction (∧) for parallel composition
 - Existential quantification (∃) for hiding

$$\Box(\underbrace{\text{e-stop}=1}_{\text{(ask)}} \Rightarrow \underbrace{\text{speed'}=-4.0}_{\text{(tell)}})$$

Challenges from the language perspective

- Establish a high-level programming/modeling language
 - equipped with the notion of *continuous time*,
 - equipped with the notion of *continuous changes*,
 - that properly handles uncertainties and errors of real values,
 - that properly handles conditional branch under uncertainties and errors of real values,
 - equipped with constructs for *abstraction* and *parallel composition*.
 - etc.
- Establish semantical foundations
- Establish implementation technologies

- Computers were born for numerical simulation, and simulation (in a broad sense) is still an important application of high-performance computers for the design and analysis of all kinds of systems.
- "How (much) can we trust these simulation results?"
 - For some simple problems, ordinary simulation with a standard tool *cannot* yield a single significant digit.

Rigorous simulation

 Simulation of hybrid systems is particularly hard and can easily go qualitatively wrong (due to conditional branch). A technique for rigorous simulation is very important.

Small errors make big differences!

Collision of three bodies

Some CPSs are safety-critical or mission-critical also.

Rigorous simulation vs. verification

- Most research on hybrid systems aims at verification as decision problems
 - yes/no answer (i.e., whether it works)
 - possibly with counterexamples (i.e., why it doesn't work)
- Rigorous simulation will require less from you and tell you more
 - no proof skills (cf. interactive theorem solving)
 - no proof goals (cf. automatic verifier)
 - still can be used to prove something (e.g., W. Tucker's proof on Lorenz attractors, R. E. Moore Prize 2002)
 - (often visualized) trajectories (i.e., how it works)
 - error margin (i.e., how safe it is)

HydLa : Overview and features (1/4)

- The field of hybrid systems comes with many notations, concepts and techniques; rather difficult to get into.
- Our challenge is to see whether a rather simplistic formalism can address various aspects of hybrid systems

Goals:

- Identifying computational mechanisms
- Modeling and *understanding* systems that are not large but may exhibit problematic behavior
- Non-goals (currently):
 - Modeling large-scale systems

• **Declarative** (\leftrightarrow Procedural)

- Minimizes new concepts and notations by employing popular mathematical and logical notations
 =, ≤, +, ×, ^d/_{dx}, ∧, ⇒, ⇔, ...
- Describes systems as logical formulae with hierarchy
 - No algorithmic constructs such as states and state changes, iteration, transfer of control, etc.
- Still, it turns out that the semantics comes with large design space, e.g.,
 - how to compare two uncertain values?
 - what continuity should we assume?

Constraint-based

- Basic idea: defines functions over time using constraints including ODEs, and solves initial value problems
 - cf. streams are defined by difference equations
- Handles partial (incomplete) information properly
 - Intervals (e.g., $x \in [1.0, 3.5]$) fit well within the constraint-based framework
 - Allows modeling and simulation of *parametric* hybrid systems
- Symbolic computation based on *consistency* checking
 - Powered by numerical techniques

HydLa : Overview and features (4/4)

- Features constraint hierarchies (Alan Borning, 1992)
 - Motivation: It's often difficult to describe systems so that the constraints are consistent and well-defined.

Examples: bouncing ball (, billiard, . . .)

- A ball normally obeys the law of gravity (default), while it obeys the collision equation when it bounces (exception).
- The frame problem (McCarthy and Hayes, 1960s) occurs in the description of complex systems.
 - We can't enumerate all possible exceptions
- Want to define these properties concisely and in a modular manner.

Example 1 : Sawtooth function

Example 1b : Sawtooth function

- When the ball is not on the ground, {INIT, PARAMS, FALL, BOUNCE} is maximally consistent.
- When the ball is on the ground, {INIT, PARAMS, BOUNCE} is maximally consistent.
- At each time point, HydLa adopts a maximally consistent set of rules that respects constraint priority.

Demo

- HyLaGI (HydLa Guaranteed Implementation) and webHydLa
 - http://webhydla.ueda.info.waseda.ac.jp/
 - http://www.ueda.info.waseda.ac.jp/hydla/

 Constraint hierarchy specified by "<<" determines possible combination of rules

```
INIT, PARAMS, (FALL << BOUNCE)
```

where rules with highest priority are "required" constraints

 Basic HydLa (next slide) considers a partially ordered set of "set of rules" induced from the constraint hierarchy.

Syntax of Basic HydLa

(program)	Р	::=	(<i>RS</i> , <i>DS</i>)
(rule sets)	RS	::=	poset of sets of R
(definitions)	DS	::=	set of D's with different LHSs
(definition)	D	::=	$R \Leftrightarrow C \qquad \qquad = \text{function from } R \text{ to } C$
(constraint)	С	::=	$A \mid C \land C \mid G \Longrightarrow C \mid \Box C \mid \exists x.C$
(guard)	G	::=	$A \mid G \land G$
(atomic constraint)	A	::=	E relop E
(expression)	Ε	::=	ordinary expression E' E-

- A program is a pair of
 - partially ordered set of "sets of rules" (RS) and
 - rule definitions (DS).

Example of RS:

{INIT, PARAMS, BOUNCE} < {INIT, PARAMS, FALL, BOUNCE}

- How to derive *RS* from << is beyond Basic HydLa.
- HydLa / Basic HydLa is a language scheme in which the underlying constraint system is left unspecified.
- ∃x. C realizes dynamic creation of variables.
 Example: creation and activation of new timers
 - \exists is eliminated at runtime using Skolem functions.

- Declarative semantics (Ueda, Hosobe, Ishii, 2011)
 M/bet traise decese a lively a preserve denote?
 - What trajectories does a HydLa program denote?
- Operational semantics

(Shibuya, Takata, Ueda, Hosobe, 2011)

- How to compute the trajectories of a given HydLa program?
- Unlike many other programming languages, declarative semantics was designed first, since
 - completeness of the operational semantics can't be expected and
 - diverse execution methods are to be explored.

Declarative semantics of Basic HydLa

 The purpose of a HydLa program is to define the constraints on a family of trajectories.

$$\overline{x}(t) = \{x_i(t)\}_{i \ge 1} \ (t \ge 0)$$

Declarative semantics, first attempt

$$\overline{x}(t) \vDash (RS, DS)$$

Works fine for programs not containing □ in the consequents of conditional constraints G ⇒ C
 [JSSST '08].

Example: systems with a fixed number of components and without delays

Declarative semantics of Basic HydLa

- Not only trajectories, but also *effective* constraint sets defining the trajectories, change over time.
 - Reason 1: Maximally consistent sets may change.
 - Reason 2: Conditional constraints may discharge their consequents.
 - When the consequent of a constraint starts with
 ,
 whether it's in effect or not depends on whether the
 corresponding guard held in the past
- Declarative semantics (refined)

 $\langle \overline{x}, Q \rangle \vDash (RS, DS)$

Q(t) : rule definitions with dynamically added consequents

Preliminary: □-closure

- We identify a conjunction of constraints with a set of constraints.
- We regard a set of constraints as a function over time.
- ◆ □-closure * : Unfolds (or *unboxes*) the topmost □-formulas dynamically and recursively.

Example: $C = \{f=0, \Box \{f'=1\}\}$ $\begin{cases} C^*(0) = \{f=0, f'=1, \Box \{f'=1\}\} \\ C^*(t) = \{f'=1\} \ (t>0) \end{cases}$

Declarative semantics

 $\langle \overline{x}, Q \rangle \vDash (RS, DS) \Leftrightarrow (i) \land (ii) \land (iii) \land (iv)$, where (i) $\forall t \forall R(Q(R)(t) = Q(R)^*(t))$ □-closure (ii) $\forall t \forall R(DS^*(R)(t) \subseteq Q(R)^*(t))$ extensiveness (iii) $\forall t \exists E \in RS$ ($(\overline{x}(t) \Rightarrow \{Q(R)(t) \mid R \in E\})$ satisfiability $\wedge \neg \exists \overline{x}' \exists E' \in RS ($ $\forall t' < t \ (\overline{x}'(t') = \overline{x}(t'))$ maximality $\wedge E \prec E'$ $\land \ \overline{x}'(t) \Rightarrow \{Q(R)(t) \mid R \in E'\})$ $\wedge \forall d \forall e \forall R \in E$ $(\overline{x}(t) \Rightarrow d) \land ((d \Rightarrow e) \in Q(R)(t)) \Rightarrow -closure$ $\Rightarrow e \subseteq Q(R)(t))$

(iv) Q(R)(t) at each t is the smallest set satisfying (i)-(iii)

$$P = ((\wp(\{D, E, F\}), \subsetneq), DS)$$

$$DS = \{ D \Leftrightarrow y = 0,$$

$$E \Leftrightarrow \Box(y' = 1 \land x' = 0),$$

$$F \Leftrightarrow \Box(y = 5 \Rightarrow x = 1) \}$$

a. y(t) = t, x(t) = 1 satisfies D, E, F at $0 \le t$.

- b. y(t) = t, x(t) = 2 satisfies D, E, F at 0 ≤ t < 5 and D, E at t = 5. It again satisfies D, E, F at t ≥ 5.
- c. y(t) = t, x(t) = 2 (t < 5), x(t) = 1 ($t \ge 5$) satisfies D, E, F at $0 \le t < 5$ and D, F at t = 5. It again satisfies D, E, F at $t \ge 5$.

All of a., b. and c. satisfy local maximality and hence satisfy P.
Example 4 : Bouncing Ball, revisited

- ht and ht' are not differentiable when bouncing
- However, to solve ODEs on ht and ht', right continuity of ht and ht' at the bouncing must be assumed
- To determine ht at the bouncing, *left continuity* of ht must be assumed as well. (cf. ht' is determined from B.)
- Trajectories with differential constraints should assume both right and left continuity with appropriate priority.

Example 5 : Behaviors defined without ODEs

$$\begin{array}{ll} \mathsf{P} &= (\mathsf{RS},\mathsf{DS}) \\ \mathsf{RS} &= (\{\{\mathsf{A},\mathsf{C}\},\,\{\mathsf{A},\mathsf{B},\mathsf{C}\}\},\,\{\{\mathsf{A},\mathsf{C}\}\prec\{\mathsf{A},\mathsf{B},\mathsf{C}\}\}) \\ \mathsf{DS} &= \{\mathsf{A} \Leftrightarrow \mathsf{f}{=} 0 \land \Box(\mathsf{f'}=1), \\ \mathsf{B} \Leftrightarrow \Box(\mathsf{g}{=} 0), \\ \mathsf{C} \Leftrightarrow \Box(\mathsf{f}{=} 5 \Rightarrow \exists \mathsf{a}.(\mathsf{a}{=} 0 \land \Box(\mathsf{a'}{=} 1) \\ \land \Box(\mathsf{a}{=} 2 \Rightarrow \mathsf{g}{=} 1))) \} \end{array}$$

g is an impulse function that fires at time 7 (= 5+2).

an example of non-right-continuous functions

 $\Box (0.9 < a \land a < 1.1) \land \Box (a'=b)$

a is a set of all smooth trajectories with the range (0.9, 1.1).
 Could be used for specification but not for modeling.

- This doesn't define a trajectory after the Zeno time.
- A rule for defining the trajectory after Zeno:

 $\Box(ht=0 \land ht'=0 \Rightarrow \Box(ht=0))$

 Checking of the guard condition would require a technique not covered by the current operational semantics.

Execution algorithm and implementation

HyLaGI: A symbolic simulator

- C++ (frontend) and Mathematica (backend), 27kLOC
- KV library^[1] for interval computation
- Optimized computation by exploiting the locality of constraints
- webHydLa^[2] for visualization

Bouncing ball on a ground with a hole

[1] http://verifiedby.me/[2] http://webhydla.ueda.info.waseda.ac.jp/

Tool	Approach
Acumen	Validated Numerical Simulation
Flow*	Taylor model + Domain contraction
dReach/dReal	Interval Constraint Propagation + Bounded Model Checking with Unrolling + SMT Solving
SpaceEx	Template Polyhedra & Support functions
KeYmaera & KeYmaera X	Symbolic Theorem Prover based on differential invariants
HyLaGI	Symbolic + Affine Arithmetic + Interval Newton method

Execution algorithm of HydLa should handle:

- 1. conditions that starts to hold "after" some time point
 - need to compute the greatest lower bound of a time interval

 $\begin{array}{l} A \Leftrightarrow x=0. \\ B \Leftrightarrow \Box \ (y=1). \\ C \Leftrightarrow \Box \ (x'=1 \ \land \ (x>3 \Rightarrow y=2)). \\ A, \ (B << C). \end{array}$

- 2. initial values given as intervals
 - could be divided into a subinterval that entails a guard and another that does not entail the guard
- 3. systems with symbolic parameters
 - needs symbolic computation

- For simulation, we need to consider a class of "computable" trajectories.
- Computable trajectories: those that have possibly parametric equational closed forms
 - ODEs without closed-form solutions are to be overapproximated by parametric equational closed forms.

Execution algorithm

Algorithm for Point Phase and Interval Phase

Closure calculation repeatedly checks the antecedents of conditional constraints

IP computes the next jump time (minimum of the following):

- 1. a conditional constraint becomes effective
- 2. a conditional constraint becomes ineffective
- 3. a ruled-out constraint becomes consistent with effective ones
- 4. the set of effective constraints becomes inconsistent

- Choice of *maximally* consistent set of rules
- Calculating deductive closure
 - Guard (g ⇒ …) may hold or may not hold depending on parameter values
 (e.g., will the thrown ball reach the wall?)
 - We calculate a "strengthened" constraint store for each case
- Finding the next possible jumps time
 - Reason of the next jump may depend on parameter values

(e.g., will the ball hit the wall or the floor first?)

 Together with each jump time, calculate a strengthened constraint store which causes that jump first

Example: Bouncing ball with ceiling

Thrown towards ceiling from some unknown height

Symbolic execution of HydLa models

Use symbolic parameters to handle uncertainties
 Includes ODE solving, Quantifier Elimination (for consistency checking and case splitting), optimization problem (for computing time of discrete change)

Bouncing ball on a ground with a hole

Bouncing ball on a ground with a hole

INIT $\langle = \rangle y = 10 \land y' = 0 \land x = 0 \land 0 \le x' \le 20.$ FALL $\langle = \rangle \Box (y'' = -10).$ BOUNCE $\langle = \rangle \Box (y - = -7 \lor (x - \le 7 \lor x - \ge 10) \land y - = 0$ $= \rangle y' = -(4/5) * y' -).$ XCONST $\langle = \rangle \Box (x'' = 0).$ XBOUNCE $\langle = \rangle \Box ((x - = 7 \lor x - = 10) \land y - < 0 = > x' = -x' -).$ INIT, (FALL $\langle <$ BOUNCE), (XCONST $\langle <$ XBOUNCE).

INIT, (FALL << BOUNCE), (XCONST << XBOUNCE). ASSERT(! ($y \ge 0 \land x \ge 10$)).

Search when the ball reaches the goal zone

Search when the ball reaches the goal zone

Bouncing ball on a ground with a hole (1/9)

Bouncing ball on a ground with a hole (2/9)

Bouncing ball on a ground with a hole (3/9)

55

Bouncing ball on a ground with a hole (4/9)

Bouncing ball on a ground with a hole (5/9)

Bouncing ball on a ground with a hole (6/9)

Bouncing ball on a ground with a hole (7/9)

Bouncing ball on a ground with a hole (8/9)

Bouncing ball on a ground with a hole (9/9)

61

- Hybrid systems handle discrete events
 as abstraction of quick physical change
 - (e.g., collision)

to represent computational aspects (e.g., controller)

Superdense time allows multiple events at the same time

- (*t*, *n*)
 - *t*: real

• n = 0, 1, 2, ...: event number at time t

In our constraint-based framework, what can we do with the standard notion of time?

Modeling behaviors with symbolic purturbation

[1] Edward Lee, Constructive Models of Discrete and Continuous Physical Phenomena, *IEEE Access*, Vol.2, 2014

Representing computational aspects

Solution 1: Form a network of constraints

```
\begin{split} &\mathsf{N} := \{\mathsf{n0} .. \, \mathsf{n5}\}. \\ &\mathsf{F} := \{\mathsf{f0} .. \, \mathsf{f5}\}. \\ &[](\mathsf{f0} = 1 \ \& \ \mathsf{n0} = \mathsf{n} \ \& \ \mathsf{f} = \mathsf{f5}). \\ &\mathsf{n} = 3. \\ &\{ \ [](\mathsf{N}[i] > \mathsf{0} \ => \mathsf{F}[i+1] = \mathsf{F}[i] \ \& \ \mathsf{N}[i] \ \& \ \mathsf{N}[i+1] = \mathsf{N}[i] \ -1), \\ &[](\mathsf{N}[i] <= \mathsf{0} => \mathsf{F}[i+1] = \mathsf{F}[i] \ \& \ \mathsf{N}[i+1] = \mathsf{N}[i]) \\ &| \ i \ \mathsf{i} \ \{1..|\mathsf{F}|\text{-1}\} \ \}. \end{split}
```

♦ Solution 2: use ∃

```
F(0, y) \le y=1.

F(x, y) \& x>0 \le \exists z.(y = n*z \& F(x-1, z))
```

Cooperation of symbolic and numeric techniques

Shota Matsumoto and Kazunori Ueda: Proc. TIME 2016, pp.4-11, Oct. 2016

Exmple: water level control

 $\int \frac{dx_1}{dt} = -x1 + 3 \text{ (v1: open)}$ $\int \frac{dx_1}{dt} = -x1 - 2 \text{ (v1: closed)}$ v1 1 (v1 \rightarrow close) -1 (v1 \rightarrow open) χ $1.9 \le x1(0) \le 1.9001$ x2(0) = 1x2 1 (v1 \rightarrow close & v2 \rightarrow open) 0 (v2 \rightarrow close) $\begin{cases} \frac{dx^2}{dt} = x1 - x2 - 5\\ (v2: \text{ open})\\ \frac{dx^2}{dt} = x1 \text{ (v2: closed)} \end{cases}$ **1**v2

• First continuous change
$$2(t) = -\frac{-8 + 7e^t - 2t - t * x1(0)}{e^t}$$

Arithmetic defined on intervals of reals

• e.g.
$$[a,b] + [c,d] = [a+c,b+d]$$

 $[a,b] - [c,d] = [a-d,b-c]$

Shortcoming: explosion of interval width

Solve by handling symbolic parameters

Symbolic vs. numerial methods

Cooperation of symbolic and numeric methods

• Use affine arithmetic (AA) to approximate complex formulae

- to reduce computational cost
- while retaining linear terms of parameters
- Use interval Newton method and mean-value theorem to compute discrete change rigorously
 - to handle systems that are hard to compute symbolically
 - while retaining linear terms of parameters

Cooperation of symbolic and numeric methods

Affine Arithmetic

Extended version of Interval Arithmetic

Expresses uncertainty in affine form

Affine form
$$\begin{cases} X = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n \\ -1 \le \varepsilon_i \le 1 \end{cases}$$

- Each ε_i represents uncertainty just in the same manner as symbolic parameters in symbolic execution
- Each x_i (i > 0) represents the effect of ε_i , while x_0 represents the center

[1] de Figueiredo, L. H. and Stolfi, J.: Numerical Algorithm, 37 (1–4), 147–158, 2004

Affine Arithmetic

- Affine forms represent zonotopes, a polygon with parallel opposite edges
- Symbolic parameters ε_i retain first-order dependencies between uncertain values

We use affine arithmetic to over-approximate symbolic formulas

- It reduces computational cost for complex formulas
- Number of preserved parameters can be reduced

Example

$$f(x) \coloneqq (x + 1)^2 - 2x$$

$$X \coloneqq 0 + 0.1 \varepsilon_1 (= [-0.1, 0.1])$$
 cancelled by
preserved dependency

$$f(X) = (1 + 0.1\varepsilon_1)^2 - 0.2 \varepsilon_1$$

$$= 2(1 + 0.1\varepsilon_1) - 0.995 - 0.005 \varepsilon_2 - 0.2 \varepsilon_1$$

$$= 2 + 0.2\varepsilon_1 - 0.2 \varepsilon_1 - 0.995 + 0.005 \varepsilon_2$$

$$= 1.005 + 0.005\varepsilon_2 (= [1, 1.01])$$

Computation of Event Time

- Goal: compute the solution of $f(t, \vec{p}) = 0$ w.r.t. t that preserves the linear terms of the parameters \vec{p}
- Assume that the guard is described by a single equation: $g(\vec{x}) = 0$
- Step 1. Substitute solution of ODEs into $g(\vec{x})$ and obtain $f(t, \vec{p})$
- Step 2. Solve $f(t, \vec{p}) = 0$ by interval Newton method and obtain solution interval T
- Step 3. Obtain linear over-approximation $F(t, \vec{p})$ that encloses $f(t, \vec{p})$ in T using mean value thm
- Step 4. Compute zero-crossing of $F(t, \vec{p})$ symbolically

Step 1. Substitution of Trajectory

Event time is the positive minimal time satisfying the guard. Trajectory : $x = -0.5 + 0.2 t^2 \land y = -0.3 + \sin(3t) + \frac{\epsilon}{100}$ Guard: $g(x, y) = x^2 + y^2 - 1 = 0$

Extended version of Newton method

Features:

- Computes over-approximated zero-crossing of $f(t, \varepsilon)$
- Converges quadratically
- Guarantees existence and uniqueness of solution

[3] Moore, R. E., Kearfott, R. B., Cloud. M. J.: Society for Industrial and Applied Mathematics, 2009.

Step 2. Solution of Interval Newton Method

Narrow enough along the time axis

Step 2. Solution of Interval Newton Method

Narrow enough along the time axis, but
Not optimal along the parameter axis

Derive **parametrized** solution from solution **interval**

• Compute parametrized over-approximation of $f(t, \varepsilon)$

By mean value theorem for multivariate function $[b,a] \subseteq I \Rightarrow h(b) \in h(a) + \nabla h(I) \cdot (b-a)$

Step 3. Refinement by Mean Value Theorem

From $h(b) \in h(a) + \nabla h(I) \cdot (b-a)$, by replacing h(x) with $f(t, \varepsilon)$, we obtain T_m is midpoint of T_N $f(t,\varepsilon) \in f(T_m,\varepsilon_m) + \frac{\partial f(T,[-1,1])}{\partial t}(t-T_m) + \frac{\partial f(T,[-1,1])}{\partial \varepsilon}(\varepsilon - t) + \frac{\partial f(T$ ε_m = 0 is midpoint of ε $= f(T_m, 0) + \frac{\partial f(T, [-1, 1])}{\partial t} (t - T_m) + \frac{\partial f(T, [-1, 1])}{\partial \varepsilon} \varepsilon$ =: $F(t, \varepsilon)$ Evaluated to intervals remaining symbols

Step 3. Refinement by Mean Value Theorem

From $h(b) \in h(a) + \nabla h(I) \cdot (b-a)$, by replacing h(x) with $f(t,\varepsilon)$, we obtain $f(t,\varepsilon) \in f(T_m,\varepsilon_m) + \frac{\partial f(T,[-1,1])}{\partial t}(t-T_m) + \frac{\partial f(T,[-1,1])}{\partial \varepsilon}(\varepsilon-\varepsilon_m)$ $\varepsilon_m = 0$ is midpoint of ε $= f(T_m, 0) + \frac{\partial f(T, [-1, 1])}{\partial t} (t - T_m) + \frac{\partial f(T, [-1, 1])}{\partial \varepsilon} \varepsilon$ =: $F(t, \varepsilon)$ **Evaluated to intervals**

Zero-crossing of $F(t, \varepsilon)$ is computed analytically

0.02

0.01

0.00 f

If guards are described by inequalities, we compute zero-crossings of each atomic condition

Water Level Control

- Compared with naive interval arithmetic
- Preserve 6 symbolic parameters (4 for water level + derivatives, time, additional)

Error width converged in the proposed method

Execution time of Water Level Control

 Execution time is longer than naive interval arithmetic, but did not explode

Bouncing Ball on Sine Wave

- Compared with naive interval arithmetic
- Preserved {5, 9, 13} parameters

Compared with naive interval arithmetic

Tradeoff between error width and execution time

Thanks for the attention!